A question on sex limitation model

Thanks!
Here's what I got:
> QualAceSum <- summary(QualAceFit)
> QualAceSum$pa
name matrix row col Estimate Std.Error lbound ubound lboundMet uboundMet
1 af11 af 1 1 -0.04197853 0.069535675 NA NA FALSE FALSE
2 cf11 cf 1 1 0.10788236 0.027485716 NA NA FALSE FALSE
3 ef11 ef 1 1 0.09560371 0.008996776 NA NA FALSE FALSE
4 am11 am 1 1 -0.12227226 0.027188245 NA NA FALSE FALSE
5 cm11 cm 1 1 0.05321686 0.054393710 NA NA FALSE FALSE
6 em11 em 1 1 0.05450773 0.011454815 NA NA FALSE FALSE
7 meanf MZf.expMeanGf 1 STTidTrans1 0.36583189 0.014897526 NA NA FALSE FALSE
8 meanm MZm.expMeanGm 1 STTidTrans1 0.39985695 0.025581764 NA NA FALSE FALSE
9 rc11 DZo.rc 1 1 1.00000000 1.791567033 0 1 FALSE TRUE
> round(QualAceFit@output$estimate,4)
af11 cf11 ef11 am11 cm11 em11 meanf meanm rc11
-0.0420 0.1079 0.0956 -0.1223 0.0532 0.0545 0.3658 0.3999 1.0000
> round(cbind(QualAceFit$VarsZf@result,QualAceFit$VarsZm@result),4)
Af Cf Ef SAf SCf SEf Am Cm Em SAm SCm SEm
[1,] 0.0018 0.0116 0.0091 0.0782 0.5163 0.4055 0.015 0.0028 0.003 0.7204 0.1365 0.1432
>
> QualSat <- mxRefModels(QualAceFit, run=TRUE)
Running Saturated QualACE
Running Independence QualACE
> mxCompare(QualSat,QualAceFit)
base comparison ep minus2LL df AIC diffLL diffdf p
1 Saturated QualACE
2 Saturated QualACE QualACE 9 -250.7103 198 -646.7103 17.83638 16 0.333565
3 Independence QualACE
4 Independence QualACE QualACE 9 -250.7103 198 -646.7103 -29.74397 11 1.000000
>
> # ------------------------------------------------------------------------------
> # FIT SUBMODELS
>
> # Run non-scalar Sex Differences ACE model
> QuanAceModel <- mxModel( QualAceFit, name="QuanACE" )
> QuanAceModel <- omxSetParameters( QuanAceModel, labels="rc11", free=FALSE, values=1 )
> QuanAceFit <- mxRun(QuanAceModel)
Running QuanACE
> round(QuanAceFit@output$estimate,4)
af11 cf11 ef11 am11 cm11 em11 meanf meanm
-0.0420 0.1079 0.0956 -0.1223 0.0532 0.0545 0.3658 0.3999
> round(cbind(QuanAceFit$VarsZf@result,QuanAceFit$VarsZm@result),4)
Af Cf Ef SAf SCf SEf Am Cm Em SAm SCm SEm
[1,] 0.0018 0.0116 0.0091 0.0782 0.5163 0.4055 0.015 0.0028 0.003 0.7204 0.1365 0.1432
>
> # Run Homogeneity ACE model
> HomAceModel <- mxModel( QuanAceFit, name="HomACE" )
> HomAceModel <- omxSetParameters( HomAceModel, labels=c("af11","am11"), free=TRUE, values=.6, newlabels='a11' )
> HomAceModel <- omxSetParameters( HomAceModel, labels=c("cf11","cm11"), free=TRUE, values=.6, newlabels='c11' )
> HomAceModel <- omxSetParameters( HomAceModel, labels=c("ef11","em11"), free=TRUE, values=.6, newlabels='e11' )
> HomAceFit <- mxRun(HomAceModel)
Running HomACE
> round(HomAceFit@output$estimate,4)
a11 c11 e11 meanf meanm
0.0681 -0.0961 0.0901 0.3671 0.3972
> round(cbind(HomAceFit$VarsZf@result,HomAceFit$VarsZm@result),4)
Af Cf Ef SAf SCf SEf Am Cm Em SAm SCm SEm
[1,] 0.0046 0.0092 0.0081 0.211 0.4197 0.3692 0.0046 0.0092 0.0081 0.211 0.4197 0.3692
>
> # ------------------------------------------------------------------------------
>
> # Print Comparative Fit Statistics
> AceNested <- list(QuanAceFit,HomAceFit)
> mxCompare(QualAceFit,AceNested)
base comparison ep minus2LL df AIC diffLL diffdf p
1 QualACE
2 QualACE QuanACE 8 -250.7103 199 -648.7103 -1.818989e-12 1 1.0000000
3 QualACE HomACE 5 -245.5911 202 -649.5911 5.119166e+00 4 0.2752874
>
> round(QualAceFit@output$estimate,4)
af11 cf11 ef11 am11 cm11 em11 meanf meanm rc11
-0.0420 0.1079 0.0956 -0.1223 0.0532 0.0545 0.3658 0.3999 1.0000
> round(QuanAceFit@output$estimate,4)
af11 cf11 ef11 am11 cm11 em11 meanf meanm
-0.0420 0.1079 0.0956 -0.1223 0.0532 0.0545 0.3658 0.3999
> round(HomAceFit@output$estimate,4)
a11 c11 e11 meanf meanm
0.0681 -0.0961 0.0901 0.3671 0.3972
> round(rbind(cbind(QualAceFit$VarsZf@result,QualAceFit$VarsZm@result),
+ cbind(QuanAceFit$VarsZf@result,QuanAceFit$VarsZm@result),
+ cbind(HomAceFit$VarsZf@result,HomAceFit$VarsZm@result)),4)
Af Cf Ef SAf SCf SEf Am Cm Em SAm SCm SEm
[1,] 0.0018 0.0116 0.0091 0.0782 0.5163 0.4055 0.0150 0.0028 0.0030 0.7204 0.1365 0.1432
[2,] 0.0018 0.0116 0.0091 0.0782 0.5163 0.4055 0.0150 0.0028 0.0030 0.7204 0.1365 0.1432
[3,] 0.0046 0.0092 0.0081 0.2110 0.4197 0.3692 0.0046 0.0092 0.0081 0.2110 0.4197 0.3692
Sample size?
Log in or register to post comments
Hi, I'm new to the
I'm new to the sex-limitation model. Would you please tell me:
1. the differences between the three models (qualitative, quantitative, and homogeneity ACE models)?
2. what does the following comparison means?
(base comparison ep minus2LL df AIC diffLL diffdf p
1 QualACE 9 -250.7103 198 -646.7103 NA NA NA
2 QualACE QuanACE 8 -250.7103 199 -648.7103 -1.818989e-12 1 1.0000000
3 QualACE HomACE 5 -245.5911 202 -649.5911 5.119166e+00 4 0.2752874)
Thank you so much for your help
YUAN
Log in or register to post comments
broad question
Log in or register to post comments