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Point and Interval Estimation of
Reliability for Multiple-Component
Measuring Instruments via Linear
Constraint Covariance Structure

Modeling
Tenko Raykov

Fordham University

A widely and readily applicable covariance structure modeling approach is outlined
that allows point and interval estimation of scale reliability with fixed components.
The procedure employs only linear constraints introduced in a congeneric model,
which after reparameterization permit expression of composite reliability as a func-
tion of appropriate parameters. Unlike the popular Cronbach’s coefficient alpha that
already at the population level is generally a misestimator of scale reliability, this
method is based on the formal definition of the reliability coefficient. The proposed
approach is illustrated by means of a numerical example.

Multiple-component measuring instruments are highly popular in social, behav-
ioral, and educational research primarily due to their being constructed to provide
converging pieces of information about underlying latent dimensions that can only
be measured with fallible indicators. The current, widely followed practice of their
reliability estimation is based mainly on Cronbach’s coefficient alpha (Cronbach,
1951). As has been known for more than 35 years, however, unless practically
rather restrictive conditions are fulfilled (viz., essential tau equivalence of the com-
ponents), alpha is not equal to the overall composite’s reliability even at the popu-
lation level (e.g., McDonald, 1999; Novick & Lewis, 1967; Raykov, 1997b;
Zimmerman, 1972). The goal of this article is to contribute to the methodology of
scale reliability evaluation by providing a widely applicable approach developed
within the popular covariance structure modeling (CSM) methodology, which per-
mits point and interval estimation of reliability for composites with prespecified
components and is easily employed by the general social or behavioral researcher
with any CSM software allowing introduction only of linear constraints.
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MOTIVATION

As is well documented in the methodological literature, a long-standing tension
has existed between coefficient alpha and the fact that, in general, it does not repre-
sent a dependable estimator of a scale’s reliability. A number of researchers have
shown over the past 35 years or so, beginning with the instructive article by Novick
and Lewis (1967), that already at population level alpha has certain deficiencies
making reliance on it, in general, a suboptimal strategy; and, in fact, one that can be
misleading. Specifically, as demonstrated by Novick and Lewis and Zimmerman
(1972), as well as further elaborated more recently (e.g., Green & Hershberger,
2000; Komaroff, 1997; McDonald, 1981; Raykov, 1997b, 1998a, 2001a, 2001b),

1. With uncorrelated errors of measurement, alpha is a lower bound of com-
posite reliability regardless of the factorial structure of the instrument.

2. With such error terms, alpha is only then equal to scale reliability when the
components are (essentially) tau equivalent; however, this strong require-
ment is hard to reconcile with the well-known fact that social and behav-
ioral assessment is typically carried out in arbitrary units of measurement
(whereas the requirement necessitates them to be, in addition, equal to one
another).

3. With correlated errors, alpha can be an underestimate or, conversely, can be
an overestimate of composite reliability.

This article is based on the logical premise that a researcher interested in
multicomponent instrument reliability is, in fact, concerned with the composite re-
liability coefficient itself, not with any other quantity—like alpha—that only under
generally rather restrictive conditions equals reliability (Raykov, 2003a). Hence,
unlike much of past and present empirical research in the social, behavioral, and
educational disciplines, this article is in full agreement with what could be consid-
ered a fundamental principle of science: Questions phrased in terms of concept A
ought to be answered in terms of the same concept A, not in terms of another con-
cept B that only in special cases equal A. Therefore, the article develops independ-
ently of coefficient alpha and is focused on the scale reliability coefficient that is
the quantity of actual relevance when questions about reliability of multiple-com-
ponent measuring instruments are to be answered.

POINT ESTIMATION OF SCALE RELIABILITY

The following developments utilize the classical definition of reliability as the ra-
tio of true variance to observed variance (e.g., Lord & Novick, 1968). Therefore,
the reliability coefficient can be viewed as an overall (unconditional) index of
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“precision” of measurement, which represents the proportion of individual ability
differences in the observed score variance.

Notation and Definitions

For the specific purposes of this article, we assume that a set of components Y1, Y2,
…, Yk is given (k > 1) and that one is sampling from a participant population in which
interest is in the reliabilityof theoverall scale scoreY=Y1 +Y2 +…+Yk(Type1sam-
pling, Lord, 1955; the case of weighted scales is included in the following). These
components can be parts of an overall test or test battery, testlets, subscales, portions
of exam papers, questions, self-report sections, or items. We are concerned with
point and interval estimation of the scale’s reliability coefficient, ρY, defined as

ρY = Var(T)/Var(Y)

where T1, T2, … , Tk are the true scores of the components Y1, Y2, … , Yk, respec-
tively; T = T1 + T2 + … + Tk is the true score pertaining to the observed score Y;
and Var(.) denotes variance in the studied population (Lord & Novick, 1968;
Zimmerman, 1975).

As is frequently the case in empirical social and behavioral research, we assume
that the components Y1, Y2, …, Yk are congeneric (Jöreskog, 1971; cf. Raykov,
2003a). These measures represent the most general case of assessment of a com-
mon underlying dimension with possibly different units of measurement and pre-
cision or error variances. Then, by definition

Yj = aj + bjη + Ej (1)

holds true, where aj and bj are appropriate constants, η is the common true or latent
variable score (e.g., η = T1 can be taken), and Ej = Yj – Tj are the corresponding er-
ror scores (j = 1, 2, …, k; Lord & Novick, 1968). For identifiability reasons, we as-
sume Var(η) = 1. All models referred to in this article are also presumed to be iden-
tified (e.g., in the case k = 2, additional identifying restrictions must be imposed),
and the assumption of uncorrelated errors is not needed.

In the congeneric case under consideration, the reliability coefficient of the
scale score Y is readily shown to equal

where θjj = Var(Ej) denotes the error variances (j = 1, 2, …, k; e.g., Bollen, 1989;
numerators and denominators of reliability coefficients are assumed throughout
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distinct from zero, a typically fulfilled assumption in empirical research). With
correlated errors (e.g., Williams & Zimmerman, 1996),

holds true, where θij(1 ≤ i < j ≤ k) are the nonzero error covariances and i and j vary
across all pairs of correlated errors (given model identification). For a weighted
test score, Y = w1Y1 + w2Y2 + … + wkYk , where the weights w1, w2, …, wk are
known beforehand or to be estimated simultaneously as, say, equal to the indicator
loadings (i.e., wj = bj; j = 1, …, k) or to other quantities with certain properties of in-
terest (e.g., Raykov, 2004),

holds in the uncorrelated error case, and in that of correlated errors

with the same notation for the error covariances as in Equation 3. Therefore, for the
purposesof thisarticle, theweightedscalecase inEquations4and5isdirectly reduc-
ible to the initially described unweighted corresponding case via appropriate substi-
tutions (e.g., Raykov, 2001b); therefore, we can focus on the remainder in the un-
weighted case covered by Equations 2 and 3 (i.e., when wj = 1, j = 1, …, k; Raykov,
2003a).

Reliability Re-Expression

In this subsection, we describe the basis of a widely applicable method of estima-
tion of scale reliability, which can be readily used by the general social or behav-
ioral researcher and is outlined later in detail. A main feature of this method, which
sets it apart from earlier ones (e.g., Feldt, Woodruff, & Salih, 1987; Raykov,
1998b, 2002a), is that it allows both point and interval estimation of composite re-
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liability—rather than coefficient alpha—within a single modeling session using a
readily applicable CSM approach.1

To describe the method, we first observe that with the assumptions made so
far—which represent practically no restriction of generality and can be presumed
fulfilled in empirical research—Equation 2 is equivalent to the equality of the re-
ciprocals of its right- and left-hand sides (for simplicity of notation, the summation
index i running from 1 to k is dropped in this and in the next subsections):

ρY–1 = 1 + (Σθii)/(Σbi)2 (6)

Denoting C = (Σbi)2, Equation 6 is rewritten as

ρY–1 = 1 + Σθ∗ii (7)

where we set

θ∗jj = θjj/C (j = 1, …, k) (8)

Equations 7 and 8 suggest a useful reparameterization of the model defined in
Equation 1 that we conceptualize as a covariance structure model (which obvi-
ously represents no loss of generality; cf. Raykov, 2002b). The reparameterization
is accomplished by a rescaling of the metric of the error terms, Ej, which consists
of a division of their units of measurement by Σbi = C½, and is of high practical util-
ity in its own right. After this rescaling, the error term variances become θjj/C; that
is, the error variances of the reparameterized model are θ∗jj defined in Equation 8 (j
= 1, …, k). Indeed, the model definition in Equation 1 can be rewritten as

Yj = aj + bjη + (b1 + b2 + … + bk)E*j (9)

where E*j = Ej/(b1 + b2 + … +bk); hence, Var(E*j) = Var(Ej)/(b1 + b2 + … + bk)2 =
θjj/C = θ∗jj (see Equation 8; j = 1, …, k). Also, note then that all initial error
covariances, if any, become rescaled in the same manner (i.e., divided by C). Fur-
thermore, this reparameterization only changes the scale of the error variances
(and covariances, if any), but not that of the construct loadings or the latent vari-
ance assumed fixed at one. Moreover, reparameterization (Equation 9) does not
change the model identification status—an identified congeneric model remains
identified after this rescaling (demonstration available from the author on request).

346 RAYKOV

1The method described in this and the next subsection is not the only alternative to coefficient alpha,
which allows reliability estimation using its coefficient formula (Equation 3). Raykov (1997a, 2001a) de-
scribed other approaches based on Equation 3 that were, however, either based on nonlinear constraints or
highly computer intensive when employed for purposes of interval estimation. Unlike those methods, the
one in thisarticleutilizesonly linearconstraintsandyields,withinasinglemodelingsession,alsoan inter-
val estimate in addition to a point estimate of scale reliability. Another approach based on Equation 3 was
indicatedbyareferee,whichestimates reliabilityas thecomplement tooneof theratioof reproducederror
variance for the scale score Y to the latter’s observed variance. In difference to this estimation procedure,
however, that approach does not yield in the same modeling session all quantities needed to obtain a com-
posite reliability confidence interval (see the following in main text).
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Reparameterization (Equation 9) is practically accomplished, in terms of the
covariance structure model (Equation 1) of concern, by restricting the relations be-
tween error terms and corresponding observed variables. Specifically, setting the
pathfromeacherror,Ej, into itscorrespondingmanifestvariable,Yj, tobeequal to the
sum of construct loadings (i.e., to C½ = Σbi) achieves this reparameterization (j = 1,
…, k). The resulting model is depicted in Figure 1 following widely used conven-
tionsforgraphicaldisplayofstructuralmodels (e.g., Jöreskog&Sörbom,1996).

We note that in the congeneric model of Figure 1, only linear constraints are im-
posed that can be introduced readily with widely available CSM programs (e.g.,
LISREL, Jöreskog & Sörbom, 1996, see Appendix; EQS, Bentler, 2004; Mplus,
Muthén & Muthén, 2004; and similarly, Mx, Neale, 1997).

Point Estimation of Scale Reliability

Once the reparameterization in Equation 9 is carried out, fitting the resulting
model (i.e., Equation 1 with Equation 9) to the analyzed data using LIREL, EQS,
Mplus, or Mx, one obtains estimates of the rescaled error variances θ∗jj(j = 1, …,
k). Then, according to Equation 7, a point estimate of the overall scale score’s reli-
ability results by adding 1 to the sum of these k estimates and taking the inverse.
That is, the scale reliability estimator of this article is

where a caret signals estimator of pertinent parameter.

SCALE RELIABILITY POINT AND INTERVAL ESTIMATION 347

FIGURE 1 Reparameterized congeneric component model (see Equations 1 and 9). The path
from each error term Ej into its corresponding observed variable Yj is set equal to the sum of the
loadings of all observed variables on the latent variable η; that is, to C½(j = 1, …, k; see Equa-
tions 6 and 7 and the Appendix for details of implementation).
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In empirical research, all quantities appearing on the right-hand side of Equa-
tion 10 are found in pertinent sections of the software output associated with the
model (see illustration section). Note that if the maximum likelihood (ML)
method has been used for model fitting, due to the invariance property of ML es-
timators (e.g., Rao, 1973) in Equation 10 is a ML estimator of scale reliabil-
ity as well and hence enjoys all properties of such estimators (Raykov, 2003a).
In particular, the estimator in Equation 10 is consistent, efficient, and normally
distributed (with mean being the true reliability coefficient; Rao, 1973). There-
fore, with large samples, the overall test reliability point estimator (Equation 10)
has highly desirable optimality properties that ensure its utility in social and be-
havioral research. Note that the method of this section is distinct from the ones
described in Raykov (1997a) and Raykov (2001b) in that it (a) estimates directly
the test reliability coefficient and (b) achieves this via simple linear rather than
nonlinear constraints and, hence, can be employed also with many popular CSM
programs. Moreover, this procedure (c) is substantially easier to apply than ei-
ther of those two earlier approaches, and, in addition, (d) provides as a byprod-
uct all quantities needed for obtaining a large sample confidence interval of the
scale reliability coefficient as outlined next.

INTERVAL ESTIMATION OF SCALE RELIABILITY

The described method for point estimation of scale reliability yields only a numeri-
cal guess, in the form of a single number, about the population value of the reliabil-
ity coefficient (Raykov, 2003a). Although this is an optimal estimate, realizing that
in general it does not equal its population counterpart, one is still left wondering
how far it may lie from that true reliability coefficient of actual interest. Interval es-
timation answers this question by furnishing a plausible range of values for this
population quantity. Over the past several decades, other methods have also been
developed that aimed at interval estimation of scale reliability. Apparently, highest
popularity have been procedures for constructing confidence intervals of coeffi-
cient alpha (e.g., Feldt, 1965; Feldt et al., 1987). Due to the previously explicated
limitations of coefficient alpha, however, in particular its population slippage rela-
tive to the scale reliability coefficient of real concern (e.g., Raykov, 1997b), as well
as the fact that it has, in general, a different sampling distribution, it is easily ob-
served that the resulting intervals would attain prespecified confidence levels as
such intervals for composite reliability only in the frequently unrealistically re-
strictive case of essential tau equivalence (i.e., all components assessing the same
latent construct with the same units of measurement). Therefore, in the general
case of congeneric measures of concern in this article, the so-obtained intervals for
alpha would be, possibly, with intolerably different from nominal coverage of the
true scale reliability of interest; this may suggest misleading conclusions about the
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used instrument precision of measurement. As an alternative to this traditional
methodology, Raykov (1998b) discussed a bootstrap method for approximate eval-
uation of a standard error and confidence interval of scale reliability. The method
rests on a computer-intensive procedure that remains rather time and resource con-
suming for routine applications in empirical research. More recently, Raykov
(2002a) outlined an analytic method for approximate interval estimation of scale
reliability that, however, is based on a two-step approach capitalizing on linear ap-
proximation of the nonlinear reliability function of construct loadings and error
variances (Equation 2).

These limitations of alternative methods for interval estimation of composite
reliability are readily resolved by the CSM approach outlined in the preceding sec-
tion, as shown next.

Confidence Interval of Rescaled Error Variance Sum

Examining again Equation 7, one sees that if (L, U) is a (1 – γ) 100% confidence in-
terval for its right-hand side, then (1/U, 1/L) is a (1 – γ) 100% confidence interval
for the scale reliability coefficient ρY (0 < γ < 1). Therefore, all one needs to do to
obtain a reliability confidence interval is to invert, and exchange places of, the
lower and upper confidence interval limits of the right-hand side of Equation 7. To
this end, denote by

the sum of rescaled error variances in the reparameterized congeneric test model
defined by Equations 1 and 9. To obtain a standard error of V (denoted “S.E.” in
the following), take the square root of the variance of the right-hand side of
Equation 11:

applying the well-known expression for variance of a sum of random variables
(e.g., Hays, 1994), where Cov(.,.) denotes covariance in the population. Using the
fact that the covariance structure model parameter estimator is asymptotically nor-
mal with mean the estimated true parameter (e.g., Bollen, 1989), and thus V is so as
well (see Equation 11); based on the empirical data, a large sample (1 – γ) 100%
confidence interval for V is obtained as
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where “×” denotes multiplication, zγ/2 is the pertinent quantile of the standard nor-
mal distribution (e.g., zγ/2 = 1.96 if a 95% confidence interval is sought, or zγ/2 =
1.64 for a 90% confidence interval); and S.E. is the value of the right-hand side
of Equation 12 when variances and covariances of the error variance estimates ap-
pearing there are substituted. These variances and covariances are obtained from
the information matrix at the solution point (e.g., Bollen, 1989) and are found, cor-
respondingly, in the covariance matrix of parameter estimate section in the output
of used CSM software (see illustration section and Appendix).

Confidence Interval of the Composite Reliability Coefficient

With the lower and upper limits of the confidence interval (Equation 13), as indi-
cated earlier, Equation 6 yields the following large sample (1 – γ) 100% confidence
interval for the reliability coefficient of the overall scale score:

(The initial and final brackets are meant only to be symbolically distinct from
the parentheses appearing within them, rather than denote a closed interval.)

The outlined point and interval estimation method for composite reliability is
demonstrated next on a numerical example.

ILLUSTRATION ON DATA

Here, simulated data are used to demonstrate an application of the proposed
scale reliability point and interval estimation procedure. We are employing such
data because they have the advantage that due to being generated beforehand,
one knows all underlying model parameters and can therefore determine the true
scale reliability coefficient as well as compare it with the one estimated using
the described method. To this end, multivariate normal zero-mean data is simu-
lated on k = 4 variables on N = 400 cases according to the following model:

Y1 = η1 + E1 (15)
Y2 = 1.5 η 1 + E2

Y3 = 2 η1 + E3

Y4 = .1 η1 + E4

where Var(η1) = 1 is set, and the error covariance matrix is taken as diagonal with
consecutive diagonal elements 1, 2, 3, and 4 (for E1 through E4, respectively; for de-
tails on the data simulation procedure, see Raykov, Marcoulides, & Boyd, 2003).
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Thecovariancematrixof thesimulateddata isdisplayed inTable1. (Thesourcecode
needed for the following analyses is provided in the Appendix.)

Fitting to this covariance matrix the congeneric test model in Equation 1 with
reparameterization (Equation 9) yields, not surprisingly, acceptable goodness-of-fit
indexes: χ2 = .18, df = 2, p = .91, root mean square error of approximation = 0 with a
90% confidence interval (0; .03; e.g., Jöreskog & Sörbom, 1996; the same good-
ness-of-fit indexes are obtained without that reparameterization because it does not
have any implications for the covariance structure and thus has no effect on model
fit). The error variance estimates are found to be as follows (standard errors in paren-
theses): 0.0354 (0.0053), 0.0894 (0.0133), 0.1393 (0.0228), and 0.1289 (0.0158) for
E1 throughE4, respectively.UsingEquation10, theestimateof reliabilityof theover-
all test score Y = Y1 + Y2 + Y3 + Y4 of interest results with these estimates as

= (1 + 0.0354 + 0.0894 + 0.1393 + 0.1289)–1

= (1 + .393)–1 = .718. (16)

Because we know all model parameters in this case, the true reliability of Y is
determined using Equation 2:

= (1 + 1.5 + 2 + .1)2/[(1 + 1.5 + 2 + .1)2 + 1 +
2 + 3 + 3] = 21.16/30.16 = .702 (17)

that is quite close to its estimated reliability (see Equation 16). (By comparison, the
estimate of coefficient alpha results for this data set as .631 is considerably lower, a
finding consistent with the literature on limitations of alpha; e.g., Novick & Lewis,
1967; Raykov, 1997b; Zimmerman et al., 1973; and references therein.)

To obtain a 95% confidence interval for the reliability of Y, we use Equations 12
through 14. First, according to Equation 12, the standard error of the sum V or
rescaled error variances in the right-hand side of Equation 7 results as the sum of
the corresponding diagonal entries of the inverted information matrix provided in
Table 2, plus twice the sum of pertinent off-diagonal elements in that matrix. Note
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TABLE 1
Covariance Matrix of Simulated Data (N = 400)

Variable Y1 Y2 Y3 Y4

Y1 1.8870
Y2 1.5744 4.3173
Y3 2.1767 3.1596 7.5345
Y4 0.1015 0.2136 0.2690 2.9428
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that due to the reparameterization in Equation 9, the rescaled error variances, that
is, the consecutive θ*s, are referred to as PS(2,2) through PS(5,5) in the LISREL
source code in the Appendix. The resulting standard error of the error variance sum
V in the fitted model is .0424 (see Equation 11).

With this standard error of V, a 95% confidence interval for the right-hand side
of Equation 7 is obtained as [1 + .393 – 1.96 × .0424; 1 + .393 +1.96 × .0424] =
[1.3099; 1.476]. Finally, using Equation 6, a 95% confidence interval for the scale
score’s reliability coefficient ρY is furnished by inverting (and exchanging places
of) the lower and upper limit of the last interval, leading to

[.6775; .7634]. (18)

that covers the true reliability of Y, .702 (see Equation 17).
Returning to the results of the initial CSM analysis, the loading of the fourth

scale component, b4, is found to be nonsignificant: Its estimate is 0.1215, with a
standard error of .0962 (t = 1.263). This suggests that a revised version of the
four-component scale, resulting after deleting the last component Y4, might be
associated with considerably higher reliability. To explore this hypothesis, we fit
the model only to the first three observed variables. In the same way as high-
lighted earlier, the estimated reliability of Y(3) = Y1 + Y2 + Y3 is found to be
.782. (The true reliability of Y(3) is determined with Equation 2 to be 20.25/26.25
= .7714, which is very close.) The 95% confidence interval for the reliability of
Y(3) similarly results as [.7462; .8222] and is markedly above that for the initial
scale score Y in (18). This finding possibly suggests considerable increase in re-
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TABLE 2
Covariance Matrix of Parameter Estimates

Parameter λ11 λ21 λ31 λ41 ψ11 ψ22 ψ33 ψ44 ψ55

λ11 0.0046
λ21 0.0015 0.0106
λ31 0.0017 0.0029 0.0184
λ41 0.0001 0.0002 0.0003 0.0093
y22 –0.0002 –0.0002 –0.0003 –0.0001 0.0000
ψ33 –0.0002 –0.0009 –0.0007 –0.0004 0.0000 0.0002
ψ44 –0.0003 –0.0007 –0.0023 –0.0006 0.0000 0.0001 0.0005
ψ55 –0.0004 –0.0008 –0.0013 –0.0006 0.0000 0.0001 0.0002 0.0003
λ12 0.0079 0.0151 0.0233 0.0099 –0.0008 –0.0022 –0.0038 –0.0031 0.0532

Note. LISREL notation is used to symbolize model parameters: λ11 through λ41 are the indicator
loadings associated with Y1 through Y4, respectively; ψ22 through ψ55 the rescaled error variances per-
taining to E1 through E4, respectively; and λ12 is the path connecting E1 with Y1 (see Appendix for soft-
ware code details; matrix found in output section titled “Covariance matrix of parameter estimates”).
Numbers in bold are the entries needed for interval estimation of the sum V of rescaled error variances
(see Equations 11 and 12).
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liability after deletion of Y4 from the original composite (a correct suggestion
given the notable true reliability increase of .064 = .782 – .718). We emphasize
that the last interval comparison is not a statistical test of the null hypothesis of
equality of scale reliability before and after deletion of Y4; in fact, comparison of
these nonsimultaneous confidence intervals cannot yield conclusive information
allowing testing of this hypothesis. A formal test of the hypothesis of no reliabil-
ity change after scale revision is accomplished with the procedure described in
Raykov and Grayson (2003), which should be applied on a sample independent
from the one used for this hypothesis’s generation.

DISCUSSION AND CONCLUSION

This article outlined a widely applicable CSM method of point and interval reli-
ability estimation for multiple-component measuring instruments, which is readily
utilized by the general social, behavioral, or educational researcher. The approach
is based only on linear constraints imposed in a congeneric test model and can be
used with any CSM software capable of introducing these restrictions, such as
LISREL, EQS, Mplus, and Mx (see also Footnote 1). By comparing pertinent reli-
ability interval estimates, the method may also be used to generate hypotheses
about (a) possible change in reliability of scales undergoing development (for a
formal test of the hypotheses of change on an independent sample, regardless
whether components are added or deleted and irrespective of their position in the
scale, see Raykov & Grayson, 2003), (b) group differences in composite reliability
(for a testing procedure of a so-generated hypothesis on independent samples, ap-
plicable both to related and unrelated groups, see Raykov, 2002b), and (c) discrep-
ancies in reliability of different versions of a measuring instrument (e.g., pa-
per-and-pencil vs. computer-based forms administered to related or unrelated
groups; formal testing of such a hypothesis can be conducted with the method in
Raykov, 2002b, on an independent sample from the one used to generate it).

A limitation of the proposed method stems from the fact that it is based on
the CSM methodology that is a large-sample modeling approach. Therefore, the
outlined estimation procedure is best used with large samples (in general, at least
with several hundred participants), and similarly with approximately continuous
components. Such components may be obtained by initial exploratory factor
analysis of the polychoric (tetrachoric) correlation matrix of possibly highly dis-
crete items (on an independent or halved sample; Jöreskog & Sörbom, 1996;
Raykov, 2003a) and subsequent construction of pertinent parcel scores, a proce-
dure frequently used in practice; alternatively, in case of unidimensional initial
scale, one could build two or more components through random or appropriate
split. It is worthwhile emphasizing that this requirement for large samples per-
tains only to the number of studied participants and not to the number of compo-
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nents, which can be as low as three in an original scale (cf. item response the-
ory-based methods for scale construction and revision that are best used with a
large number of items; e.g., Lord, 1980).

In conclusion, a natural question that can be raised at this point is when one could
use coefficient alpha and have confidence in its results (Raykov, 2003a). In the con-
text of this article and, in particular, based on research over the past several decades
that bears on this query, one may suggest that alpha be considered in empirical set-
tings with discrete data (e.g., dichotomous or trichotomous items) and uncorrelated
errorsandwhen, for substantiveorother reasons,onemaynotbewilling toparcel the
initial set of scale items as indicated earlier; in which case, one can make use of al-
pha’s lower bound feature. A potential problem with applying alpha then is that no
widely and easily applicable test of uncorrelated measurement errors seems to be
available with such data; yet, as mentioned earlier and has been well-documented in
the literature, alpha can also overestimate test reliability with correlated error terms.
Alternatively, with approximately continuous data (whether initial data or such ar-
rived at after parceling carried out as outlined earlier or differently), it could be sug-
gested that there is no pressing need to use alpha unless one has (a) a relatively large
number of components (more than ½ doz., say); that (b) load highly uniformly on a
common latent construct (at least around .6 on a 0–1 metric); and (c) uncorrelated
measurement errors (Raykov, 1997b). At least one of conditions (a) through (c) ap-
pears likely to be violated especially in early work on scale construction and devel-
opment insocialandbehavioral research,however.Suchviolationsshouldmakeone
very cautious about applications of alpha and consider, instead, use of the scale reli-
ability point and interval estimation method described in this article (see also Foot-
note 1).
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APPENDIX
LISREL Input File for Point and Interval Estimation of

Test Reliability

POINT AND INTERVAL ESTIMATION OF TEST RELIABILITY
DA NI = 4 NO = 400 ! Data file contains k = 4 variables for N = 400 participants

(see main text)
RA = <data file name>! This is the name of the file where the raw data resides or

filename of covariance matrix
LA ! The following line contains labels for the four observed variables
Y_1 Y_2 Y_3 Y_4 ! These are the actual labels for Y1 through Y4, respectively
MO NY = 4 NE = 5 TE = ZE ! There are four Ys and five ηs; last four ηs are

dummy variables
LE ! Following are the labels for the latent variables
ETA THETA*11 THETA*22 THETA*33 THETA*44 ! Last four are the rescaled

errors
FI PS 1 1 ! Fix underlying latent variable variance (Var(η1) = 1)
VA 1 PS 1 1 ! to achieve model identification (as usually done)
FR LY 1 1 LY 2 1 LY 3 1 LY 4 1 ! Free indicator loadings (the bs in Equation 1), as

usual
FR LY 1 2 LY 2 3 LY 3 4 LY 4 5 ! These are the paths from error terms into their Ys
CO LY(1,2) = LY(1,1)+LY(2,1)+LY(3,1)+LY(4,1) ! This is the rescaling con-

straint (Equation 9)
EQ LY 1 2 LY 2 3 LY 3 4 LY 4 5 ! All paths from Es to Ys are set equal to C½ (see

Equation 6)
ST .5 ALL ! Need start values in model with more ηs than Ys (may need others for

other data)
OU ALL ND = 4 AD = OFF NS ! Need all output to get the estimates’ covariance

matrix
Note. The last four ηs (denoted earlier THETA*11 THETA*22 THETA*33
THETA*44) are dummy latent variables whose variances are set equal to the
rescaled error variances for model Equation 1 (see Equations 8 and 9); that is, to
θ11* through θ44*, respectively.
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