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MODELING CHANGE WITH DATA
COLLECTED FROM RELATIVES1

Michael C. Neale

Introduction

I first met Jack McArdle in the cafeteria of the Institute of Psychiatry at King’s
College in London, when I was a graduate student with David Fulker. Jack had
visited in part to discuss modeling of data from twins and their parents, which
was to become a central part of my PhD thesis. We considered a path diagram
of genetic and cultural transmission from parents to their twin children, to which
Jack added an auto-correlation path to represent residual variation in the child’s
genotype. This tweak to the diagram seemed rather trivial and insignificant at
the time; Fulker and I exchanged skeptical glances and may have smirked a bit.
Jack was in fact giving us a lesson in precise specification of a structural equation
model via a mathematically complete path diagram. Little did I realize that I was
going to become one of its most ardent devotees. It took some years, and my
move to the United States before I fully understood the value of a mathematically
complete path diagram of a structural equation model. Early in the 1990s, while
actively collaborating with Jack, I developed the program Mx (Neale, 1991). Its
graphical interface, with which users could directly specify and fit models to data,
would not have existed without the influence of McArdle on myself and our
mutual friend and colleague Steve Boker. Today, the same method underwrites
graphical modeling software such as Onyx (von Oertzen, Brandmaier, & Tsang,
2017) or Amos (Arbuckle, 1995). In practice, diagram-based modeling is a
valuable teaching tool, and useful for small- to medium-sized models. Larger
models are usually more efficiently programmed via matrix algebra or purpose-
built functions that specify the data, model type and optimizer or other
options.
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Assortative Mating

My first publication with Jack concerned resemblance between spouses (Neale
& McArdle, 1990), which can arise from assortative mating, i.e., like marrying
like. Marital resemblance is weak or absent for many personality traits, but is
very substantial for educational attainment, political affiliation, and substance use.
It is significant in genetic epidemiology because the genotypes of the parents
become correlated, which in turn increases the genetic variance and covariances
between siblings in the next generation. We had figured out a way to represent the
assortative mating model in LISREL (Joreskog & Sorbom, 1996) and published
it. The model involved multivariate path analysis (Vogler, 1985), in which each
variable in a path diagram may represent a vector of (latent or observed) variables,
and the paths between them consist of matrices. Subsequently, we experimented
with specifying the model with the RAMPATH software he co-developed with
Steve Boker. The software found a simpler drawing that avoided paths crossing
as they do in Figure 14.1 of the 1990 paper. These diagrams are shown in
Figure 14.1. My original diagram was drawn with the idea of keeping all the
husbands’ variables on one side of the figure, and all the wives’ variables on
the other. However, it had the disadvantage that two paths crossed each other;
RAMPATH’s automatic drawing avoided this intersection. Being taught such
simple things by a computer program can be rewarding for any user; for developers
there is the additional sense of completing the circle one began by teaching the
computer to do new things.

Psychometric and Biometric Factor Models

Data collected from relatives such as monozygotic (MZ) and dizygotic (DZ) twins
permit partitioning of trait variation into components associated with genetic and
environmental factors. The value of this natural experiment was appreciated
in the nineteen century by Sir Francis Galton (1875), and the comparison of
MZ and DZ pairs’ similarities was developed by Merriman (1924). However,
despite the development of path analysis by Sewall Wright (1921) many years
would pass before structural equation modeling software capable of fitting models
simultaneously to multiple groups would be developed and it was not until the
1990s that SEM became the method of choice for analyzing data from twins and
other relatives.

McArdle and Goldsmith (1990) recognized that multivariate data from twins
could be analyzed by extending a factor model in two ways. The “Psychometric
Factor” model (a.k.a. the Common Pathway model) takes the usual single
factor model and partitions all the latent variables (i.e., the random effects)
into additive genetic (A), common environment (C; shared by twins) and non-
shared environment (E) components. Figure 14.2 shows a path diagram of this
model when there are three orthogonal factors: F1, F2, and F3. A popular
alternative to this model is to impose restrictions such that the latent factors’
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FIGURE 14.1 Multivariate path diagrams for modeling marital resemblance for
multiple traits. Left: diagram designed by human being (MCN); Right: diagram
designed by intelligent software (RAMPATH). The zero variance-covariance matrices
atop the AH and AW variables generate covariance between spouses’ phenotypes (PH
and PW ), but do not affect their variances.

variance is assumed to be composed of entirely one type of variation, A, C,
or E. This second ‘Biometric Factor’ model (a.k.a. the Independent Pathway
model) is shown in Figure 14.3; it has six fewer free parameters than the three-
factor psychometric model. To identify the model, the latent factor variances
are typically constrained to equal unity, so effectively the models differ by just
three unconstrained parameters. Many applications of these two models have
sadly compared only the single psychometric factor model (Figure 14.2 without
F2 or F3), to the three-factor biometric one, and found the latter to fit much
better. Those with experience in analyses of unrelated persons will divine that
a single factor model often fits worse than a three-factor one, and that exactly
the same type of data are represented in the within-person covariances of the
individual twins. Failure to specify enough within-person factors is poor rationale
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FIGURE 14.2 Psychometric factor model for data collected from twins or other
relatives. Latent factors F1, F2, and F3 influence seven measured variables M1–
M7. Variation in the latent factor and the residual, variable-specific components are
partitioned into additive genetic, shared and unique environment components (A,
C, and E, respectively). Model identification requires two types of relative, with
differences in the degree of covariation between the relatives’ A and C variance
components.

to favor the biometric factor model over the single-factor psychometric one. A
reviewer requested examples of this pattern, of which there are many in Behavior
Genetics and similar journals. It seems best to identify a few publications that
I myself co-authored before realizing the oversight (Kendler, Neale, Kesslier,
Heath, & Eaves, 1992; Kendler, Walters, Neale, KIesslier, Heath, & Eaves, 1995).
Indeed, I seemed to be comfortable with that approach in Kendler (1995), in
which we stated “the common pathway model was rejected, suggesting that the
genetic and environmental risk factors for these disorders are not influencing
comorbidity in the same manner.” (Kendler, Walters, Neale, Kessler, Heath, &
Eaves, 1995). While that conclusion may be correct, fitting “the” common
pathway model (as if there is only one, the single factor variety) is insufficient
for it to be drawn. Here I note that both types of model may be extended
by adding either psychometric or biometric factors, and that this could be
done ex hypothesi for confirmatory work, or automatically using, for example,
a loop in R. The resulting long list of models might be summarized by
model-averaging. However, it is the opinion of this author that the biometric
factor model is intrinsically less plausible for most (and perhaps all) complex
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FIGURE 14.3 Biometric factor model for data collected from twins or other relatives.
Latent factors F1, F2, and F3 influence seven measured variables M1–M7. Variation in
latent factor F1 is specified as entirely additive genetic, that in F2 is entirely common
environment, and F3 is exclusively unique environment. Model identification requires
two types of relative, with differences in the degree of covariation between the
relatives’ A and C variance components.

behavioral traits. Genetic and environmental influences seem likely to act together
on the structure and function of the brain or other physiological systems en route
to affecting variation in behavioral and psychological traits. That is, so-called
endophenotypes – such as size or connectivity of brain regions – likely combine
genetic and environmental influences during their development prior to affecting,
e.g., psychiatric, psychological, and behavioral traits that are often the primary
outcomes of interest (Meyer-Lindenberg & Weinberger, 2006). Therefore,
McArdle’s psychometric factor model seems optimal for this area of research –
with more than one factor if the data so warrant. This is an empirical question
that was not often addressed in the past; I hope that future analyses will do so.

Latent Growth Modeling

Dr McArdle has also made great contributions to the genetic modeling of
longitudinal, repeated measures data. He is credited with adapting growth curve
models such as that of Meredith and Tisak (1984) and Browne (1993) for
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application to data with twins. His 1986 paper partitioned latent factors into
A and E components alone, although there was no impediment to including
shared environmental variance components McArdle, (1986). Similarly, with
Aki Hamagami, he added biometric components to latent change score models
(MArdle & Hamagami, 2003), enabling dynamical systems perspective on genetic
and environmental factors in development. Here I focus on the latent growth
curve approach, on which he and I collaborated to develop in the early 1990s,
although it was not until the turn of the century that these methods were finally
published. To publish original material some six years later than planned is a
luxury afforded to those, such as Jack, who are many years ahead of the field.

Most latent growth curve (LGC) models use two or more factors to represent
level, linear (and possibly quadratic or other) growth by fixing the factor loadings
to particular values. McArdle initially followed the Meredith and Tisak approach,
in which some factor loadings were estimated as free parameters. Since then,
growth curve factors have, with rare exception, used the fixed factor loadings
approach; loadings for the level factor are all set to 1.0, those for the linear growth
factor are set to increasing integers (0, 1, 2 . . .), and those for the quadratic
are the square of the linear. This polynomial approach is suitable for growth
processes about which we have little knowledge or theory to guide curve type
selection. Although the polynomial model may provide a good fit to data over a
limited developmental period, it is often poor when the measurement window is
extended. This is true, even of the less widely-applied growth curve models that
include quadratic components: asymptotic behavior is difficult to approximate
with a small number of polynomial factors. Human height, for example, follows
two periods of accelerated development, which the Preece-Baines curve closely
models (Beunen, Thomis, Maes, Loos, Malina, Claessens, & Vlietinck, 2000),
with asymptotic behavior that matches the leveling off of human height in
adulthood. Accordingly, I now consider factor modeling of growth with particular
functional forms, i.e., a parametric growth curve (PGC) approach.

In our 2000 paper, McArdle and I showed how Gompertz, Logistic and
Exponential family curves could be specified and fitted to data from MZ and DZ
twin pairs (Neals & McArdle, 2000). Fitting such growth curves seems rational
for many ongoing studies. For example, the Adolescent Behavioral and Cognitive
Development (ABCD, 2017) study, which is currently collecting longitudinal
data on brain development and cognition from 11,500 9 to 10-year-old youths,
including 800 pairs of twins. This is but one example of Jack’s contributions to
the study of development, which will surely benefit research studies long into the
future. The 2000 treatment used classic Mx (Neale, Bokrer, Xie, & Maes, 2003) to
fit models to summary statistics consisting of means and covariance matrices, but
this software is no longer supported since it was superseded by OpenMx (Boker,
Neale, Maes, Wilde, Spiegel, Brick, Spies, Estabrook, Kenny, Bstes, Mehta, &
Fox, 2011); Neale, Hunter, Pritikin, Zahery, Brick, Kirkpatrick, Estabrook, Bates,
Maes, & Boker, (2016). Endel Tulving remarked “a Festschrift frequently enough
also serves as a convenient place in which those who are invited to contribute find
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a permanent resting place for their otherwise unpublishable or at least difficult-
to-publish papers” (Tulving, 2007). It therefore seems appropriate to revisit the
growth curve models of the 2000 paper, using modern analytical methods. Open
source software increases reliability and reproducibility of findings, and safeguards
its legacy, so implementation in OpenMx seems worthwhile. Here we have an
opportunity to self-examine; if the original researcher cannot reproduce their
own results, it seems unlikely that others would.

Modeling growth curves such as those that arise from differential equations is a
more complex task than is usual for structural equation modeling. Effectively, the
factor loadings are neither constants nor free parameters, but complex functions
obtained as the partial derivatives of the growth curve function with respect to its
free parameters. The expected means are obtained directly from the growth curve
function itself, but these too may involve non-trivial algebra. In our 2000 paper,
Jack and I tabulated these derivatives for the Logistic, Gompertz and Exponential
growth curve forms (Neale & McArdle, 2000). Here, for illustration, I reproduce
the equations for the Gompertz curve in Table 14.1. Figures 14.4 and 14.5
respectively show path diagrams for the conventional level, slope, and quadratic
polynomial component LGC model, and a parametric structured curve model.
The primary difference between the figures is that in the LGC model the factor
loadings are fixed to constant values, whereas in the PGC model the loadings are
complicated algebraic functions of the free parameters of the growth curve being
fitted.

Some interesting things happened in the attempted reproduction of the results
using OpenMx instead of classic Mx. Translating the script was straightforward,
but the original data files could not be found. The covariance matrices and means
were, however, published in Jack’s 1986 paper, so they were re-entered (McArdle,
1986). Fitting the models anew, the results were similar but not identical to those
of the original article. The number of estimated parameters were the same in
OpenMx and classic, but the chi-squared fit of all the models had deteriorated
by some 20 units. To identify the source of this issue, the models were refitted
using the Mx version 1.69, which generated very similar values for model fit and
parameter estimates to those obtained by OpenMx. This agreement increased
once the sample sizes for Mx were increased from 75 to 76, because OpenMx’s
fit function uses N rather than N-1 when fitting to summary statistics, to be
consistent with its full information maximum likelihood fit function. With one
exception, the remaining differences in model fit between OpenMx and Mx
were less than a single unit of chi-squared, and likely due to differences in
numerical precision and orders of operation when evaluating the log-likelihood.
Optimization can be sensitive to relatively slight changes in numerical precision,
although both programs appear satisfied that they have arrived at a strong local,
and possibly global minimum. The single exception is that the effect of dropping
all the occasion-specific familial components, As and Cs, is approximately 4.6
chi-squared units greater with Mx than with OpenMx. This appears to be an
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TABLE 14.1 Parametric growth curve functions Fx for Gompertz (x = G), Exponential
(x = E) and Logistic (x = L) curves, and their partial derivatives dFx

dθ with respect to the
elements of the free parameter vector θ for asymptote (a), initial (i), and rate (r), as a
function of time t. The partial derivative vectors for t = 1 . . .T are used as the factor
loadings (e.g., dy/da) shown in Figure 14.5. Further details are given in Neale and
McArdle (2000), on which this table was based.

Gompertz

FG = aexp
[
log[ i

a
]exp[−(t − 1)r]

]
(14.1)

dFG

da
= [1 − exp[−(t − 1)r]]exp

[
log[ i

a
]exp[−(t − 1)r]

]
(14.2)

dFG

di
= a

i
exp

[
−(t − 1)r + log[ i

a
]exp[−(t − 1)r]

]
(14.3)

dFG

dr
= −a log[ i

a
](t − 1)exp

[
−(t − 1)r + log[ i

a
]exp[−(t − 1)r]

]
(14.4)

Exponential

FE = a − (a − i)exp[−(t − 1)r] (14.5)

dFE

da
= 1 − exp[−(t − 1)r] (14.6)

dFE

di
= exp[−(t − 1)r] (14.7)

dFE

dr
= (a − i)(t − 1)exp[−(t − 1)r] (14.8)

Logistic

FL = ai
i + (a − i)exp[−(t − 1)r] (14.9)

dFL

da
= i − exp[−(t − 1)r]FL

i + (a − i)exp[−(t − 1)r] (14.10)

dFL

di
= a − (

1 − exp[−(t − 1)r])FL

i + (a − i)exp[−(t − 1)r] (14.11)

dFL

dr
= (a − i)(t − 1)exp[−(t − 1)r]FL

i + (a − i)exp[−(t − 1)r] (14.12)

optimization failure on behalf of the older software, possibly due to the order
in which the models were fitted. Eliminating variance components that account
for a substantial proportion of variance can make for poor starting values for
subsequent model fitting attempts, a general point to be aware of when using
model-fitting software.
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FIGURE 14.4 Latent Growth Curve Model with Level (Lvl), Slope (Slo) and Quadratic
(Quad) variance components. These factors have means μL,μSandμQ. Typically,
values of the factor loadings t1, t2 . . . t5 are fixed to integer values such as 1,2 . . .5.
In practice, individuals may differ with respect to age at assessment, and may be
substituted with individuals’ ages at measurement on a casewise basis using, e.g.,
definition variables in OpenMx.

Table 14.2 shows parameter estimates from fitting the logistic, exponential, and
Gompertz growth curves to the Bayley Infant Mental Development data, in the
same format as Table 14.2 in Neale and McArdle (2000). Goodness-of-fit statistics
of the three models and a set of seven submodels are shown in Table 14.3. The
bad news is that neither the goodness-of-fit statistics nor the parameter estimates
agree 100% with those from the original article. However, the main substantive
conclusions have not changed; much of the variation in the random components
of the growth curves is associated with shared environmental factors, there remains
substantial (residual) variation not associated with the growth curve factors, and
some of the residual, time-specific variation is shared between the members of the
twin pair. The origin of the disparities between this description and that of Neale
and McArdle (2000) seems to be the data files; using the new data shows close,
but not perfect agreement between classic Mx and its successor. A further point
to note is that the sample size and number of occasions of measurement are both
relatively small for the intended purpose of estimating latent growth curves. These
limitations make optimization more difficult, because the fit function may change
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FIGURE 14.5 Structural Model for Functional Latent Growth Curves featuring
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e.g., dy(t)/di, are partial derivatives of the growth curve function with respect to its
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means of the latent factors.

little in response to a change in parameter value, i.e., the gradients, being the
partial derivatives of the fit function with respect to the parameters are almost flat.

The scripts and data files used in this article can be found on the following
website: http://somewhere.suggested.by.editor?. These, we hope, will facilitate
future uses of the method of fitting structured latent growth curves to data from
relatives. The scripts can also be used to fit models to data from unrelated persons,
but the genetic and shared environmental variance components at both the factor
and residual levels should be set to zero. In effect, the model becomes one of
random, individual-specific effects, which, to a behavioral geneticist, seems a
strong assumption. It is important for researchers from all disciplines to recognize
that variance components at both the factor and occasion-specific (residual) levels
may include reliable and familial components of variance.

Conclusions

This chapter embarked on a reproducibility exercise, using entirely different
software (to create OpenMx no code was ‘borrowed’ from Mx – all code was
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TABLE 14.3 Fit statistics obtained for Growth curve models and submodels applied to
Bayley Infant Mental Development data on MZ and DZ twins.

Fit Statistic Difference χ 2

Model χ 2 d.f. AIC χ 2 d.f. p

Exponential

Full 148.90 55 38.90 — — —
Orthogonal 163.28 64 35.28 14.38 9 0.11
No A 157.37 61 35.37 8.47 6 0.21
No C 190.86 61 68.86 41.96 6 0.00
No E 159.86 61 37.86 10.96 6 0.09
No As,Cs 187.72 63 61.72 38.82 8 0.00
No As 158.44 59 40.44 9.54 4 0.05
No Cs 149.02 59 31.02 0.12 4 1.00

Logistic

Full 157.55 55 47.55 — — —
Orthogonal 168.54 64 40.54 10.99 9 0.28
No A 165.58 61 43.58 8.03 6 0.24
No C 198.63 61 76.63 41.08 6 0.00
No E 168.39 61 46.39 10.84 6 0.09
No As, Cs 202.17 63 76.17 44.62 8 0.00
No As 167.20 59 49.20 9.65 4 0.05
No Cs 157.70 59 39.70 0.15 4 1.00

Gompertz

Full 151.88 55 41.88 — — —
Orthogonal 164.46 64 36.46 12.58 9 0.18
No A 160.17 61 38.17 8.29 6 0.22
No C 193.45 61 71.45 41.57 6 0.00
No E 162.78 61 40.78 10.91 6 0.09
No As, Cs 192.77 63 66.77 40.89 8 0.00
No As 161.38 59 43.38 9.51 4 0.05
No Cs 152.01 59 34.01 0.14 4 1.00

freshly developed). Encouragingly, only modest differences were found between
the two implementations of extended structural equation modeling, and no
change in substantive conclusions was warranted. The one exception shows
better optimization performance with OpenMx than with Mx, which indicates
progress. It should be noted that OpenMx offers several different optimization
algorithms – with more planned for future releases – although the same optimizer,
NPSOL (Gill, Murray, Saunders, & Wright, 1986), was used in both packages for
this illustration.

Finally, I have tremendous respect for Professor McArdle and his
many contributions to behavioral science generally, and to multivariate and
developmental behavioral genetics in particular. His influence on my own career
was quite profound. In the early days of developing Mx, Jack recommended that I
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not join others who were selling their structural equation modeling software. This
advice proved crucial; I have not had to trouble myself with running a business
as well as a research team at VCU. I also feel that having obtained tax payer
money to develop the software, it would be immoral to charge users for purchase
or license fees, because the same tax payer would likely have to foot the bill
for them. Indeed, Jack’s insight foreshadowed the rise of open source software
and open science – principles with which I whole-heartedly agree. For science,
anything other than open source software should be considered unfit for purpose.
One approach to validating a model-fitting program is to feed it data simulated
using known parameter values to see if its parameter estimates do not depart from
them for reasons other than sampling error. However, this method is analogous to
a Turing test for artificial vs. human intelligence. The concept is to feed questions
in through a letterbox, on the other side of which is either a human or a machine,
which responds without directly revealing its mechanism. With a series of such
questions, a Turing test may establish with some degree of confidence whether the
room contains a human being or a computer. This confidence is typically much
less than would be obtained if one could look inside the room and examine its
contents. Open source software puts the researcher in the position of being able
to examine the contents of the room. Indeed, a user of closed source software
should really run simulation tests on every model being used, to ensure that no
“corner case” bug exists. Even then, the best that can be achieved outside the
black box is support for the hypothesis that it is doing the right thing. While
keeping the source code secret may be good from the perspective of maintaining
an economic advantage over one’s competitors, it seems poor for the purposes of
reproducible scientific research. Structural equation modeling, and especially the
field of behavioral genetics, are indebted to Dr McArdle for his prescient wisdom
in recommending free and open source software for scientific research.

Note

1 This study was supported by NIDA grants R01DA-018673 and R25DA-26119.
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