the thresholds in SEM of ordinal variables
1) I found tow kinds of scripts of saturate SEM of one ordinal variable, one script constrains the free status of thresholds, and another one does not. I can't figure out which one to follow.
[the first one:](https://static1.squarespace.com/static/58b2481a9f7456906a3b9600/t/5bcf80379140b7614a07d8d1/1540325431670/oneSATma.pdf)
nth <- 3
frTh <- matrix(rep(c(F,F,(rep(T,nth-2)))),nrow=nth,ncol=nv) # free status for thresholds
thinMZ <- mxMatrix( type="Full", nrow=nth, ncol=ntv, free=frTh, values=svTh, lbound=lbTh, labels=labThMZ, name="thinMZ" )
[the second one:](http://ibg.colorado.edu/cdrom2016/maes/UnivariateAnalysis/onea/oneSAToa.R)
nth <- 3
thinMZ <- mxMatrix( type="Full", nrow=nth, ncol=ntv, free=TRUE, values=svTh, lbound=lbTh, labels=labThMZ, name="thinMZ" )
2)
If I do need to constrain the free status of thresholds, then how many thresholds should I fix?
In the first script, the number of thresholds is 3 and two shresholds are fixed. If my ordinal variable is categorized into 5 groups, and then the number of thresholds should be 4, then how many thresholds should I fix? three or two? In fact, I don't konw the reason for fixing thresholds. So, please don't mind my kind of stupid question.
I would be really appreciated for your reply!
Thanks!
model identification
The choices are arbitrary, but sometimes one choice is preferable to others because it makes results easier to interpret. For instance, option (3) is often used with longitudinal data, because it's easier to interpret the variance of the latent continuum changing with time, as opposed to interpreting the spread of the thresholds changing with time.
Note that in biometrical variance-components analysis (as with twin data, etc.), fixing the variance to 1 will often require an MxConstraint. An alternative to using an MxConstraint is to fix the nonshared-environmental variance component to 1, which does change the interpretation of the genetic and shared-environmental variance components..
Log in or register to post comments
In reply to model identification by AdminRobK
Model is not locally identified
vars <- 'tea_5g' # list of variables names
covars <- c("age","region_type")
nv <- 1 # number of variables
ncv <- 2 # number of covariates
ntv <- nv*2 # number of total variables
nth <- 4
selVars <- paste(vars,c(rep(1,nv),rep(2,nv)),sep="")
covVars <- paste(covars,c(rep(1,ncv),rep(2,ncv)),sep="")
# Select Data for Analysis
mzData <- subset(tea_5g, zygosity1==0, c(selVars,covVars))
dzData <- subset(tea_5g, zygosity1==1, c(selVars,covVars))
# tell mx the data is ordinal
mzData[,1:2] <- mxFactor(mzData[,1:2], levels= c(0:nth))
dzData[,1:2] <- mxFactor(dzData[,1:2], levels= c(0:nth))
# Set Starting Values
svBe <- 0.01 # start value for beta regressions
svLTh <- -1.5 # start value for first threshold
svITh <- 1 # start value for increments
svTh <- matrix(rep(c(svLTh,(rep(svITh,nth-1)))),nrow=nth,ncol=nv) # start value for thresholds
lbTh <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=nv) # lower bounds for thresholds
svCor <- .5 # start value for correlations
lbCor <- -0.99 # lower bounds for correlations
ubCor <- 0.99 # upper bounds for correlations
labThMZ <- c(paste("t",1:nth,"MZ1",sep=""),paste("t",1:nth,"MZ2",sep=""))
labThDZ <- c(paste("t",1:nth,"DZ1",sep=""),paste("t",1:nth,"DZ2",sep=""))
modelMZ<- mxModel("MZ",
# Define definition variables
mxMatrix( type="Full", nrow=ncv, ncol=2, free=F, label=c("data.age1","data.region_type1","data.age2","data.region_type2"), name="DefVars"),
mxMatrix( type="Full", nrow=1, ncol=ncv, free=TRUE, values=svBe,labels=c("Bage","Bregion_type"), name="BageTH"),
# expected mean Matrices
mxMatrix( type="Zero", nrow=1, ncol=ntv, name="meanG" ), #intercepts#
mxAlgebra( expression= meanG + BageTH%*%DefVars, name="expMeanMZ" ),
# Define threshold matrices : nth--number of thresholds
mxMatrix( type="Full", nrow=nth, ncol=ntv, free=T, values=svTh, lbound=lbTh, labels=labThMZ, name="thinMZ" ),
mxMatrix( type="Lower", nrow=nth, ncol=nth, free=FALSE, values=1, name="inc" ),
mxAlgebra( expression= inc %*% thinMZ, name="threMZ" ),
# expected variance–covariance Matrices
mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=TRUE, values=svCor, lbound=lbCor, ubound=ubCor, labels="rMZ",name="corMZ" ),
# Read in the data
mxData( observed=mzData, type="raw" ),
mxExpectationNormal( covariance="corMZ", means="expMeanMZ", dimnames=selVars, thresholds="threMZ"),
mxFitFunctionML()
)
modelDZ<- mxModel("DZ",
mxMatrix( type="Full", nrow=ncv, ncol=2, free=F, label=c("data.age1","data.region_type1","data.age2","data.region_type2"), name="DefVars"),
mxMatrix( type="Full", nrow=1, ncol=ncv, free=TRUE, values=svBe,labels=c("Bage","Bregion_type"), name="BageTH"),
mxMatrix( type="Zero", nrow=1, ncol=ntv, name="meanG" ), #two labels#
mxAlgebra( expression= meanG + BageTH%*%DefVars, name="expMeanDZ" ),
mxMatrix( type="Full", nrow=nth, ncol=ntv, free=frTh, values=svTh, lbound=lbTh, labels=labThDZ, name="thinDZ" ),
mxMatrix( type="Lower", nrow=nth, ncol=nth, free=FALSE, values=1, name="inc" ),
mxAlgebra( expression= inc %*% thinDZ, name="threDZ" ),
mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=TRUE, values=svCor, lbound=lbCor, ubound=ubCor, labels="rDZ",name="corDZ" ),
mxData( observed=dzData, type="raw"),
mxExpectationNormal( covariance="corDZ", means="expMeanDZ", dimnames=selVars, thresholds="threDZ" ),
mxFitFunctionML()
)
Conf <- mxCI (c ('MZ.corMZ','DZ.corDZ'))
SatModel <- mxModel( "Sat", modelMZ, modelDZ,mxFitFunctionMultigroup(c('MZ.fitfunction','DZ.fitfunction')), Conf )
# -----------------------------------------------------------------------------------------------
# RUN Saturated Model
SatFit <- mxTryHard(SatModel, intervals=F,extraTries = 41) #,bestInitsOutput=T,silent=F#
(SatSumm <- summary(SatFit))
mxCheckIdentification(SatFit, details=F)
# the result showed 'Model is not locally identified'
Thank you so much!
Log in or register to post comments
In reply to Model is not locally identified by diana
probably false alarm
That's probably a false alarm. Try `mxCheckIdentification()` again, with `details=TRUE`, to see the function's guess as to which parameters are unidentified. Also, try running your model (perhaps with `mxTryHardOrdinal()`), and check to see if `mxCheckIdentification()` says it's locally unidentified at the solution, too.
Log in or register to post comments
In reply to probably false alarm by AdminRobK
I have one more question, how
#select ordinal variable 1-------------------
table(tea5g_smk4g$tea_5g1,tea5g_smk4g$tea_5g2)
nth1 <- 4 # number of thresholds
vars1 <- c('tea_5g') # list of ordinal variables names
nvo1 <- 1 # number of ordinal variables
ntvo1 <- nvo1*2 # number of total ordinal variables
ordVars1 <- paste(vars1,c(rep(1,nvo1),rep(2,nvo1)),sep="")
#select ordinal variable 2-------------------
table(tea5g_smk4g$smk_num_4g1,tea5g_smk4g$smk_num_4g2)
nth2 <- 3 # number of thresholds
vars2 <- c('smk_num_4g') # list of ordinal variables names
nvo2 <- 1 # number of ordinal variables
ntvo2 <- nvo2*2 # number of total ordinal variables
ordVars2 <- paste(vars2,c(rep(1,nvo2),rep(2,nvo2)),sep="")
# Select Variables for Analysis---------------------
vars <- c('tea_5g','smk_num_4g') # list of variables names
covars <- c("age","region_type")
nv <- nvo1+nvo2 # number of variables
ncv <- 2 # number of covariates
ntv <- nv*2 # number of total variables
selVars <- paste(vars,c(rep(1,nv),rep(2,nv)),sep="") #"tea_5g1" "smk_num_4g1" "tea_5g2" "smk_num_4g2"
covVars <- paste(covars,c(rep(1,ncv),rep(2,ncv)),sep="")
# Select Data for Analysis---------------------------
mzData <- subset(tea5g_smk4g, zygosity2==0, c(selVars,covVars))
dzData <- subset(tea5g_smk4g, zygosity2==1, c(selVars,covVars))
mzDataF <- cbind(mxFactor( x=mzData[,ordVars1], levels=c(0:nth1)),mxFactor( x=mzData[,ordVars2], levels=c(0:nth2)),mzData[,covVars] )
dzDataF <- cbind(mxFactor( x=dzData[,ordVars1], levels=c(0:nth1)),mxFactor( x=dzData[,ordVars2], levels=c(0:nth2)),dzData[,covVars] )
I don't know how to define threshold matrix.
Thanks so much!
Log in or register to post comments
In reply to I have one more question, how by diana
see User Guide
NA
."Log in or register to post comments
In reply to see User Guide by AdminRobK
some results and new problems
1) After I ran
mxCheckIdentification(), details=TRUE
, the result showed the coefficients of covatiates were not identified. Does that matters?2) I followed your advice by fixing corresponding thresholds with starting values of NA. However, I got the waring as follows:
**Computing Hessian and/or standard errors and/or confidence intervals from imperfect solutionError : In model 'Sat' I was expecting 3 thresholds in column 'smk_num_4g1' of matrix/algebra 'MZ.threMZ' but I hit NA values after only 0 thresholds. You need to increase the number of thresholds for 'smk_num_4g1' and give them values other than NA
Retry limit reached; solution not found. Best fit=25943569000 (started at 47142898000) (16 attempt(s): 16 valid, 0 errors)**
Here is my script and I'm sorry to bother you to check what's wrong with it. Thank you so much!!!!
#select ordinal variable 1-------------------
table(tea5g_smk4g$tea_5g1,tea5g_smk4g$tea_5g2)
nth1 <- 4 # number of thresholds
vars1 <- c('tea_5g') # list of ordinal variables names
nvo1 <- 1 # number of ordinal variables
ntvo1 <- nvo1*2 # number of total ordinal variables
ordVars1 <- paste(vars1,c(rep(1,nvo1),rep(2,nvo1)),sep="")
#select ordinal variable 2------------------
table(tea5g_smk4g$smk_num_4g1,tea5g_smk4g$smk_num_4g2)
nth2 <- 3 # number of thresholds
vars2 <- c('smk_num_4g') # list of ordinal variables names
nvo2 <- 1 # number of ordinal variables
ntvo2 <- nvo2*2 # number of total ordinal variables
ordVars2 <- paste(vars2,c(rep(1,nvo2),rep(2,nvo2)),sep="")
# Select Variables for Analysis---------------------
vars <- c('tea_5g','smk_num_4g') # list of variables names
covars <- c("age","region_type")
nv <- nvo1+nvo2 # number of variables
ncv <- 2 # number of covariates
ntv <- nv*2 # number of total variables
selVars <- paste(vars,c(rep(1,nv),rep(2,nv)),sep="") #"tea_5g1" "smk_num_4g1" "tea_5g2" "smk_num_4g2"
covVars <- paste(covars,c(rep(1,ncv),rep(2,ncv)),sep="")
# Select Data for Analysis---------------------------
mzData <- subset(tea5g_smk4g, zygosity2==0, c(selVars,covVars))
dzData <- subset(tea5g_smk4g, zygosity2==1, c(selVars,covVars))
mzDataF <- cbind(mxFactor( x=mzData[,ordVars1], levels=c(0:nth1)),mxFactor( x=mzData[,ordVars2], levels=c(0:nth2)),mzData[,covVars] )
dzDataF <- cbind(mxFactor( x=dzData[,ordVars1], levels=c(0:nth1)),mxFactor( x=dzData[,ordVars2], levels=c(0:nth2)),dzData[,covVars] )
# Set Starting Values
frMV <- c(FALSE,FALSE) # free status for meanG of variables
frTH <- matrix(c(rep(T,nth1),c(rep(T,nth2),F)),4,4) # free status for thresholds
svMe <- c(0,0) # start value for means
svBe <- 0.01 # start value for beta regressions
svLTh <- 0 # start value for first threshold
svITh <- 1 # start value for increments
svTh <- matrix(c(svLTh,rep(svITh,nth1-1),svLTh,rep(svITh,nth2-1),NA),nrow=nth1,ncol=ntv) # start value for thresholds
lbTh <- matrix(c(-3,rep(0.001,nth1-1),-3,rep(0.001,nth2-1),NA),nrow=nth1,ncol=ntv) # lower bound for thresholds
svCor <- .5 # start value for correlations
# Create Labels
labdata <- cbind(paste("data.",covars[1],c(1,2),sep = ""),paste("data.",covars[2],c(1,2),sep = ""))
# [,1] [,2]
# [1,] "data.age1" "data.region_type1"
# [2,] "data.age2" "data.region_type2"
labeta <-cbind(paste("B",covars,"_",vars[1],sep = ""),paste("B",covars,"_",vars[2],sep = ""))
# [,1] [,2]
# [1,] "Bage_tea_5g" "Bage_smk_num_4g"
# [2,] "Bregion_type_tea_5g" "Bregion_type_smk_num_4g"
labTh <- function(lab,vars,nth) { paste(paste("t",1:nth,lab,sep=""),rep(vars,each=nth),sep="") }
labThMZ <- matrix(c(labTh("MZ","tea_5g1",nth1),labTh("MZ","smk_num_4g1",nth2),NA,labTh("MZ","tea_5g2",nth1),labTh("MZ","smk_num_4g2",nth2),NA),nth1,ntv)
labThDZ <- matrix(c(labTh("DZ","tea_5g1",nth1),labTh("DZ","smk_num_4g1",nth2),NA,labTh("DZ","tea_5g2",nth1),labTh("DZ","smk_num_4g2",nth2),NA),nth1,ntv)
labThZ <- matrix(c(labTh("Z","tea_5g1",nth1),labTh("Z","smk_num_4g1",nth2),NA,labTh("Z","tea_5g2",nth1),labTh("Z","smk_num_4g2",nth2),NA),nth1,ntv)
labCvMZ <- c("MZCVT1", "MZWP1", "MZCTT1T2","MZCTT2T1", "MZWP2", "MZCVT2") # labels for (co)variances for MZ twins
labCvDZ <- c("DZCVT1", "DZWP1", "DZCTT1T2","DZCTT2T1", "DZWP2", "DZCVT2") # labels for (co)variances for DZ twins
labCvZ <- c("ZCVT1", "ZWP1", "ZCTT1T2","ZCTT2T1", "ZWP2", "ZCVT2")
##########################################
# wc1 smk1 | wc2 smk2
# wc1 VP1T1 |
# smk1 CVT1* VP2T1 |
#-----------------------------------------
# wc2 WP1* CTT2T1 | VP1T2
# smk2 CTT1T2* WP2* | CVT2 VP2T2
##########################################
modelMZ <- mxModel( "MZ",
mxMatrix( type="Full", nrow=2, ncol=ncv, free=F, label=labdata, name="MZDefVars"),
mxMatrix( type="Full", nrow=ncv, ncol=nv, free=T, values=svBe,labels=labeta, name="Beta"),
mxMatrix( type="Full", nrow=1, ncol=nv, free=frMV, values=svMe, name="meanG" ),
mxAlgebra( expression= cbind(meanG + MZDefVars[1,] %*% Beta,meanG + MZDefVars[2,] %*% Beta), name="expMeanMZ" ),
mxMatrix( type="Full", nrow=nth1, ncol=ntv, free=frTH, values=svTh, lbound=lbTh, labels=labThMZ, name="thinMZ" ),
mxMatrix( type="Lower", nrow=nth1, ncol=nth1, free=FALSE, values=1, name="inc" ),
mxAlgebra( expression= inc %*% thinMZ, name="threMZ" ),
mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=T, values=svCor, labels=labCvMZ, name="expCovMZ"), #lbound=-.99, ubound=.99
mxData( observed=mzDataF, type="raw" ),
mxExpectationNormal( covariance="expCovMZ", means="expMeanMZ", dimnames=selVars, thresholds="threMZ" ),
mxFitFunctionML()
)
modelDZ <- mxModel( "DZ",
mxMatrix( type="Full", nrow=2, ncol=ncv, free=F, label=labdata, name="DZDefVars"),
mxMatrix( type="Full", nrow=ncv, ncol=nv, free=T, values=svBe,labels=labeta, name="Beta"),
mxMatrix( type="Full", nrow=1, ncol=nv, free=frMV, values=svMe, name="meanG" ),
mxAlgebra( expression= cbind(meanG + DZDefVars[1,] %*% Beta,meanG + DZDefVars[2,] %*% Beta), name="expMeanDZ" ),
mxMatrix( type="Full", nrow=nth1, ncol=ntv, free=frTH, values=svTh, lbound=lbTh, labels=labThDZ, name="thinDZ" ),
mxMatrix( type="Lower", nrow=nth1, ncol=nth1, free=FALSE, values=1, name="inc" ),
mxAlgebra( expression= inc %*% thinDZ, name="threDZ" ),
mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=T, values=svCor, labels=labCvDZ, name="expCovDZ"), # lbound=-.99, ubound=.99
mxData( observed=dzDataF, type="raw" ),
mxExpectationNormal( covariance="expCovDZ", means="expMeanDZ", dimnames=selVars, thresholds="threDZ" ),
mxFitFunctionML()
)
# Combine Groups
Conf <- mxCI (c ('MZ.expCovMZ[3,1]','DZ.expCovDZ[3,1]','MZ.expCovMZ[4,2]','DZ.expCovDZ[4,2]','MZ.expCovMZ[2,1]','DZ.expCovDZ[2,1]','MZ.expCovMZ[4,1]','DZ.expCovDZ[4,1]') )#'MZ.expCovMZ[3,1]','MZ.expCovMZ[4,2]'
SatModel <- mxModel( "Sat", modelMZ, modelDZ,mxFitFunctionMultigroup(c('MZ','DZ')), Conf )
SatFit <- mxTryHardOrdinal(SatModel, intervals=F,extraTries = 15)
**Wish you have a good day!**
Thanks♪(・ω・)ノ
Log in or register to post comments
In reply to some results and new problems by diana
Data objects
Log in or register to post comments
In reply to Data objects by AdminRobK
im sorry i dont have my data
please leave more information since when i get up you would possibly get off work.
thank you very much!!!
Log in or register to post comments
In reply to some results and new problems by diana
unsure
Did `mxTryHardOrdinal()` return a fitted MxModel object? If so, does `mxCheckIdentification()` still say the model is unidentified?
Log in or register to post comments
In reply to unsure by AdminRobK
Hi, Rob!
1)After I ran
str(mzDataF)
, it turned out that it was a dataframe. According to the warning, it seems that there is something wrong in the matrix of **MZ.threMZ**?2)
mxTryHardOrdinal()
can return a fitted solution, butmxCheckIdentification()
still say the model is not identified and the non-identified parameters are two coefficients of age and region_type.Thanks again!
Log in or register to post comments
In reply to Hi, Rob! by diana
What's the actual output of
Log in or register to post comments
In reply to What's the actual output of by AdminRobK
Hi, the result was in the
Thanks!
Log in or register to post comments
In reply to Hi, Rob! by diana
definition variables
mxCheckIdentification()
doesn't necessarily give accurate results when the MxModel uses definition variables.Log in or register to post comments
did you solve the issue?
I am wondering if you solved the issue with the error OpenMx gives when using this script? I have one ordinal variable with three thresholds and one dichotomous, so the matrix of thresholds have two NA values as it is written in the documentation. This gives the following error: "I was expecting 1 thresholds in column ... of matrix/algebra 'MZ.expThreshold' but I hit NA values after only 0 thresholds. You need to increase the number of thresholds for ... and give them values other than NA". I suspect this comes from multiplication of a lower matrix with the matrix that contains NA.
When I replace NA's with zero's for example, I don't get this error and the model runs. However, a new error message occurs: "...fit is not finite (Found 1 thresholds too close together in column 3.)"
So how can we specify a threshold matrix for several variables when variables have different number of thresholds, so that multiplication works?
Log in or register to post comments
In reply to did you solve the issue? by Julia
Would you mind posting the
Log in or register to post comments
Thank you for your reply!
nv = 4
nvo = 2
nth = 3
ninc <- nth-1
frMV = c(F,T,T,F)
frTh = c(T,T,T,T,F,F)
meanLabs <- paste(vars, "mean",sep="_")
threshLabs <- paste(rep(varso,each=nth),c("thresh",rep("inc",ninc)),c(1,1:ninc),sep='_')
svMe <- c(0,0,0,0)
svTh <- 0
defAge1 <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels="data.Zage_s_1", name="Age1")
defAge2 <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels="data.Zage_s_2", name="Age2")
defSex1 <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels="data.sex_s_1", name="Sex1")
defSex2 <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels="data.sex_s_2", name="Sex2")
# Regression effects
B_Age <- mxMatrix( type="Full", nrow=1, ncol=nv, free=frMV, values=c(0,.1,.1,0), labels=betaLabs_age, name="bAge" )
B_Age_Thre <-mxMatrix( type="Full", nrow=nth, ncol=nvo, free=frTh, values=c(rep(.2,nth),0.2,NA,NA), labels=betaLabsThre_age, name="bAgeThre" )
B_Sex <- mxMatrix( type="Full", nrow=1, ncol=nv, free=frMV, values=c(0,.1,.1,0), labels=betaLabs_sex, name="bSex" )
B_Sex_Thre <-mxMatrix( type="Full", nrow=nth, ncol=nvo, free=frTh, values=c(rep(.2,nth),0.2,NA,NA), labels=betaLabsThre_sex, name="bSexThre" )
#setting up the regression
intercept <- mxMatrix( type="Full", nrow=1, ncol=nv, free=frMV, values=svMe, labels=meanLabs, name="intercept" )
expMean <- mxAlgebra( expression = cbind(intercept + (bAge%x%Age1) + (bSex%x%Sex1), intercept + (bAge%x%Age2) + (bSex%x%Sex2)) , name="expMean")
inc <-mxMatrix( type="Lower",nrow=nth, ncol=nth, free=F, values=1, name="Low")
thre <-mxMatrix( type="Full", nrow=nth, ncol=nvo, free=frTh, values=svTh, lbound=c(-3,rep(.001,ninc)), ubound=3, labels=threshLabs, name="Threshold")
expThre <-mxAlgebra( expression= cbind(Low%*%Threshold + (bAgeThre%x%Age1) + (bSexThre%x%Sex1), Low%*%Threshold + (bAgeThre%x%Age2) + (bSexThre%x%Sex2) ), name="expThreshold")
I believe the product of Low and Threshold produces only NA's in the second column. At least this is what is happening when I do such multiplication with conventional matrices in R.
At the moment I figured out a workaround by defining thresholds separately for each variable and then concatenating them together. But I wonder if this can be avoided and if my code was wrong.
defAge1 <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels="data.Zage_s_1", name="Age1")
defAge2 <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels="data.Zage_s_2", name="Age2")
defSex1 <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels="data.sex_s_1", name="Sex1")
defSex2 <- mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels="data.sex_s_2", name="Sex2")
# Regression effects
B_Age <- mxMatrix( type="Full", nrow=1, ncol=nv, free=frMV, values=c(0,.1,.1,0), labels=betaLabs_age, name="bAge" )
B_Age_Thre <-mxMatrix( type="Full", nrow=nth, ncol=nvo, free=frTh, values=c(rep(.2,nth),0.2,NA,NA), labels=betaLabsThre_age, name="bAgeThre" )
B_Sex <- mxMatrix( type="Full", nrow=1, ncol=nv, free=frMV, values=c(0,.1,.1,0), labels=betaLabs_sex, name="bSex" )
B_Sex_Thre <-mxMatrix( type="Full", nrow=nth, ncol=nvo, free=frTh, values=c(rep(.2,nth),0.2,NA,NA), labels=betaLabsThre_sex, name="bSexThre" )
#setting up the regression
intercept <- mxMatrix( type="Full", nrow=1, ncol=nv, free=frMV, values=svMe, labels=meanLabs, name="intercept" )
expMean <- mxAlgebra( expression = cbind(intercept + (bAge%x%Age1) + (bSex%x%Sex1), intercept + (bAge%x%Age2) + (bSex%x%Sex2)) , name="expMean")
inc <-mxMatrix( type="Lower",nrow=nth, ncol=nth, free=F, values=1, name="Low")
threVar1 <-mxMatrix( type="Full", nrow=nth1, ncol=1, free=T, values=svTh, lbound=c(-3,rep(.001,ninc)), ubound=3, labels=c("healthp_s_thresh_1", "healthp_s_inc_1", "healthp_s_inc_2"), name="ThresholdVar1")
threVar2 <-mxMatrix( type="Full", nrow=nth1, ncol=1, free=c(rep(T,nth2),rep(F,nth1-nth2)), values=c(rep(svTh,nth2),rep(NA,nth1-nth2)), lbound=c(-3,rep(.001,ninc)), ubound=3, labels=c("ibs_gen_s_thresh_1", "ibs_gen_s_inc_1", "ibs_gen_s_inc_2"), name="ThresholdVar2")
threMatVar1 = mxAlgebra( expression= cbind(Low%*%ThresholdVar1), name='ThresholdMatvar1')
thresholds = mxAlgebra(cbind(ThresholdMatvar1, ThresholdVar2), name='ThresholdsInc')
expThre <-mxAlgebra( expression= cbind(ThresholdsInc + (bAgeThre%x%Age1) + (bSexThre%x%Sex1), ThresholdsInc + (bAgeThre%x%Age2) + (bSexThre%x%Sex2) ), name="expThreshold")
Thank you again!
Log in or register to post comments
In reply to Thank you for your reply! by Julia
I am not sure what the
Does your workaround let you run your model, and do you get sensible-looking results?
Log in or register to post comments
In reply to I am not sure what the by AdminRobK
It does run
Log in or register to post comments
thresholds when not all vars have the same number of levels
You might well benefit from using
umxThresholdMatrix()
This handles all the details of building a thresholds matrix automatically, including sizing it, filling with reasonable defaults, and ensuring that levels are kept in order by using positive offsets instead of thresholds. It also handles twins properly. See
?umx::umxThresholdMatrix
for examples.Log in or register to post comments
In reply to thresholds when not all vars have the same number of levels by tbates
leaving unused thresholds at zero or some other number
Log in or register to post comments