You are here

The OpenMx website will be down for maintenance from 9 AM EDT on Tuesday, September 17th, and is expected to return by the end of the day on Wednesday, September 18th. During this period, the backend will be updated and the website will get a refreshed look.

Error only occurring on Amazon linux instance

7 posts / 0 new
Last post
ssciarra's picture
Offline
Joined: 01/08/2021 - 12:50
Error only occurring on Amazon linux instance
AttachmentSize
File test_data.csv16.62 KB

I am trying to run simulations on an Amazon linux instance and get the following error when I use mxAutoStart() to generate starting values :

library(devtools)
#install_github("sciarraseb/nonlinSims", dependencies = T, force=T)
library(easypackages)
library(nonlinSims)
library(parallel)
library(tidyverse)
library(OpenMx)
library(data.table)
 
test_data <- read_csv(file = 'test_data.csv')
model <- create_logistic_growth_model(data_wide = test_data, model_name = 'test')
model <- mxAutoStart(model)
Error in solve.default(I - A) : 
  system is computationally singular: reciprocal condition number = 0

Here is the output provided when calling traceback():

12: solve.default(I - A)
11: solve(I - A)
10: genericGetExpected(model[[subname]]$expectation, model, component, 
        defvar.row, subname)
9: genericGetExpected(model[[subname]]$expectation, model, component, 
       defvar.row, subname)
8: mxGetExpected(model, c("covariance", "means", "thresholds"), 
       subname = subname)
7: autoStartDataHelper(model, type = type)
6: mxModel(model, autoStartDataHelper(model, type = type))
5: omxBuildAutoStartModel(model, type)
4: is(model, "MxModel")
3: warnModelCreatedByOldVersion(model)
2: mxRun(omxBuildAutoStartModel(model, type), silent = TRUE)
1: mxAutoStart(model)

I have provided other pertinent information below (i.e., R version, optimizer used in OpenMx, etc.):

OpenMx version: 2.19.8 [GIT v2.19.8]
R version: R version 4.0.2 (2020-06-22)
Platform: x86_64-koji-linux-gnu
Default optimizer: SLSQP
NPSOL-enabled?: No
OpenMP-enabled?: Yes

Interestingly, the error appearing on the Amazon instance does not appear when I run the code offline in RStudio (on either Mac or Windows). Here is the output provided by mxVersion()in the offline version of R that I am using:

OpenMx version: 2.19.8 [GIT v2.19.8]
R version: R version 4.0.5 (2021-03-31)
Platform: x86_64-apple-darwin17.0 
MacOS: 12.0.1
Default optimizer: SLSQP
NPSOL-enabled?: No
OpenMP-enabled?: No

I have also attached the data set (test_data.csv). I have written create_logistic_growth_model() and posted it in a GitHub repository (hopefully you can download the package to use the function). I can provide more information about this function if necessary.

AdminRobK's picture
Offline
Joined: 01/24/2014 - 12:15
sessionInfo()

Under Amazon Linux, what do you get from running sessionInfo() at the R prompt? I'm primarily curious about the 'Matrix products', 'BLAS', and 'LAPACK'.

ssciarra's picture
Offline
Joined: 01/08/2021 - 12:50
Here is the output from

Here is the output from SessionInfo():

R version 4.0.2 (2020-06-22)
Platform: x86_64-koji-linux-gnu (64-bit)
Running under: Amazon Linux 2
 
Matrix products: default
BLAS/LAPACK: /usr/lib64/R/lib/libRblas.so
 
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
 [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
[10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
 
attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods   base     
 
other attached packages:
 [1] forcats_0.5.1         stringr_1.4.0         dplyr_1.0.7           purrr_0.3.4          
 [5] readr_2.1.0           tidyr_1.1.4           tibble_3.1.6          ggplot2_3.3.5        
 [9] tidyverse_1.3.1       nonlinSims_0.0.0.9000 devtools_2.4.2        usethis_2.1.3        
[13] data.table_1.14.2     OpenMx_2.19.8        
 
loaded via a namespace (and not attached):
 [1] Rcpp_1.0.7         lubridate_1.8.0    lattice_0.20-41    prettyunits_1.1.1 
 [5] ps_1.6.0           assertthat_0.2.1   rprojroot_2.0.2    digest_0.6.28     
 [9] utf8_1.2.2         cellranger_1.1.0   R6_2.5.1           backports_1.3.0   
[13] reprex_2.0.1       httr_1.4.2         pillar_1.6.4       rlang_0.4.12      
[17] readxl_1.3.1       rstudioapi_0.13    callr_3.7.0        Matrix_1.2-18     
[21] desc_1.4.0         bit_4.0.4          munsell_0.5.0      broom_0.7.10      
[25] compiler_4.0.2     modelr_0.1.8       pkgconfig_2.0.3    pkgbuild_1.2.0    
[29] tidyselect_1.1.1   fansi_0.5.0        crayon_1.4.2       tzdb_0.2.0        
[33] dbplyr_2.1.1       withr_2.4.2        MASS_7.3-51.6      grid_4.0.2        
[37] jsonlite_1.7.2     gtable_0.3.0       lifecycle_1.0.1    DBI_1.1.1         
[41] magrittr_2.0.1     scales_1.1.1       RcppParallel_5.1.4 vroom_1.5.6       
[45] stringi_1.7.5      cli_3.1.0          cachem_1.0.6       fs_1.5.0          
[49] remotes_2.4.1      testthat_3.1.0     xml2_1.3.2         ellipsis_0.3.2    
[53] generics_0.1.1     vctrs_0.3.8        tools_4.0.2        bit64_4.0.5       
[57] glue_1.5.0         hms_1.1.1          processx_3.5.2     pkgload_1.2.3     
[61] fastmap_1.1.0      colorspace_2.0-2   sessioninfo_1.2.1  rvest_1.0.2       
[65] memoise_2.0.0      haven_2.4.3
AdminRobK's picture
Offline
Joined: 01/24/2014 - 12:15
works for me; NAs

At any rate, I do not reproduce the error on my system. My mxVersion() output:

OpenMx version: 2.19.8.59 [GIT v2.19.8-59-g5f6ffe95-dirty]
R version: R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu
Default optimizer: SLSQP
NPSOL-enabled?: Yes
OpenMP-enabled?: Yes

I am using the default BLAS and LAPACK implementations.

As a workaround, try adjusting the initial values your function uses for some of your MxPaths and MxMatrix elements.

ssciarra's picture
Offline
Joined: 01/08/2021 - 12:50
Starting value experimentation + matrix products

I have experimented starting values but had no success (unfortunately). I also posted the output from SessionInfo() above for you to look at the matrix products.

AdminRobK's picture
Offline
Joined: 01/24/2014 - 12:15
linear algebra; debugger
I also posted the output from `SessionInfo()` above for you to look at the matrix products.

Yes, I saw. My suspicion was that your instance of Amazon linux was building R with non-default implementations of BLAS/LAPACK, which might have a different tolerance for when a matrix is considered "computationally singular". Evidently, that's not what's going on.

Can you make any headway under Amazon Linux if you don't use mxAutoStart()?

You might need to run your script under R's debugger on an Amazon Linux instance.

ssciarra's picture
Offline
Joined: 01/08/2021 - 12:50
Debugging attempt

I did my best to understand where the error may be occurring (using the debugging link you posted). It appears that the error is a result of NaNs appearing in the A matrix (which contains the factor loadings from the latent variables to the manifest variables; see output below). The outputs from environments 9–10 are shown below (I can provide more output if necessary).

Error in solve.default(I - A) :
  system is computationally singular: reciprocal condition number = 0
Available environments had calls:
1: mxAutoStart(model)
2: mxRun(omxBuildAutoStartModel(model, type), silent = TRUE)
3: warnModelCreatedByOldVersion(model)
4: is(model, "MxModel")
5: omxBuildAutoStartModel(model, type)
6: mxModel(model, autoStartDataHelper(model, type = type))
7: autoStartDataHelper(model, type = type)
8: mxGetExpected(model, c("covariance", "means", "thresholds"), subname = subname)
9: genericGetExpected(model[[subname]]$expectation, model, component, defvar.row, subname)
10: genericGetExpected(model[[subname]]$expectation, model, component, defvar.row, subname)
11: solve(I - A)
12: solve.default(I - A)
 
Enter an environment number, or 0 to exit  
Selection: 10
Browsing in the environment with call:
   genericGetExpected(model[[subname]]$expectation, model, component, defvar.row, subname)
Called from: debugger.look(ind)
Browse[1]> A
       t1_1 t2_45 t3_90 t4_135 t5_180 t6_225 t7_270 t8_315 t9_360 diff beta gamma
t1_1      0     0     0      0      0      0      0      0      0  NaN  NaN   NaN
t2_45     0     0     0      0      0      0      0      0      0    1  NaN   NaN
t3_90     0     0     0      0      0      0      0      0      0    1  NaN   NaN
t4_135    0     0     0      0      0      0      0      0      0    1  NaN   NaN
t5_180    0     0     0      0      0      0      0      0      0    1  NaN   NaN
t6_225    0     0     0      0      0      0      0      0      0    1  NaN   NaN
t7_270    0     0     0      0      0      0      0      0      0    1  NaN   NaN
t8_315    0     0     0      0      0      0      0      0      0    1  NaN   NaN
t9_360    0     0     0      0      0      0      0      0      0    1  NaN   NaN
diff      0     0     0      0      0      0      0      0      0    0    0     0
beta      0     0     0      0      0      0      0      0      0    0    0     0
gamma     0     0     0      0      0      0      0      0      0    0    0     0
 
Enter an environment number, or 0 to exit  
Selection: 9
Browsing in the environment with call:
   genericGetExpected(model[[subname]]$expectation, model, component, defvar.row, subname)
Called from: debugger.look(ind)
Browse[1]> model$A
FullMatrix 'A' 
 
$labels
       t1_1 t2_45 t3_90 t4_135 t5_180 t6_225 t7_270 t8_315 t9_360 diff      beta      gamma    
t1_1   NA   NA    NA    NA     NA     NA     NA     NA     NA     "Dl[1,1]" "Bl[1,1]" "Gl[1,1]"
t2_45  NA   NA    NA    NA     NA     NA     NA     NA     NA     "Dl[2,1]" "Bl[2,1]" "Gl[2,1]"
t3_90  NA   NA    NA    NA     NA     NA     NA     NA     NA     "Dl[3,1]" "Bl[3,1]" "Gl[3,1]"
t4_135 NA   NA    NA    NA     NA     NA     NA     NA     NA     "Dl[4,1]" "Bl[4,1]" "Gl[4,1]"
t5_180 NA   NA    NA    NA     NA     NA     NA     NA     NA     "Dl[5,1]" "Bl[5,1]" "Gl[5,1]"
t6_225 NA   NA    NA    NA     NA     NA     NA     NA     NA     "Dl[6,1]" "Bl[6,1]" "Gl[6,1]"
t7_270 NA   NA    NA    NA     NA     NA     NA     NA     NA     "Dl[7,1]" "Bl[7,1]" "Gl[7,1]"
t8_315 NA   NA    NA    NA     NA     NA     NA     NA     NA     "Dl[8,1]" "Bl[8,1]" "Gl[8,1]"
t9_360 NA   NA    NA    NA     NA     NA     NA     NA     NA     "Dl[9,1]" "Bl[9,1]" "Gl[9,1]"
diff   NA   NA    NA    NA     NA     NA     NA     NA     NA     NA        NA        NA       
beta   NA   NA    NA    NA     NA     NA     NA     NA     NA     NA        NA        NA       
gamma  NA   NA    NA    NA     NA     NA     NA     NA     NA     NA        NA        NA       
 
$values
       t1_1 t2_45 t3_90 t4_135 t5_180 t6_225 t7_270 t8_315 t9_360 diff beta gamma
t1_1      0     0     0      0      0      0      0      0      0    0    0     0
t2_45     0     0     0      0      0      0      0      0      0    0    0     0
t3_90     0     0     0      0      0      0      0      0      0    0    0     0
t4_135    0     0     0      0      0      0      0      0      0    0    0     0
t5_180    0     0     0      0      0      0      0      0      0    0    0     0
t6_225    0     0     0      0      0      0      0      0      0    0    0     0
t7_270    0     0     0      0      0      0      0      0      0    0    0     0
t8_315    0     0     0      0      0      0      0      0      0    0    0     0
t9_360    0     0     0      0      0      0      0      0      0    0    0     0
diff      0     0     0      0      0      0      0      0      0    0    0     0
beta      0     0     0      0      0      0      0      0      0    0    0     0
gamma     0     0     0      0      0      0      0      0      0    0    0     0
 
$free: No free parameters.
 
$lbound: No lower bounds assigned.
 
$ubound: No upper bounds assigned.

At this point, it may be important to mention the model I am running. In short, I am running a three-parameter logistic curve model (with the growth parameters treated as latent variables). I have provided a relevant code chunk (from create_logistic_growth_model() and attached a path diagram showing the specific model that I am using. Seven parameters are estimated: fixed- and random-effects parameters for $diff$, $\beta$, and $\gamma$ and one residual component for each time point ($\epsilon$). Note that a structured latent curve model is implemented.

mxModel(model = model_name,
                   type = 'RAM', independent = T,
                   mxData(observed = data_wide, type = 'raw'),
 
                   manifestVars = manifest_vars,
                   latentVars = latent_vars,
 
                   #Residual variances; by using one label, they are assumed to all be equal 
                   #(homogeneity of variance)
                   mxPath(from = manifest_vars,
                          arrows=2, free=TRUE, values = 1, labels='epsilon',  lbound = 1e-3),
 
                   #Set manifest means to observed means
                   mxPath(from = 'one', to = manifest_vars, free = FALSE, arrows = 1, values = manifest_means),
 
                   #Latent variable covariances and variances
                   mxPath(from = latent_vars,
                          connect='unique.pairs', arrows=2,
                          #aa(diff_rand), 
                          #ab(cov_diff_beta), ac(cov_diff_gamma), 
                          #bb(beta_rand), bc(var_beta_gamma), cc(gamma_rand)
                          free = c(TRUE,
                                   FALSE, FALSE,
                                   TRUE, FALSE, TRUE),
                          values=c(1,
                                   NA,NA,
                                   1, NA, 1),
                          labels=c('diff_rand',
                                   'NA(cov_diff_beta)','NA(cov_diff_gamma)',
                                   'beta_rand', 'NA(var_beta_gamma)', 'gamma_rand'), 
                          lbound = c(1e-3, 
                                     NA, NA, 
                                     2, NA, 1)), 
 
                   #Latent variable means (linear parameters). Note that the nonlinear parameters of 
                   #beta and gamma do not have estimated means
                   mxPath(from = 'one', to = 'diff', free = TRUE, arrows = 1, values = 1,
                          labels = 'diff_fixed', lbound = 0.1, ubound = 2),
 
                   #Functional constraints
                   mxMatrix(type = 'Full', nrow = length(manifest_vars), ncol = 1, free = TRUE, 
                            values = 1, labels = 'diff_fixed', name = 'd', lbound = 0.1, ubound = 2),
 
                   mxMatrix(type = 'Full', nrow = length(manifest_vars), ncol = 1, free = TRUE, 
                            values = 1, labels = 'beta_fixed', name = 'b', lbound = 0.1, ubound = 360),
 
                   mxMatrix(type = 'Full', nrow = length(manifest_vars), ncol = 1, free = TRUE, 
                            labels = 'gamma_fixed', name = 'g', lbound = 0.1, ubound = 360),
 
                   mxMatrix(type = 'Full', nrow = length(manifest_vars), ncol = 1, free = FALSE, 
                            values = measurement_days, name = 'time'),
 
                   #Algebra specifying first partial derivatives
                   mxAlgebra(expression = 1/(1 + exp((b - time)/g)), name="Dl"),
                   mxAlgebra(expression =  -(d * (exp((b - time)/g) * (1/g))/(1 + exp((b - time)/g))^2), 
                   name = 'Bl'),
                   mxAlgebra(expression =  d * (exp((b - time)/g) * ((b - time)/g^2))/(1 + exp((b - time)/g))^2, 
                   name = 'Gl'),
 
                   #Factor loadings; all fixed and, importantly, constrained to change according to their 
                   #partial derivatives (i.e., nonlinear functions). Note that ampersands precede % symbols 
                   #in post to prevent exiting in HTML code tags (source code does not actually include ampersands).
                   mxPath(from = 'diff', to = manifest_vars, arrows=1, free=FALSE,  
                          labels = sprintf(fmt = 'Dl[&%d,1]', 1:(ncol(data_wide)-1))),  
                   mxPath(from='beta', to = manifest_vars, arrows=1,  free=FALSE,
                          labels =  sprintf(fmt = 'Bl[&%37;d,1]', 1:(ncol(data_wide)-1))),
                   mxPath(from='gamma', to = manifest_vars, arrows=1,  free=FALSE,
                          labels =  sprintf(fmt = 'Gl[&%d,1]', 1:(ncol(data_wide)-1))),
 
                   mxFitFunctionML(vector = FALSE)
 
  )
 
  return(model)
}
File attachments: