That's a State Space Model too!

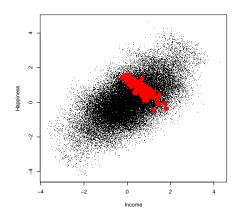
Michael D. Hunter

Department of Pediatrics University of Oklahoma Health Sciences Center

Modern Modeling Methods (M^3) Storrs, CT; May 25, 2016

University of Oklahoma Health Sciences Center

Michael D. Hunter


Introduction 000000 xamples 5-6

Why? 00000 on References

Outline

- Introduction, Background, and Motivation
- State Space Models and Kalman Filters
- Examples
 - Factor Models
 - Standard Structural Equation Models
 - Latent Growth Models
 - Cross-Lagged Panel Models
 - Dual Change Score Models
 - Autoregressive Latent Trajectory Models
 - . . .
 - Discussion, Conclusions, and Future Work

Perspective

WHSC

* ヨト * ヨト University of Oklahoma Health Sciences Center

A D >
 A D >
 A

Michael D. Hunter

Why? E

Where to go from here?

- Between-person models are valid, but (generally) only between people.
- Conclusions for individuals require repeated measurements for individuals.
- Model individuals and processes.
- Balance the Idiographic/Nomothetic trade-off

Why? D

Where to go from here?

- Between-person models are valid, but (generally) only between people.
- Conclusions for individuals require repeated measurements for individuals.
- Model individuals and processes.
- Balance the Idiographic/Nomothetic trade-off
- How do you model variability within people?

State Space, too

▶ < ∃ >

State Space Model

Measurement

Structural Equation Measurement Model

$$oldsymbol{y}_{i} = \Lambda oldsymbol{\eta}_{i} + K oldsymbol{x}_{i} + oldsymbol{arepsilon}_{i}$$
 with $oldsymbol{arepsilon}_{i} \sim \mathcal{N}\left(oldsymbol{0}, \Theta
ight)$ (1)

State Space Measurement Model

$$oldsymbol{y}_i = \Lambda oldsymbol{\eta}_i + K oldsymbol{x}_i + oldsymbol{arepsilon}_i$$
 with $oldsymbol{arepsilon}_i \sim \mathcal{N}\left(oldsymbol{0}, \Theta
ight)$ (2)

Michael D. Hunter

State Space Model

Measurement

Structural Equation Measurement Model

$$\boldsymbol{y}_{i} = \Lambda \boldsymbol{\eta}_{i} + K \boldsymbol{x}_{i} + \boldsymbol{\varepsilon}_{i}$$
 with $\boldsymbol{\varepsilon}_{i} \sim \mathcal{N}\left(\boldsymbol{0},\Theta\right)$ (1)

State Space Measurement Model

$$oldsymbol{y}_i = \Lambda oldsymbol{\eta}_i + K oldsymbol{x}_i + oldsymbol{arepsilon}_i ~~$$
 with $oldsymbol{arepsilon}_i \sim \mathcal{N}\left(oldsymbol{0}, \Theta
ight)$ (2)

Example 1 is done.

₽iHSC ★ Ξ ► ★ Ξ ► < 口 > < 同 > University of Oklahoma Health Sciences Center

Michael D. Hunter

examples 00 000000

5-6 W

Discussion

References

State Space Model

Measurement

Structural Equation Measurement Model

$$oldsymbol{y}_{i} = \Lambda oldsymbol{\eta}_{i} + K oldsymbol{x}_{i} + oldsymbol{arepsilon}_{i}$$
 with $oldsymbol{arepsilon}_{i} \sim \mathcal{N}\left(oldsymbol{0}, \Theta
ight)$ (1)

State Space Measurement Model

$$oldsymbol{y}_{i} = \Lambda oldsymbol{\eta}_{i} + K oldsymbol{x}_{i} + oldsymbol{arepsilon}_{i}$$
 with $oldsymbol{arepsilon}_{i} \sim \mathcal{N}\left(oldsymbol{0}, \Theta
ight)$ (2)

- Example 1 is done.
- OpenMx Notation

$$\boldsymbol{y}_i = C \boldsymbol{x}_i + D \boldsymbol{u}_i + \boldsymbol{r}_i$$
 with $\boldsymbol{r}_i \sim \mathcal{N}(\boldsymbol{0}, R)$ (3)
 $\boldsymbol{\Theta}$ HSC

University of Oklahoma Health Sciences Center

Michael D. Hunter

Why? 00000

State Space Model

Transition/Structural

Structural Equation Structural Model

$$\boldsymbol{\eta}_{i} = B \boldsymbol{\eta}_{i} + \Gamma \boldsymbol{x}_{i} + \boldsymbol{\zeta}_{i} \quad \text{with} \quad \boldsymbol{\zeta}_{i} \sim \mathcal{N}\left(\boldsymbol{0}, \Psi\right) \quad (4)$$

State Space Structural Model

$$\boldsymbol{\eta}_{i} = B \boldsymbol{\eta}_{i-1} + \Gamma \boldsymbol{x}_{i} + \boldsymbol{\zeta}_{i} \quad \text{with} \quad \boldsymbol{\zeta}_{i} \sim \mathcal{N}\left(\boldsymbol{0}, \Psi\right)$$
 (5)

University of Oklahoma Health Sciences Center

Michael D. Hunter

Why?

₽iHSC

State Space Model

Transition/Structural

Structural Equation Structural Model

$$\boldsymbol{\eta}_{i} = B \boldsymbol{\eta}_{i} + \Gamma \boldsymbol{x}_{i} + \boldsymbol{\zeta}_{i} \quad \text{with} \quad \boldsymbol{\zeta}_{i} \sim \mathcal{N}\left(\boldsymbol{0}, \Psi\right) \quad (4)$$

State Space Structural Model

$$\boldsymbol{\eta}_{i} = B \boldsymbol{\eta}_{i-1} + \Gamma \boldsymbol{x}_{i} + \boldsymbol{\zeta}_{i} \quad \text{with} \quad \boldsymbol{\zeta}_{i} \sim \mathcal{N}\left(\boldsymbol{0}, \Psi\right) \qquad \textbf{(5)}$$

OpenMx Notation

$$oldsymbol{x}_i = Aoldsymbol{x}_{i-1} + Boldsymbol{u}_i + oldsymbol{q}_i$$
 with $oldsymbol{q}_i \sim \mathcal{N}\left(oldsymbol{0}, Q
ight)$ (6)

Michael D. Hunter

Why? 00000

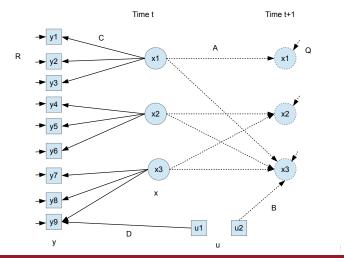
State Space Model

OpenMx Notation

$$\boldsymbol{x}_{i} = A\boldsymbol{x}_{i-1} + B\boldsymbol{u}_{i} + \boldsymbol{q}_{i}$$
 with $\boldsymbol{q}_{i} \sim \mathcal{N}\left(\boldsymbol{0}, Q\right)$ (7)

Measurement

$$\boldsymbol{y}_i = C\boldsymbol{x}_i + D\boldsymbol{u}_i + \boldsymbol{r}_i \quad \text{with} \quad \boldsymbol{r}_i \sim \mathcal{N}\left(\boldsymbol{0}, R\right) \quad \textbf{(8)}$$


QIHSC

Michael D. Hunter

QHSC

State Space Model

Diagrams

Michael D. Hunter

University of Oklahoma Health Sciences Center

State Space Model

Available now in OpenMx

- Differential Equation in Discrete Time
- Implemented by me in OpenMx 2.0 Release
- Continuous Time is in OpenMx 2.1 Release

$$\frac{d}{dt}\boldsymbol{x}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}_i + \boldsymbol{q}(t)$$
(9)

★ Ξ ► < Ξ ►</p> University of Oklahoma Health Sciences Center

HSC

Michael D. Hunter

Kalman Filter Benefits

B-B-B-Benny and the Fits

000

- Designed for non-stationary time series
 - Cf. block-Toeplitz autocovariances (Molenaar, 1985)
 - Cf. lagged observed variables (Song & Zhang, 2014)
 - Cf. exact discrete model (Voelkle & Oud, 2013; Driver, Oud, & Voelkle, 2015)
- Gaussian noise: gives ML estimates
- Non-Gaussian noise: becomes least squares optimal
- Latent State Estimates are factor scores (Priestley & Subba Rao, 1975)
- Latent Covariace Estimates \Rightarrow Reliability (Hunter, In Preparation)

Kalman Filter

0000

Equations

Predict Step

$$\boldsymbol{x}_{t|t-1} = A\boldsymbol{x}_{t-1|t-1} + B\boldsymbol{u}_t \tag{10}$$

$$P_{t|t-1} = AP_{t-1|t-1}A^{\mathsf{T}} + Q \tag{11}$$

Update Step

$$\widehat{\boldsymbol{y}}_t = \widehat{Mean}(\boldsymbol{y}_t) = C\boldsymbol{x}_{t|t-1} + D\boldsymbol{u}_t$$
 (12)

$$\widetilde{\boldsymbol{y}}_t = \widehat{Residual}(\boldsymbol{y}_t) = \boldsymbol{y}_t - \widehat{\boldsymbol{y}}_t$$
 (13)

$$\widehat{S}_t = \widehat{Cov}(\boldsymbol{y}_t) = CP_{t|t-1}C^{\mathsf{T}} + R$$
(14)

$$K = P_{t|t-1}C^{\mathsf{T}}\widehat{S}_t^{-1} \tag{15}$$

$$\boldsymbol{x}_{t|t} = \boldsymbol{x}_{t|t-1} + K \ \widetilde{\boldsymbol{y}}_t$$
 (16)

$$P_{t|t} = P_{t|t-1} - KCP_{t|t-1} \tag{179 HSC}$$

University of Oklahoma Health Sciences Center

Michael D. Hunter

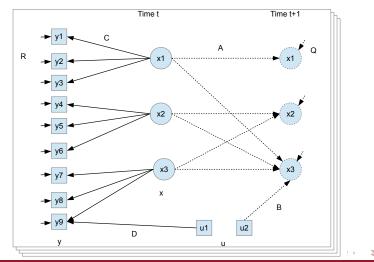
xamples 1-4

amples 5-6

Discussio

References

What about multiple individuals?


University of Oklahoma Health Sciences Center

Michael D. Hunter

State Space Model

0000

Diagrams

Michael D. Hunter

University of Oklahoma Health Sciences Center

QHSC

oduction	Kalman	HOWTO

kamples 5-6 0000000000 Why?

iscussion

References

The Factor Model?

University of Oklahoma Health Sciences Center

Michael D. Hunter

ntroduction	Kalman HOWTO	Examples 1-4
		00000000

Examples 5

les 5-6

hy? Disc

Reference

That's a state space model.

University of Oklahoma Health Sciences Center

Michael D. Hunter

Introduction	Kalman HOWTO	Examples 1-4	Examples
		000000000000000000000000000000000000000	

The Standard Structural Equation Model?

University of Oklahoma Health Sciences Center

Michael D. Hunter

Introduction	Kalman HOWTO	Examples 1-4
		000000000000000000000000000000000000000

That's a state space model.

University of Oklahoma Health Sciences Center

Michael D. Hunter

Why?

SEM as a State Space Model Math ... go figure

The standard structural equation model is a factor model.

$$\boldsymbol{\eta}_{i} = B\boldsymbol{\eta}_{i} + \Gamma \boldsymbol{x}_{i} + \boldsymbol{\zeta}_{i} \quad \text{with} \quad \boldsymbol{\zeta}_{i} \sim \mathcal{N}\left(\boldsymbol{0}, \Psi\right)$$
 (18)

$$\boldsymbol{\eta}_{i} - B\boldsymbol{\eta}_{i} = (I - B)\boldsymbol{\eta}_{i} = \Gamma\boldsymbol{x}_{i} + \boldsymbol{\zeta}_{i} \quad \text{with} \quad \boldsymbol{\zeta}_{i} \sim \mathcal{N}(\mathbf{0}, \Psi) \quad (19)$$

$$\boldsymbol{\eta}_{i} = (I - B)^{-1}\Gamma\boldsymbol{x}_{i} + (I - B)^{-1}\boldsymbol{\zeta}_{i} \quad \text{with} \quad \boldsymbol{\zeta}_{i} \sim \mathcal{N}(\mathbf{0}, \Psi) \quad (20)$$

$$\boldsymbol{\eta}_{i} = \Gamma_{2}\boldsymbol{x}_{i} + \boldsymbol{\zeta}_{2,i} \quad \text{with} \quad \boldsymbol{\zeta}_{i} \sim \mathcal{N}\left(\mathbf{0}, (I - B)^{-1}\Psi(I - B)^{-\mathsf{T}}\right) \quad (21)$$

େ । ଜ**ାନ ଏ ଲି । ଏ ଲି । ଏ ଲି । ଏ ଲି ।**

University of Oklahoma Health Sciences Center

Michael D. Hunter

duction	Kalman	HOWTO	E
			C

camples 5-6 0000000000 Why?

Discussion

References

The Latent Growth Model?

University of Oklahoma Health Sciences Center

Michael D. Hunter

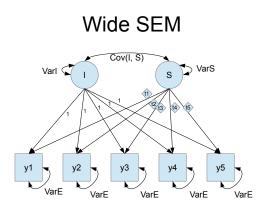
Introduction	Kalman HOWTO	Examples 1-4
		000000000000000000000000000000000000000

Why?

References

That's a state space model.

University of Oklahoma Health Sciences Center


Michael D. Hunter

Why?

ssion Re

Latent Growth Curve

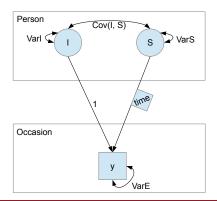
Tucker (1958) & Rao (1958)

Michael D. Hunter

State Space, too

University of Oklahoma Health Sciences Center

000 00


Discussion

References

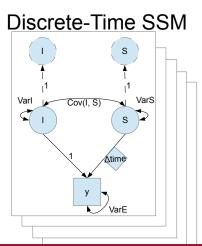
Latent Growth Curve

Tucker (1958) & Rao (1958)

Relational SEM

Michael D. Hunter

State Space, too


University of Oklahoma Health Sciences Center

Why?

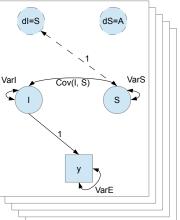
ussion F

Latent Growth Curve

Tucker (1958) & Rao (1958)

Michael D. Hunter

University of Oklahoma Health Sciences Center


Why?

iscussion

References

Latent Growth Curve

Continuous-Time SSM

Michael D. Hunter

University of Oklahoma Health Sciences Center

ntroduction	Kalman HOWTO	Examples 1-4
		000000000000000000000000000000000000000

The (Latent) Cross-Lagged Panel Model?

University of Oklahoma Health Sciences Center

Michael D. Hunter

troduction	Kalman HOWTO	Examples
		000000

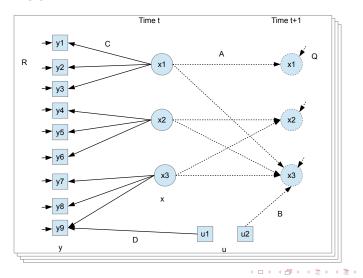
es 1-4 0000000000 amples 5-6 00000000000

Why?

iscussion

References

That's a state space model.



University of Oklahoma Health Sciences Center

Michael D. Hunter

-6 V 10000 0 References

Cross-Lagged Panel Model

₽HSC

University of Oklahoma Health Sciences Center

Michael D. Hunter

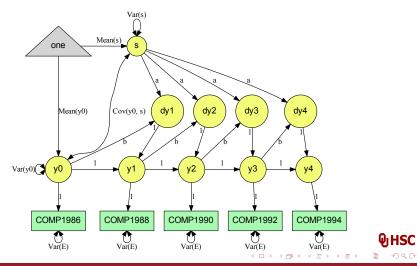
The Dual Change Score Model?

University of Oklahoma Health Sciences Center

Michael D. Hunter

Introduction 000000

That's a state space model.

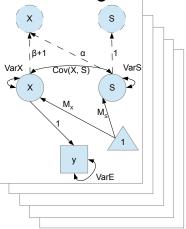

University of Oklahoma Health Sciences Center

Michael D. Hunter

000 00

iscussion

Dual Change Score



Michael D. Hunter

University of Oklahoma Health Sciences Center

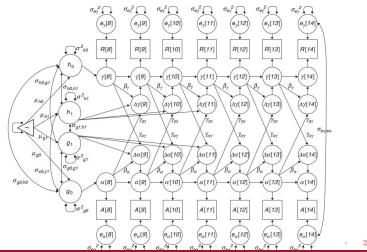
QHSC

Dual Change SSM

< 注入 < 注入 University of Oklahoma Health Sciences Center

< A

Michael D. Hunter


6 V\ 0000 0 Discussion

References

QIHSC

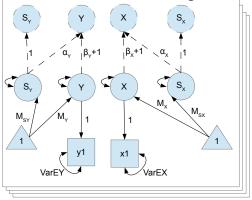
Bivariate Dual Change Score

McArdle & Grimm (2010) "Five Steps"

Michael D. Hunter

University of Oklahoma Health Sciences Center

Examples 1-4


Examples 5-6 00000000000

Why?

Discussio

References

Bivariate Dual Change SSM

 < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □

Michael D. Hunter

The Autoregressive Latent Trajectory Model?

University of Oklahoma Health Sciences Center

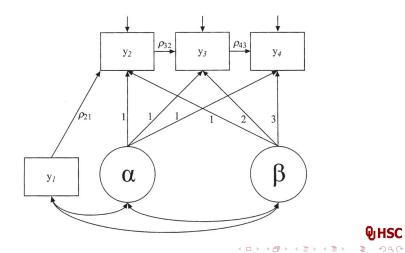
Michael D. Hunter

Introduction	Kalman HOWTO	Examples 1-4

That's a state space model.

University of Oklahoma Health Sciences Center

Michael D. Hunter


Introduction 000000 xamples 1-4 000000000000000 00 000

iscussion

References

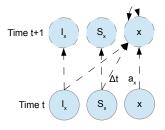
Univariate ALT

Bollen & Curran (2004)

University of Oklahoma Health Sciences Center

Michael D. Hunter

Introduction 000000 n HOWTO

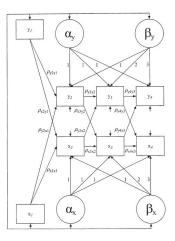

Examples 1-4 0000000000000000 Examples 5-6 000000000000000

00 00

Discussion

References

State Space ALT


Michael D. Hunter

University of Oklahoma Health Sciences Center

Examples 5-6

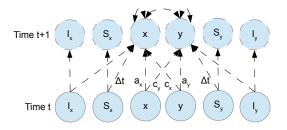
Bivariate ALT

Bollen & Curran (2004)

< 注入 < 注入 University of Oklahoma Health Sciences Center

< □ > < 同

QHSC


Michael D. Hunter

Examples 5-6 0000000000

Wł ٥٥ ٥٥ Discussion

References

State Space Bivariate ALT

HSC

Michael D. Hunter

University of Oklahoma Health Sciences Center

Why? •0000

Why have I done this?

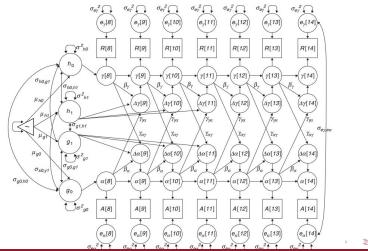
- 1. To see relationships among ModelsTM
- 2. To have a common way of expressing temporal relationships

University of Oklahoma Health Sciences Center

Michael D. Hunter

xamples 5-6 000000000000000

6 Why? 00000 0●000

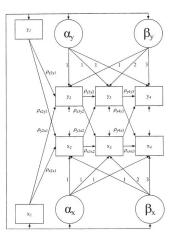

Discussio

References

QIHSC

Bivariate Dual Change Score

McArdle & Grimm (2010) "Five Steps"


Michael D. Hunter

University of Oklahoma Health Sciences Center

Why? 00000

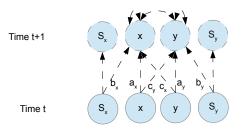
Bivariate ALT

Bollen & Curran (2004)

< 注入 < 注入 University of Oklahoma Health Sciences Center

< □ > < 同

QHSC


Michael D. Hunter

xamples 1-4 0000000000000000 xamples 5-6 00000000000

6 Why? ○○○○ ○○○●○ Discussion

References

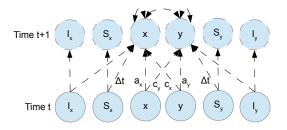
State Space Bivariate DCS

HSC

Michael D. Hunter

State Space, too

University of Oklahoma Health Sciences Center


xamples 1-4

xamples 5-6 00000000000

6 Why? 0000 0000 Discussion

References

State Space Bivariate ALT

HSC

Michael D. Hunter

University of Oklahoma Health Sciences Center

Summary

- Between- and Within-person variabilities are distinct
- Within-person models are needed for within-person conclusions
- The discrete-time linear state space model encompasses many models of change in a single framework.
 - Factor Models
 - Standard Structural Equation Models
 - I atent Growth Models
 - Cross-Lagged Panel Models
 - Dual Change Score Models
 - Autoregressive Latent Trajectory Models

Common language is the foundation of communication.

Michael D. Hunter State Space, too

< 回 > < 三 > < 三 > University of Oklahoma Health Sciences Center

0000

HSC

Future Work

- Emphasize continuous-time modeling for generalizable results.
- Integrate state space models with Item Factor Analysis.
- Integrate state space models with relational SEM.

amples 5-6

Why?

Acknowledgments

- OpenMx Core Development Team
- Sy-Miin Chow
- Come see "What's for dynr?"

Michael D. Hunter

Introduction 000000 Examples 1-4

amples 5-6

Why?

Discussion Ret

Thank You

mhunter1@ouhsc.edu

€HSC বিচাৰ্জী⊁বইদ্বইদ ই প্র

University of Oklahoma Health Sciences Center

Michael D. Hunter

Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2015). Continuous time structural equation modelling with R package ctsem. *Journal of Statistical Software*, 77(5). doi: 10.18637/jss.v077.i05

- Molenaar, P. C. M. (1985). A dynamic factor model for the analysis of multivariate time series. *Psychometrika*, *50*, 181-202. doi: 10.1007/BF02294246
- Priestley, M., & Subba Rao, T. (1975). The estimation of factor scores and kalman filtering for discrete parameter stationary processes. *International Journal of Control*, 21(6), 971–975. doi: 10.1080/00207177508922050
- Song, H., & Zhang, Z. (2014). Analyzing multiple multivariate time series data using multilevel dynamic factor models. *Multivariate Behavioral Research*, 49(1), 67-77. doi: 10.1080/00273171.2013.851018

Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time

University of Oklahoma Health Sciences Center

Michael D. Hunter