You are here

The OpenMx website will be down for maintenance from 9 AM EDT on Tuesday, September 17th, and is expected to return by the end of the day on Wednesday, September 18th. During this period, the backend will be updated and the website will get a refreshed look.

warning message when using metaSEM

4 posts / 0 new
Last post
Bo Wang's picture
Offline
Joined: 03/19/2024 - 07:45
warning message when using metaSEM

We want to use metaSEM to conduct a mediation model based on four samples using TSSEM. There was a warning message in the summary of the output from the tssem1 function. The following is the R script we used to run the analysis:

Insert correlation matrices

M2_Study_2a <- data.matrix(data.frame(
IV = c(1, 0.236, 0.360),
M = c(0.236, 1, 0.247),
DV = c(0.360, 0.247, 1)
))

M2_Study_2b <- data.matrix(data.frame(
IV = c(1, 0.203, 0.207),
M = c(0.203, 1, 0.174),
DV = c(0.207, 0.174, 1)
))

M2_Study_3 <- data.matrix(data.frame(
IV = c(1, 0.153, 0.439),
M = c(0.153, 1, 0.203),
DV = c(0.439, 0.203, 1)
))

M2_Study_4 <- data.matrix(data.frame(
IV = c(1, 0.198, 0.327),
M = c(0.198, 1, 0.238),
DV = c(0.327, 0.238, 1)
))

Insert sample sizes information

N_Study_2a <- 198
N_Study_2b <- 200
N_Study_3 <- 278
N_Study_4 <- 296

Complie the data list

N_M2 <- c(N_Study_2a, N_Study_2b, N_Study_3, N_Study_4)
Cor_Matrix_M2 <- list(M2_Study_2a, M2_Study_2b, M2_Study_3, M2_Study_4)
Cor_Matrix_M2 <- lapply(Cor_Matrix_M2, function(x) {
dimnames(x) <- list(c("IV","M","DV"), c("IV","M","DV"))
x})
Data_M2 <- list(Cor_Matrix_M2, N_M2)
names(Data_M2) <- c("data", "n")
names(Data_M2$data) <- c("Study_2a", "Study_2b", "Study_3", "Study_4")

Proposed model in lavaan syntax

Mediation_Model <- "DV ~ cIV + bM
M ~ aIV
IV ~~ 1
IV"
plot(Mediation_Model)

obs.vars1 <- as.character(c("IV","M","DV"))

Convert the lavaan syntax to RAM specification used in metaSEM

RAM <- lavaan2RAM(Mediation_Model, obs.variables=obs.vars1)

Random-effects model

Random_M2 <- tssem1(Data_M2$data, Data_M2$n, method="REM")
summary(Random_M2)

Then the warning message came up: "Warning: OpenMx status1 is neither 0 or 1. You are advised to 'rerun' it again."
The estimation of the first and third heterogeneity components also seems incorrect because there are NAs, for example, for Std.Error.
Any help would be greatly appreciated!

Mike Cheung's picture
Offline
Joined: 10/08/2009 - 22:37
You may rerun the model to

You may rerun the model to get rid of the warning. The SEs are NAs for the two estimated variances because they hit the lower bound. In other words, the estimated variances could be negative but restricted to be the values of the lower bound. Thus, there is no SE on them.

Bo Wang's picture
Offline
Joined: 03/19/2024 - 07:45
Thank you for your reply! I

Thank you for your reply! I keep getting the same warning message every time I run the model. Am I misunderstanding "rerun"?

Mike Cheung's picture
Offline
Joined: 10/08/2009 - 22:37
Your code is quite messy.

Your code is quite messy. Here is the formatted one. Since the effect sizes are homogeneous, you may consider using the fixed-effects model.

M2_Study_2a <- data.matrix(data.frame(
  IV = c(1, 0.236, 0.360),
  M = c(0.236, 1, 0.247),
  DV = c(0.360, 0.247, 1)
))
 
M2_Study_2b <- data.matrix(data.frame(
  IV = c(1, 0.203, 0.207),
  M = c(0.203, 1, 0.174),
  DV = c(0.207, 0.174, 1)
))
 
M2_Study_3 <- data.matrix(data.frame(
  IV = c(1, 0.153, 0.439),
  M = c(0.153, 1, 0.203),
  DV = c(0.439, 0.203, 1)
))
 
M2_Study_4 <- data.matrix(data.frame(
  IV = c(1, 0.198, 0.327),
  M = c(0.198, 1, 0.238),
  DV = c(0.327, 0.238, 1)
))
 
N_Study_2a <- 198
N_Study_2b <- 200
N_Study_3 <- 278
N_Study_4 <- 296
 
N_M2 <- c(N_Study_2a, N_Study_2b, N_Study_3, N_Study_4)
Cor_Matrix_M2 <- list(M2_Study_2a, M2_Study_2b, M2_Study_3, M2_Study_4)
Cor_Matrix_M2 <- lapply(Cor_Matrix_M2, function(x) {
  dimnames(x) <- list(c("IV","M","DV"), c("IV","M","DV"))
  x})
Data_M2 <- list(Cor_Matrix_M2, N_M2)
names(Data_M2) <- c("data", "n")
names(Data_M2$data) <- c("Study_2a", "Study_2b", "Study_3", "Study_4")
 
## Random-effects model
Random_M2 <- tssem1(Data_M2$data, Data_M2$n, method="REM")
Random_M2 <- rerun(Random_M2)
summary(Random_M2)
 
## Fixed-effects model
Fixed_M2 <- tssem1(Data_M2$data, Data_M2$n, method="FEM")
summary(Fixed_M2)