helper-functions

Wiki home page

Ideas and example functions that extend OpenMx, encapsulate tedious work, and make scripts easier to write or more compact.

You will probably define helper functions, especially for summarizing the output of model you use frequently.

There are libraries of helpers that work with OpenMx including

Some how-to helpers are listed here:

Back to top

1) Read a Lower triangle file

source

readLowerTriangle - function(file, nrows, fill=TRUE) {
    xvector - scan(file)
    X - matrix(NA, nrows, nrows)
    i - 1
    for(row in 1:nrows) {
        for(col in 1:nrows) {
            if(col>row) next
            X[row,col] - xvector[i]
            i - i + 1
            if (fill)
                X[col,row] - X[row,col]
        }
    }
    return(X)
}

An alternative using matrix indexing would be:

read.lower.triangle - function(file, nrows) {
  X - matrix(NA, ncol=nrows, nrow=nrows)
  X[upper.tri(X, diag=TRUE)] - scan(file)
  X[lower.tri(X, diag=FALSE)] - t(X)[lower.tri(X, diag=FALSE)]
  return(X)
}

See also read.moments() in http://cran.r-project.org/web/packages/sem/sem.pdf

require(sem) # install.packages("sem", dep=T)
read.moments(file = "", diag = TRUE,
names = as.character(paste("X", 1:n, sep = "")))

Back to top

2) Converting a correlation matrix to a covariance matrix

If you are reanalyzing published data, you may only have a correlation matrix and the SD for each variable. You can upconvert this to a covariance matrix with cor2cov(matrix, sd) from the MBESS package

http://rss.acs.unt.edu/Rdoc/library/MBESS/html/cor2cov.htmlBack to top