warning message when using metaSEM
### Insert correlation matrices
M2_Study_2a <- data.matrix(data.frame(
IV = c(1, 0.236, 0.360),
M = c(0.236, 1, 0.247),
DV = c(0.360, 0.247, 1)
))
M2_Study_2b <- data.matrix(data.frame(
IV = c(1, 0.203, 0.207),
M = c(0.203, 1, 0.174),
DV = c(0.207, 0.174, 1)
))
M2_Study_3 <- data.matrix(data.frame(
IV = c(1, 0.153, 0.439),
M = c(0.153, 1, 0.203),
DV = c(0.439, 0.203, 1)
))
M2_Study_4 <- data.matrix(data.frame(
IV = c(1, 0.198, 0.327),
M = c(0.198, 1, 0.238),
DV = c(0.327, 0.238, 1)
))
### Insert sample sizes information
N_Study_2a <- 198
N_Study_2b <- 200
N_Study_3 <- 278
N_Study_4 <- 296
### Complie the data list
N_M2 <- c(N_Study_2a, N_Study_2b, N_Study_3, N_Study_4)
Cor_Matrix_M2 <- list(M2_Study_2a, M2_Study_2b, M2_Study_3, M2_Study_4)
Cor_Matrix_M2 <- lapply(Cor_Matrix_M2, function(x) {
dimnames(x) <- list(c("IV","M","DV"), c("IV","M","DV"))
x})
Data_M2 <- list(Cor_Matrix_M2, N_M2)
names(Data_M2) <- c("data", "n")
names(Data_M2$data) <- c("Study_2a", "Study_2b", "Study_3", "Study_4")
### Proposed model in lavaan syntax
Mediation_Model <- "DV ~ c*IV + b*M
M ~ a*IV
IV ~~ 1*IV"
plot(Mediation_Model)
obs.vars1 <- as.character(c("IV","M","DV"))
### Convert the lavaan syntax to RAM specification used in metaSEM
RAM <- lavaan2RAM(Mediation_Model, obs.variables=obs.vars1)
### Random-effects model
Random_M2 <- tssem1(Data_M2$data, Data_M2$n, method="REM")
summary(Random_M2)
Then the warning message came up: "Warning: OpenMx status1 is neither 0 or 1. You are advised to 'rerun' it again."
The estimation of the first and third heterogeneity components also seems incorrect because there are NAs, for example, for Std.Error.
Any help would be greatly appreciated!
You may rerun the model to
Log in or register to post comments
In reply to You may rerun the model to by Mike Cheung
Thank you for your reply! I
Log in or register to post comments
Your code is quite messy.
M2_Study_2a <- data.matrix(data.frame(
IV = c(1, 0.236, 0.360),
M = c(0.236, 1, 0.247),
DV = c(0.360, 0.247, 1)
))
M2_Study_2b <- data.matrix(data.frame(
IV = c(1, 0.203, 0.207),
M = c(0.203, 1, 0.174),
DV = c(0.207, 0.174, 1)
))
M2_Study_3 <- data.matrix(data.frame(
IV = c(1, 0.153, 0.439),
M = c(0.153, 1, 0.203),
DV = c(0.439, 0.203, 1)
))
M2_Study_4 <- data.matrix(data.frame(
IV = c(1, 0.198, 0.327),
M = c(0.198, 1, 0.238),
DV = c(0.327, 0.238, 1)
))
N_Study_2a <- 198
N_Study_2b <- 200
N_Study_3 <- 278
N_Study_4 <- 296
N_M2 <- c(N_Study_2a, N_Study_2b, N_Study_3, N_Study_4)
Cor_Matrix_M2 <- list(M2_Study_2a, M2_Study_2b, M2_Study_3, M2_Study_4)
Cor_Matrix_M2 <- lapply(Cor_Matrix_M2, function(x) {
dimnames(x) <- list(c("IV","M","DV"), c("IV","M","DV"))
x})
Data_M2 <- list(Cor_Matrix_M2, N_M2)
names(Data_M2) <- c("data", "n")
names(Data_M2$data) <- c("Study_2a", "Study_2b", "Study_3", "Study_4")
## Random-effects model
Random_M2 <- tssem1(Data_M2$data, Data_M2$n, method="REM")
Random_M2 <- rerun(Random_M2)
summary(Random_M2)
## Fixed-effects model
Fixed_M2 <- tssem1(Data_M2$data, Data_M2$n, method="FEM")
summary(Fixed_M2)
Log in or register to post comments