
OpenMx Reference Manual
February 26, 2016

Date 2016-02-25

Title Extended Structural Equation Modelling

URL http://openmx.psyc.virginia.edu, https://github.com/OpenMx/OpenMx

BugReports http://openmx.psyc.virginia.edu/forums

Description Facilitates treatment of statistical model specifications
as things that can be generated and manipulated programmatically.
Structural equation models may be specified with reticular action model matrices or paths,
linear structural relations matrices or paths, or
directly in matrix algebra.
Fit functions include full information maximum likelihood,
maximum likelihood, and weighted least squares.
Example models include confirmatory factor, multiple group, mixture
distribution, categorical threshold, modern test theory, differential
equations, state space, and many others.

SystemRequirements GNU make

License GPL (>= 3)

LinkingTo Rcpp, RcppEigen, StanHeaders (>= 2.7), BH, rpf (>= 0.45)

Depends R (>= 3.0.2),
digest,
MASS,
methods,
Matrix,
Rcpp,
parallel

Suggests mvtnorm,
numDeriv,
roxygen2 (>= 3.1),
Rmpi,
rpf (>= 0.45),
snowfall,
lme4

LazyLoad yes

1

http://openmx.psyc.virginia.edu
https://github.com/OpenMx/OpenMx
http://openmx.psyc.virginia.edu/forums

2

LazyData yes

Collate '0ClassUnion.R'
'cache.R'
'MxBaseNamed.R'
'MxData.R'
'MxDataWLS.R'
'DefinitionVars.R'
'MxReservedNames.R'
'MxNamespace.R'
'MxSearchReplace.R'
'MxFlatSearchReplace.R'
'MxUntitled.R'
'MxAlgebraFunctions.R'
'MxExponential.R'
'MxMatrix.R'
'DiagMatrix.R'
'FullMatrix.R'
'IdenMatrix.R'
'LowerMatrix.R'
'SdiagMatrix.R'
'StandMatrix.R'
'SymmMatrix.R'
'UnitMatrix.R'
'ZeroMatrix.R'
'MxMatrixFunctions.R'
'MxAlgebra.R'
'MxCycleDetection.R'
'MxDependencies.R'
'MxAlgebraConvert.R'
'MxAlgebraTransform.R'
'MxSquareBracket.R'
'MxEval.R'
'MxRename.R'
'MxPath.R'
'MxObjectiveMetaData.R'
'MxRAMMetaData.R'
'MxExpectation.R'
'MxExpectationNormal.R'
'MxExpectationRAM.R'
'MxExpectationLISREL.R'
'MxFitFunction.R'
'MxFitFunctionAlgebra.R'
'MxFitFunctionML.R'
'MxFitFunctionMultigroup.R'
'MxFitFunctionRow.R'
'MxFitFunctionWLS.R'
'MxRAMObjective.R'
'MxLISRELObjective.R'

3

'MxFIMLObjective.R'
'MxMLObjective.R'
'MxRowObjective.R'
'MxAlgebraObjective.R'
'MxBounds.R'
'MxConstraint.R'
'MxInterval.R'
'MxTypes.R'
'MxCompute.R'
'MxModel.R'
'MxRAMModel.R'
'MxLISRELModel.R'
'MxModelDisplay.R'
'MxFlatModel.R'
'MxMultiModel.R'
'MxModelFunctions.R'
'MxModelParameters.R'
'MxUnitTesting.R'
'MxApply.R'
'MxRun.R'
'MxRunHelperFunctions.R'
'MxSummary.R'
'MxCompare.R'
'MxSwift.R'
'MxOptions.R'
'MxThreshold.R'
'OriginalMx.R'
'MxGraph.R'
'MxGraphviz.R'
'MxDeparse.R'
'MxCommunication.R'
'MxRestore.R'
'MxVersion.R'
'MxPPML.R'
'MxRAMtoML.R'
'MxDiff.R'
'MxErrorHandling.R'
'MxDetectCores.R'
'MxSaturatedModel.R'
'omxBrownie.R'
'omxConstrainThresholds.R'
'omxGetNPSOL.R'
'MxFitFunctionR.R'
'MxRObjective.R'
'MxExpectationStateSpace.R'
'MxExpectationBA81.R'
'MxFitFunctionGREML.R'
'MxExpectationGREML.R'

4 R topics documented:

'MxMI.R'
'MxFactorScores.R'
'MxRobustSE.R'
'MxAvailableOptimizers.R'
'MxTryHard.R'
'zzz.R'

Version 2.5.1

R topics documented:
BaseCompute-class . 9
Bollen . 10
cvectorize . 11
demoOneFactor . 11
demoTwoFactor . 12
diag2vec . 13
dzfData . 14
dzmData . 16
dzoData . 17
eigenvec . 19
example1 . 20
example2 . 21
expm . 22
factorExample1 . 22
factorScaleExample1 . 23
factorScaleExample2 . 24
genericFitDependencies,MxBaseFitFunction-method 25
HS.ability.data . 26
imxCheckMatrices . 28
imxCheckVariables . 28
imxConDecMatrixSlots . 28
imxConstraintRelations . 29
imxConvertIdentifier . 29
imxConvertLabel . 30
imxConvertSubstitution . 30
imxCreateMatrix . 31
imxDataTypes . 31
imxDefaultGetSlotDisplayNames . 32
imxDeparse . 32
imxDependentModels . 33
imxDetermineDefaultOptimizer . 33
imxDiff . 33
imxDmvnorm . 34
imxEvalByName . 34
imxExtractMethod . 35
imxExtractNames . 35
imxExtractReferences . 35

R topics documented: 5

imxExtractSlot . 36
imxFlattenModel . 36
imxFreezeModel . 36
imxGenerateLabels . 37
imxGenerateNamespace . 37
imxGenericModelBuilder . 37
imxGenSwift . 38
imxGentleResize . 38
imxGetSlotDisplayNames . 39
imxHasNPSOL . 39
imxHasOpenMP . 40
imxIdentifier . 40
imxIndependentModels . 40
imxInitModel . 41
imxIsDefinitionVariable . 41
imxIsPath . 41
imxLocateFunction . 42
imxLocateIndex . 42
imxLocateLabel . 43
imxLog . 43
imxLookupSymbolTable . 43
imxModelBuilder . 44
imxModelTypes . 44
imxMpiWrap . 45
imxOriginalMx . 45
imxPPML . 45
imxPPML.Test.Battery . 46
imxPPML.Test.Test . 47
imxPreprocessModel . 47
imxReplaceMethod . 48
imxReplaceModels . 48
imxReplaceSlot . 49
imxReservedNames . 49
imxReverseIdentifier . 50
imxSameType . 50
imxSeparatorChar . 50
imxSfClient . 51
imxSimpleRAMPredicate . 51
imxSparseInvert . 51
imxSquareMatrix . 52
imxSymmetricMatrix . 52
imxTypeName . 52
imxUntitledName . 53
imxUntitledNumber . 53
imxUntitledNumberReset . 53
imxUpdateModelValues . 54
imxVariableTypes . 54
imxVerifyMatrix . 55

6 R topics documented:

imxVerifyModel . 55
imxVerifyName . 55
imxVerifyReference . 56
imxWlsChiSquare . 56
imxWlsStandardErrors . 57
jointdata . 58
latentMultipleRegExample1 . 59
latentMultipleRegExample2 . 60
logm . 61
LongitudinalOverdispersedCounts . 61
multiData1 . 62
mxAlgebra . 63
MxAlgebra-class . 67
MxAlgebraFormula-class . 68
mxAlgebraFromString . 69
mxAlgebraObjective . 69
mxAvailableOptimizers . 71
MxBaseExpectation-class . 72
MxBaseFitFunction-class . 72
MxBaseNamed-class . 72
MxBaseObjectiveMetaData-class . 73
mxBounds . 73
MxBounds-class . 74
MxCharOrList-class . 75
MxCharOrNumber-class . 75
mxCheckIdentification . 75
mxCI . 77
MxCI-class . 79
mxCompare . 80
MxCompute-class . 83
mxComputeConfidenceInterval . 83
mxComputeDefault . 84
mxComputeEM . 84
mxComputeGradientDescent . 86
mxComputeHessianQuality . 87
mxComputeIterate . 88
mxComputeNewtonRaphson . 89
mxComputeNothing . 89
mxComputeNumericDeriv . 90
mxComputeOnce . 91
mxComputeReportDeriv . 92
mxComputeSequence . 92
mxComputeStandardError . 93
mxConstraint . 93
MxConstraint-class . 95
mxData . 96
MxData-class . 98
mxDataDynamic . 100

R topics documented: 7

MxDataFrameOrMatrix-class . 100
MxDataStatic-class . 101
mxDataWLS . 101
MxDirectedGraph-class . 103
mxEval . 103
MxExpectation-class . 105
mxExpectationBA81 . 105
mxExpectationGREML . 106
MxExpectationGREML-class . 108
mxExpectationLISREL . 110
mxExpectationNormal . 114
mxExpectationRAM . 117
mxExpectationStateSpace . 119
mxExpectationStateSpaceContinuousTime . 124
mxFactor . 130
mxFactorScores . 131
mxFIMLObjective . 133
MxFitFunction-class . 136
mxFitFunctionAlgebra . 136
mxFitFunctionGREML . 138
MxFitFunctionGREML-class . 139
mxFitFunctionML . 140
mxFitFunctionMultigroup . 142
mxFitFunctionR . 145
mxFitFunctionRow . 147
mxFitFunctionWLS . 149
MxFlatModel-class . 151
mxGenerateData . 151
mxGetExpected . 153
mxGREMLDataHandler . 154
MxInterval-class . 156
mxJoin . 156
mxKalmanScores . 157
MxLISRELModel-class . 159
mxLISRELObjective . 159
MxListOrNull-class . 162
mxMakeNames . 163
mxMatrix . 163
MxMatrix-class . 167
mxMI . 169
mxMLObjective . 171
mxModel . 173
MxModel-class . 176
mxOption . 179
MxOptionalChar-class . 182
MxOptionalCharOrNumber-class . 182
MxOptionalLogical-class . 182
MxOptionalMatrix-class . 182

8 R topics documented:

MxOptionalNumeric-class . 183
mxPath . 183
MxRAMGraph-class . 186
MxRAMMetaData-class . 186
MxRAMModel-class . 186
mxRAMObjective . 187
mxRename . 189
mxRestore . 190
mxRObjective . 192
mxRowObjective . 193
mxRun . 195
mxSave . 197
mxSetDefaultOptions . 198
mxSimplify2Array . 199
mxStandardizeRAMpaths . 199
mxThreshold . 202
mxTryHard . 204
mxTypes . 207
mxVersion . 208
myAutoregressiveData . 209
myFADataRaw . 210
myGrowthKnownClassData . 210
myGrowthMixtureData . 211
myLongitudinalData . 212
myRegData . 213
myRegDataRaw . 214
myTwinData . 215
mzfData . 216
mzmData . 217
Named-entity . 219
nuclear_twin_design_data . 219
numHess1 . 220
numHess2 . 221
omxAllInt . 221
omxApply . 223
omxAssignFirstParameters . 224
omxBrownie . 225
omxCheckEquals . 226
omxCheckError . 227
omxCheckIdentical . 228
omxCheckNamespace . 229
omxCheckSetEquals . 229
omxCheckTrue . 230
omxCheckWarning . 231
omxCheckWithinPercentError . 232
omxConstrainMLThresholds . 233
omxDetectCores . 233
omxGetNPSOL . 234

BaseCompute-class 9

omxGetParameters . 234
omxGetRAMDepth . 236
omxGraphviz . 237
omxLapply . 237
omxLocateParameters . 238
omxLogical . 239
omxManifestModelByParameterJacobian . 240
omxMatrixOperations . 240
omxMnor . 241
omxNameAnonymousParameters . 242
omxNormalQuantiles . 243
omxParallelCI . 244
omxQuotes . 245
omxRAMtoML . 245
omxRMSEA . 246
omxSapply . 247
omxSaturatedModel . 248
omxSelectRowsAndCols . 249
omxSetParameters . 251
omxSymbolTable . 252
ordinalTwinData . 252
rvectorize . 253
summary.MxModel . 253
tr . 256
twinData . 257
twin_NA_dot . 259
vec2diag . 260
vech . 261
vech2full . 261
vechs . 262
vechs2full . 263

Index 265

BaseCompute-class BaseCompute

Description

This is an internal class and should not be used directly.

See Also

mxComputeEM, mxComputeGradientDescent, mxComputeHessianQuality, mxComputeIterate, mx-
ComputeNewtonRaphson, mxComputeNumericDeriv

10 Bollen

Bollen Bollen Data on Industrialization and Political Democracy

Description

Data set used in some of OpenMx’s examples, for instance WLS. The data were reported in Bollen
(1989, p. 428, Table 9.4) This set includes data from 75 developing countries each assessed on four
measures of democracy measured twice (1960 and 1965), and three measures of industrialization
measured once (1960).

Usage

data("Bollen")

Format

A data frame with 75 observations on the following 11 numeric variables.

y1 Freedom of the press, 1960
y2 Freedom of political opposition, 1960
y3 Fairness of elections, 1960
y4 Effectiveness of elected legislature, 1960
y5 Freedom of the press, 1965
y6 Freedom of political opposition, 1965
y7 Fairness of elections, 1965
y8 Effectiveness of elected legislature, 1965
x1 GNP per capita, 1960
x2 Energy consumption per capita, 1960
x3 Percentage of labor force in industry, 1960

Details

Variables y1-y4 and y5-y8 are typically used as indicators of the latent trait of “political democracy”
in 1960 and 1965 respectively. x1-x3 are used as indicators of industrialization (1960).

Source

The sem package (in turn, via pers. comm Bollen to Fox)

References

Bollen, K. A. (1979). Political democracy and the timing of development. American Sociological
Review, 44, 572-587.

Bollen, K. A. (1980). Issues in the comparative measurement of political democracy. American
Sociological Review, 45, 370-390.

Bollen, K. A. (1989). Structural equation models. New York: Wiley-Interscience.

cvectorize 11

Examples

data(Bollen)
str(Bollen)
plot(y1 ~ y2, data = Bollen)

cvectorize Vectorize By Column

Description

This function returns the vectorization of an input matrix in a column by column traversal of the
matrix. The output is returned as a column vector.

Usage

cvectorize(x)

Arguments

x an input matrix.

See Also

rvectorize, vech, vechs

Examples

cvectorize(matrix(1:9, 3, 3))
cvectorize(matrix(1:12, 3, 4))

demoOneFactor Demonstration data for a one factor model

Description

Data set used in some of OpenMx’s examples.

Usage

data("demoOneFactor")

12 demoTwoFactor

Format

A data frame with 500 observations on the following 5 numeric variables.

x1

x2

x3

x4

x5

Details

Variables x1-x5 are typically used as indicators of the latent trait.

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(demoOneFactor)
cov(demoOneFactor)
cor(demoOneFactor)

demoTwoFactor Demonstration data for a two factor model

Description

Data set used in some of OpenMx’s examples.

Usage

data("demoTwoFactor")

Format

A data frame with 500 observations on the following 10 numeric variables.

x1

x2

x3

x4

diag2vec 13

x5

y1

y2

y3

y4

y5

Details

Variables x1-x5 are typically used as indicators of one latent trait. Variables y1-y5 are typically
used as indicators of another latent trait.

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(demoTwoFactor)
cov(demoTwoFactor)
cor(demoTwoFactor)

diag2vec Extract Diagonal of a Matrix

Description

Given an input matrix, diag2vec returns a column vector of the elements along the diagonal.

Usage

diag2vec(x)

Arguments

x an input matrix.

Details

Similar to the function diag, except that the input argument is always treated as a matrix (i.e.,
it doesn’t have diag()’s functions of returning an Identity matrix from an nrow specification, nor
to return a matrix wrapped around a diagonal if provided with a vector). To get vector2matrix
functionality, call vec2diag.

14 dzfData

See Also

vec2diag

Examples

diag2vec(matrix(1:9, nrow=3))
[,1]
[1,] 1
[2,] 5
[3,] 9

diag2vec(matrix(1:12, nrow=3, ncol=4))
[,1]
[1,] 1
[2,] 5
[3,] 9

dzfData DZ female data

Description

Data for extended twin example ETC88.R

Usage

data("dzfData")

Format

A data frame with 2007 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

e9 a numeric vector

e10 a numeric vector

dzfData 15

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(dzfData)
str(dzfData)

16 dzmData

dzmData DZ Male data

Description

Data for extended twin example ETC88.R

Usage

data("dzmData")

Format

A data frame with 1990 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

dzoData 17

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(dzmData)
str(dzmData)

dzoData DZ opposite sex data

Description

Data for extended twin example ETC88.R

Usage

data("dzoData")

Format

A data frame with 3981 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

18 dzoData

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(dzoData)
str(dzoData)

eigenvec 19

eigenvec Eigenvector/Eigenvalue Decomposition

Description

eigenval computes the real parts of the eigenvalues of a square matrix. eigenvec computes the
real parts of the eigenvectors of a square matrix. ieigenval computes the imaginary parts of the
eigenvalues of a square matrix. ieigenvec computes the imaginary parts of the eigenvectors of
a square matrix. eigenval and ieigenval return nx1 matrices containing the real or imaginary
parts of the eigenvalues, sorted in decreasing order of the modulus of the complex eigenvalue.
For eigenvalues without an imaginary part, this is equivalent to sorting in decreasing order of the
absolute value of the eigenvalue. (See Mod for more info.) eigenvec and ieigenvec return nxn
matrices, where each column corresponds to an eigenvector. These are sorted in decreasing order
of the modulus of their associated complex eigenvalue.

Usage

eigenval(x)
eigenvec(x)
ieigenval(x)
ieigenvec(x)

Arguments

x the square matrix whose eigenvalues/vectors are to be calculated.

Details

Eigenvectors returned by eigenvec and ieigenvec are normalized to unit length.

See Also

eigen

Examples

A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'A')
G <- mxMatrix(values = c(0, -1, 1, -1), nrow=2, ncol=2, name='G')

model <- mxModel(A, G, name = 'model')

mxEval(eigenvec(A), model)
mxEval(eigenvec(G), model)
mxEval(eigenval(A), model)
mxEval(eigenval(G), model)
mxEval(ieigenvec(A), model)
mxEval(ieigenvec(G), model)
mxEval(ieigenval(A), model)

20 example1

mxEval(ieigenval(G), model)

example1 Bivariate twin data example from Classic Mx Manual

Description

Data set used in some of OpenMx’s examples.

Usage

data("example1")

Format

A data frame with 400 observations on the following variables.

IDNum Twin pair ID

Zygosity Zygosity of the twin pair

X1 X variable for twin 1

Y1 Y variable for twin 1

X2 X variable for twin 2

Y2 Y variable for twin 2

Details

Same as example2 but in wide format instead of tall.

Source

Classic Mx Manual.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(example1)
plot(X2 ~ X1, data=example1)

example2 21

example2 Bivariate twin data example from Classic Mx Manual

Description

Data set used in some of OpenMx’s examples.

Usage

data("example2")

Format

A data frame with 800 observations on the following variables.

IDNum ID number

TwinNum Twin ID number

Zygosity Zygosity of the twin

X X variable for twins 1 and 2

Y Y variable for twins 1 and 2

Details

Same as example1 but in tall format instead of wide.

Source

Classic Mx Manual.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(example2)
plot(Y ~ X, data=example2)

22 factorExample1

expm Matrix exponential

Description

Matrix exponential

Usage

expm(x)

Arguments

x matrix

factorExample1 Example Factor Analysis Data

Description

Data set used in some of OpenMx’s examples.

Usage

data("factorExample1")

Format

A data frame with 500 observations on the following variables.

x1

x2

x3

x4

x5

x6

x7

x8

x9

Details

This appears to be a three factor model, but perhaps with an odd loading structure.

factorScaleExample1 23

Source

Simulated

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(factorExample1)
round(cor(factorExample1), 2)

factanal(covmat=cov(factorExample1), factors=3, rotation="promax")

factorScaleExample1 Example Factor Analysis Data for Scaling the Model

Description

Data set used in some of OpenMx’s examples.

Usage

data("factorScaleExample1")

Format

A data frame with 200 observations on the following variables.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

24 factorScaleExample2

Details

This appears to be a three factor model with factor 1 loading on X1-X4, factor 2 on X5-X8, and
factor 3 on X9-X12.

Source

Simulated

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(factorScaleExample1)
round(cor(factorScaleExample1), 2)

factorScaleExample2 Example Factor Analysis Data for Scaling the Model

Description

Data set used in some of OpenMx’s examples.

Usage

data("factorScaleExample2")

Format

A data frame with 200 observations on the following variables.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

genericFitDependencies,MxBaseFitFunction-method 25

Details

This appears to be a three factor model with factor 1 loading on X1-X4, factor 2 on X5-X8, and
factor 3 on X9-X12. It differs from factorScaleExample1 in the scaling of the varialbes.

Source

Simulated

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(factorScaleExample2)
round(cor(factorScaleExample2), 2)

data(factorScaleExample2)
plot(sapply(factorScaleExample1, var), type='l', ylim=c(0, 6), lwd=3)
lines(1:12, sapply(factorScaleExample2, var), col='blue', lwd=3)

genericFitDependencies,MxBaseFitFunction-method

Add dependencies

Description

If there is an expectation, then the fitfunction should always depend on it. Hence, subclasses that
implement this method must ignore the passed-in dependencies and use "dependencies <- call-
NextMethod()" instead.

Usage

S4 method for signature 'MxBaseFitFunction'
genericFitDependencies(.Object, flatModel,
dependencies)

Arguments

.Object fit function object

flatModel flat model that lives with .Object

dependencies accumulated dependency relationships

26 HS.ability.data

HS.ability.data Holzinger and Swineford (1939) Ability data in 301 children from two
schools

Description

This classic data set contains of intelligence-test scores from 301 children on 26 distinct tests. The
data are also available in the MBESS package.

The tests cover mental speed, memory, mathematical-ability, spatial, and verbal ability as listed
below.

Usage

data("HS.ability.data")

Format

A data frame with 301 observations on the following 2 variables.

id student ID number (int)

Gender Sex (Factor w/ 2 levels “Female”,“Male”

grade Grade in school (integer 7 or 8)

agey Age in years (integer)

agem Age in months (integer)

school School attended (Factor w/2 levels “Grant-White” and “Pasteur”)

addition A speed test (numeric)

code A speed test (numeric)

counting A speed test (numeric)

straight A speed test (numeric)

wordr A memory subtest

numberr A memory subtest

figurer A memory subtest

object A memory subtest

numberf A memory subtest

figurew A memory subtest

deduct A mathematical subtest

numeric A mathematical subtest

problemr A mathematical subtest

series A mathematical subtest

arithmet A mathematical subtest

visual A spatial subtest

HS.ability.data 27

cubes A spatial subtest

paper A spatial subtest

flags A spatial subtest

paperrev A spatial subtest

flagssub A spatial subtest

general A verbal subtest

paragrap A verbal subtest

sentence A verbal subtest

wordc A verbal subtest

wordm A verbal subtest

Details

The data are from children who differ in grade (seventh- and eighth-grade) and are nested in one
of two schools (Pasteur and Grant-White). You will see it in use elsewhere, both in R (lavaan,
MBESS), and in Joreskog (1969) reporting a cfa on the Grant-White school subject subset).

The last two tests are substitute versions for other tests. paperrev (a paper form board test) can
substitute for paper and flagssub for the lozenges test flags.

Source

Holzinger, K., and Swineford, F. (1939).

References

Holzinger, K., and Swineford, F. (1939). A study in factor analysis: The stability of a bifactor
solution. Supplementary Educational Monograph, no. 48. Chicago: University of Chicago Press.
Joreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis.
Psychometrika, 34, 183-202.

Examples

data(HS.ability.data)
str(HS.ability.data)
levels(HS.ability.data$school)
plot(flags ~ flagssub, data = HS.ability.data)

28 imxConDecMatrixSlots

imxCheckMatrices imxCheckMatrices

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCheckMatrices(model)

Arguments

model model

imxCheckVariables imxCheckVariables

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCheckVariables(flatModel, namespace)

Arguments

flatModel flatModel

namespace namespace

imxConDecMatrixSlots Condense/decondense slots of an MxMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConDecMatrixSlots(object)

Arguments

object of class MxMatrix

imxConstraintRelations 29

imxConstraintRelations

imxConstraintRelations

Description

A string vector of valid constraint binary relations.

Usage

imxConstraintRelations

Format

An object of class character of length 3.

imxConvertIdentifier imxConvertIdentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertIdentifier(identifiers, modelname, namespace)

Arguments

identifiers identifiers

modelname modelname

namespace namespace

30 imxConvertSubstitution

imxConvertLabel imxConvertLabel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertLabel(label, modelname, dataname, namespace)

Arguments

label label

modelname modelname

dataname dataname

namespace namespace

imxConvertSubstitution

imxConvertSubstitution

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertSubstitution(substitution, modelname, namespace)

Arguments

substitution substitution

modelname modelname

namespace namespace

imxCreateMatrix 31

imxCreateMatrix Create a matrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCreateMatrix(.Object, labels, values, free, lbound, ubound, nrow, ncol,
byrow, name, condenseSlots, persist, ...)

Arguments

.Object the matrix

labels labels

values values

free free

lbound lbound

ubound ubound

nrow nrow

ncol ncol

byrow byrow

name name

condenseSlots condenseSlots

persist persist

... Not used.

imxDataTypes Valid types of data that can be contained by MxData

Description

Valid types of data that can be contained by MxData

Usage

imxDataTypes

Format

An object of class character of length 5.

32 imxDeparse

imxDefaultGetSlotDisplayNames

imxDefaultGetSlotDisplayNames

Description

Returns a list of display-friendly object slot names This is an internal function exported for those
people who know what they are doing.

Usage

imxDefaultGetSlotDisplayNames(x, pattern = ".*")

Arguments

x The object from which to get slot names

pattern Initial pattern to match (default of ’.*’ matches any)

imxDeparse Deparse for MxObjects

Description

Deparse for MxObjects

Usage

imxDeparse(object, indent = " ")

Arguments

object object

indent indent

imxDependentModels 33

imxDependentModels Are submodels dependence?

Description

Are submodels dependence?

Usage

imxDependentModels(model)

Arguments

model model

imxDetermineDefaultOptimizer

imxDetermineDefaultOptimizer

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxDetermineDefaultOptimizer()

Details

Returns a character, the default optimizer

imxDiff Set difference on regular types or S4 objects

Description

Set difference on regular types or S4 objects

Usage

imxDiff(a, b, slots = c("setequal", "intersect"))

Arguments

a a
b b
slots slots

34 imxEvalByName

imxDmvnorm A C implementation of dmvnorm

Description

This API is visible to permit testing. Please do not use.

Usage

imxDmvnorm(loc, mean, sigma)

Arguments

loc loc

mean mean

sigma sigma

imxEvalByName imxEvalByName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxEvalByName(name, model, compute = FALSE, show = FALSE)

Arguments

name name

model model

compute compute

show show

Details

This function should not be used in MxSummary. All summary information should be extracted
from runstate.

imxExtractMethod 35

imxExtractMethod imxExtractMethod

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxExtractMethod(model, index)

Arguments

model model

index index

imxExtractNames imxExtractNames

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxExtractNames(lst)

Arguments

lst lst

imxExtractReferences imxExtractReferences

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxExtractReferences(lst)

Arguments

lst lst

36 imxFreezeModel

imxExtractSlot imxExtractSlot

Description

Checks for and extracts a slot from the object This is an internal function exported for those people
who know what they are doing.

Usage

imxExtractSlot(x, name)

Arguments

x The object
name the name of the slot

imxFlattenModel Remove heirarchical structure from model

Description

Remove heirarchical structure from model

Usage

imxFlattenModel(model, namespace)

Arguments

model model
namespace namespace

imxFreezeModel Freeze model

Description

Remove free parameters and fit function from model.

Usage

imxFreezeModel(model)

Arguments

model model

imxGenerateLabels 37

imxGenerateLabels imxGenerateLabels

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenerateLabels(model)

Arguments

model model

imxGenerateNamespace imxGenerateNamespace

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenerateNamespace(model)

Arguments

model model

imxGenericModelBuilder

imxGenericModelBuilder

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenericModelBuilder(model, lst, name, manifestVars, latentVars, submodels,
remove, independent)

38 imxGentleResize

Arguments

model model

lst lst

name name

manifestVars manifestVars

latentVars latentVars

submodels submodels

remove remove

independent independent

imxGenSwift imxGenSwift

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenSwift(tc, sites, sfile)

Arguments

tc tc

sites sites

sfile sfile

imxGentleResize Resize an MxMatrix while preserving entries

Description

Resize an MxMatrix while preserving entries

Usage

imxGentleResize(matrix, dimnames)

Arguments

matrix the MxMatrix to resize

dimnames desired dimnames for the new matrix

imxGetSlotDisplayNames 39

Value

a resized MxMatrix

Examples

m1 <- mxMatrix(values=1:9, nrow=3, ncol=3,
dimnames=list(paste0('r',1:3), paste0('c',1:3)))

imxGentleResize(m1, dimnames=list(paste0('r',c(1,3,5)),
paste0('c',c(2,4,6))))

imxGetSlotDisplayNames

imxGetSlotDisplayNames

Description

Returns a list of display-friendly object slot names This is an internal function exported for those
people who know what they are doing.

Usage

imxGetSlotDisplayNames(object, pattern = ".*", slotList = slotNames(object),
showDots = FALSE, showEmpty = FALSE)

Arguments

object The object from which to get slot names

pattern Initial pattern to match (default of ’.*’ matches any)

slotList List of slots for which toget display names (default = slotNames(object), i.e.,
all)

showDots Include slots whose names start with ’.’ (default FALSE)

showEmpty Include slots with length-zero contents (default FALSE)

imxHasNPSOL imxHasNPSOL

Description

imxHasNPSOL

Usage

imxHasNPSOL()

40 imxIndependentModels

Value

Returns TRUE if the NPSOL proprietary optimizer is compiled and linked with OpenMx. Other-
wise FALSE.

imxHasOpenMP imxHasOpenMP

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxHasOpenMP()

imxIdentifier imxIdentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIdentifier(namespace, name)

Arguments

namespace namespace
name name

imxIndependentModels Are submodels independent?

Description

Are submodels independent?

Usage

imxIndependentModels(model)

Arguments

model model

imxInitModel 41

imxInitModel imxInitModel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxInitModel(model)

Arguments

model model

imxIsDefinitionVariable

imxIsDefinitionVariable

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIsDefinitionVariable(name)

Arguments

name name

imxIsPath imxIsPath

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIsPath(value)

Arguments

value value

42 imxLocateIndex

imxLocateFunction imxLocateFunction

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocateFunction(function_name)

Arguments

function_name function_name

imxLocateIndex imxLocateIndex

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocateIndex(model, name, referant)

Arguments

model model

name name

referant referant

imxLocateLabel 43

imxLocateLabel imxLocateLabel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocateLabel(label, model, parameter)

Arguments

label label
model model
parameter parameter

imxLog Test thread-safe output code

Description

This is the code that the backend uses to write diagnostic information to standard error. This func-
tion should not be called from R. We make it available only for testing.

Usage

imxLog(str)

Arguments

str the character string to output

imxLookupSymbolTable imxLookupSymbolTable

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLookupSymbolTable(name)

Arguments

name name

44 imxModelTypes

imxModelBuilder imxModelBuilder

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxModelBuilder(model, lst, name, manifestVars, latentVars, submodels, remove,
independent)

Arguments

model model

lst lst

name name

manifestVars manifestVars

latentVars latentVars

submodels submodels

remove remove

independent independent

Details

TODO: It probably makes sense to split this into separate methods. For example, modelAddVari-
ables and modelRemoveVariables could be their own methods. This would reduce some cut&paste
duplication.

imxModelTypes imxModelTypes

Description

A list of supported model types

Usage

imxModelTypes

Format

An object of class list of length 3.

imxMpiWrap 45

imxMpiWrap imxMpiWrap

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxMpiWrap(fun)

Arguments

fun fun

imxOriginalMx imxOriginalMx

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxOriginalMx(mx.filename, output.directory)

Arguments

mx.filename mx.filename
output.directory

output.directory

imxPPML imxPPML

Description

Potentially enable the PPML optimization for the given model.

Usage

imxPPML(model, flag = TRUE)

Arguments

model the MxModel to evaluate
flag whether to potentially enable PPML

46 imxPPML.Test.Battery

imxPPML.Test.Battery imxPPML.Test.Battery

Description

PPML can be applied to a number of special cases. This function will test the given model for all
of these special cases.

Usage

imxPPML.Test.Battery(model, verbose = FALSE, testMissingness = TRUE,
testPermutations = TRUE, testEstimates = TRUE, testFakeLatents = TRUE,
tolerances = c(0.001, 0.001, 0.001))

Arguments

model the model to test

verbose whether to print diagnostics

testMissingness

try with missingness

testPermutations

try with permutations

testEstimates examine estimates

testFakeLatents

try with fake latents

tolerances a vector of tolerances

Details

Requirements for model passed to this function: - Path-specified - Means vector must be present -
Covariance data (with data means vector) - (Recommended) All error variances should be specified
on the diagonal of the S matrix, and not as a latent with a loading only on to that manifest

Function will test across all permutations of: - Covariance vs Raw data - Means vector present vs
Means vector absent - Path versus Matrix specification - All orders of permutations of latents with
manifests

imxPPML.Test.Test 47

imxPPML.Test.Test imxPPML.Test.Test

Description

Test that PPML solutions match non-PPML solutions.

Usage

imxPPML.Test.Test(model, checkLL = TRUE, checkByName = FALSE,
tolerance = 0.5, testEstimates = TRUE)

Arguments

model the MxModel to evaluate

checkLL whether to check log likelihood

checkByName check values using their names

tolerance closeness tolerance for check

testEstimates whether to test for the same parameter estimates

Details

This is an internal function used for comparing PPML and non-PPML solutions. Generally, non-
developers will not use this function.

imxPreprocessModel imxPreprocessModel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxPreprocessModel(model)

Arguments

model model

48 imxReplaceModels

imxReplaceMethod imxReplaceMethod

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxReplaceMethod(x, name, value)

Arguments

x the thing

name name

value value

imxReplaceModels Replace parts of a model

Description

Replace parts of a model

Usage

imxReplaceModels(model, replacements)

Arguments

model model

replacements replacements

imxReplaceSlot 49

imxReplaceSlot imxReplaceSlot

Description

Checks for and replaces a slot from the object This is an internal function exported for those people
who know what they are doing.

Usage

imxReplaceSlot(x, name, value, check = TRUE)

Arguments

x object

name the name of the slot

value replacement value

check Check replacement value for validity (default TRUE)

imxReservedNames imxReservedNames

Description

Vector of reserved names

Usage

imxReservedNames

Format

An object of class character of length 6.

50 imxSeparatorChar

imxReverseIdentifier imxReverseIdentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxReverseIdentifier(model, name)

Arguments

model model
name name

imxSameType imxSameType

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSameType(a, b)

Arguments

a a
b b

imxSeparatorChar imxSeparatorChar

Description

The character between the model name and the named entity inside the model.

Usage

imxSeparatorChar

Format

An object of class character of length 1.

imxSfClient 51

imxSfClient imxSfClient

Description

As of snowfall 1.84, the snowfall supervisor process stores an internal state information in a variable
named ".sfOption" that is located in the "snowfall" namespace. The snowfall client processes store
internal state information in a variable named ".sfOption" that is located in the global namespace.

Usage

imxSfClient()

Details

As long as the previous statement is true, then the current process is a snowfall client if-and-only-if
exists(".sfOption").

imxSimpleRAMPredicate imxSimpleRAMPredicate

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSimpleRAMPredicate(model)

Arguments

model model

imxSparseInvert Sparse symmetric matrix invert

Description

This API is visible to permit testing. Please do not use.

Usage

imxSparseInvert(mat)

Arguments

mat the matrix to invert

52 imxTypeName

imxSquareMatrix imxSquareMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSquareMatrix(.Object)

Arguments

.Object .Object

imxSymmetricMatrix imxSymmetricMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSymmetricMatrix(.Object)

Arguments

.Object .Object

imxTypeName imxTypeName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxTypeName(model)

Arguments

model model

imxUntitledName 53

imxUntitledName imxUntitledName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxUntitledName()

Details

Returns a character, the name of the next untitled entity

imxUntitledNumber imxUntitledNumber

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxUntitledNumber()

Details

Increments the untitled number counter and returns its value

imxUntitledNumberReset

imxUntitledNumberReset

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxUntitledNumberReset()

Details

Resets the imxUntitledNumber counter

54 imxVariableTypes

imxUpdateModelValues imxUpdateModelValues

Description

Deprecated. This function does not handle parameters with equality constraints. Do not use.

Usage

imxUpdateModelValues(model, flatModel, values)

Arguments

model model

flatModel flat model

values values to update

imxVariableTypes imxVariableTypes

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVariableTypes

Format

An object of class character of length 2.

Details

The acceptable variable types

imxVerifyMatrix 55

imxVerifyMatrix imxVerifyMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyMatrix(.Object)

Arguments

.Object .Object

imxVerifyModel imxVerifyModel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyModel(model)

Arguments

model model

imxVerifyName imxVerifyName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyName(name, stackNumber)

Arguments

name name

stackNumber stackNumber

56 imxWlsChiSquare

imxVerifyReference imxVerifyReference

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyReference(reference, stackNumber)

Arguments

reference reference

stackNumber stackNumber

imxWlsChiSquare Calculate Chi Square for a WLS Model

Description

This is an internal function used to calculate the Chi Square distributed fit statistic for weighted
least squares models.

Usage

imxWlsChiSquare(model, J=NA)

Arguments

model An MxModel object with acov (WLS) data

J Optional pre-computed Jacobian matrix

Details

The Chi Square fit statistic for models fit with maximum likelihood depends on the difference in
model fit in minus two log likelihood units between the saturated model and the more restricted
model under investigation. For models fit with weighted least squares a different expression is
required. If J is the first derivative (Jacobian) of the mapping from the free parameters to the unique
elements of the expected covariance, means, and threholds, Jc is the orthogonal complement of J ,
W is the inverse of the full weight matrix, and e is the differnce between the sample-estimated and
model-implied covariance, means, and thresholds, then the Chi Square fit statistic is

χ2 = e′Jc(J
′
cWJc)

−1J ′ce

with e′ indicating the transpode of e. This Equation 2.20a from Browne (1984) where he showed
that this statistic is chi-square distributed with the conventional degrees of freedom.

imxWlsStandardErrors 57

Value

A named list with components

Chi numeric value of the Chi Square fit statistic.

ChiDoF degrees of freedom for the Chi Square fit statistic.

References

M. W. Browne. (1984). Asymptotically Distribution-Free Methods for the Analysis of Covariance
Structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.

imxWlsStandardErrors Calculate Standard Errors for a WLS Model

Description

This is an internal function used to calculate standard errors for weighted least squares models.

Usage

imxWlsStandardErrors(model)

Arguments

model An MxModel object with acov (WLS) data

Details

The standard errors for models fit with maximum likelihood are related to the second deriva-
tive (Hessian) of the likelihood function with respect to the free parameters. For models fit with
weighted least squares a different expression is required. If J is the first derivative (Jacobian) of
the mapping from the free parameters to the unique elements of the expected covariance, means,
and threholds, V is the weight matrix used, W is the inverse of the full weight matrix, and U =
V J(J ′V J)−1, then the asymptotic covariance matrix of the free parameters is

Acov(θ) = U ′WU

with U ′ indicating the transpode of U .

Value

A named list with components

SE The standard errors of the free parameters

Cov The full covariance matrix of the free parameters. The square root of the diagonal elements of
Cov equals SE.

Jac The Jacobian computed to obtain the standard errors.

58 jointdata

References

M. W. Browne. (1984). Asymptotically Distribution-Free Methods for the Analysis of Covariance
Structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.

F. Yang-Wallentin, K. G. Jöreskog, & H. Luo. (2010). Confirmatory Factor Analysis of Ordinal
Variables with Misspecified Models. Structural Equation Modeling, 17, 392-423.

jointdata Joint Ordinal and continuous variables to be modeled together

Description

Data set used in some of OpenMx’s examples.

Usage

data("jointdata")

Format

A data frame with 250 observations on the following variables.

z1 Continuous variable
z2 Ordinal variable with 2 levels (0, 1)
z3 Continuous variable
z4 Ordinal variable with 4 levels (0, 1, 2, 3)
z5 Ordinal variable with 3 levels (0, 1, 3)

Details

Data generated to test the joint ML algorithm thoroughly.

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(jointdata)
par(mfrow=c(2, 3))
h <- lapply(jointdata, hist)
par(mfrow=c(1, 1))

plot(z2 ~ z1, jointdata)

latentMultipleRegExample1 59

latentMultipleRegExample1

Example data for multiple regression among latent variables

Description

Data set used in some of OpenMx’s examples.

Usage

data("latentMultipleRegExample1")

Format

A data frame with 200 observations on the following variables.

X1 Factor 1 indicator

X2 Factor 1 indicator

X3 Factor 1 indicator

X4 Factor 1 indicator

X5 Factor 2 indicator

X6 Factor 2 indicator

X7 Factor 2 indicator

X8 Factor 2 indicator

X9 Factor 3 indicator

X10 Factor 3 indicator

X11 Factor 3 indicator

X12 Factor 3 indicator

Details

Factor 1 strongly predicts factor 3. Factor 2 weakly predicts factor 3.

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(latentMultipleRegExample1)
round(cor(latentMultipleRegExample1), 2)

60 latentMultipleRegExample2

latentMultipleRegExample2

Example data for multiple regression among latent variables

Description

Data set used in some of OpenMx’s examples.

Usage

data("latentMultipleRegExample2")

Format

A data frame with 200 observations on the following variables.

X1 Factor 1 indicator
X2 Factor 1 indicator
X3 Factor 1 indicator
X4 Factor 1 indicator
X5 Factor 2 indicator
X6 Factor 2 indicator
X7 Factor 2 indicator
X8 Factor 2 indicator
X9 Factor 3 indicator
X10 Factor 3 indicator
X11 Factor 3 indicator
X12 Factor 3 indicator

Details

Factor 1 strongly predicts factor 3. Factor 2 weakly predicts factor 3. Very similar to latentMulti-
pleRegExample1.

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(latentMultipleRegExample2)
round(cor(latentMultipleRegExample2), 2)

logm 61

logm Matrix logarithm

Description

Matrix logarithm

Usage

logm(x, tol = .Machine$double.eps)

Arguments

x matrix

tol tolerance

LongitudinalOverdispersedCounts

Longitudinal, Overdispersed Count Data

Description

Four-timepoint longitudinal data generated from an arbitrary Monte Carlo simulation, for 1000
simulees. The response variable is a discrete count variable. There are three time-invariant covari-
ates. The data are available in both "wide" and "long" format.

Usage

data("LongitudinalOverdispersedCounts")

Format

The "long" format dataframe, longData, has 4000 rows and the following variables (columns):

1. id: Factor; simulee ID code.

2. tiem: Numeric; represents the time metric, wave of assessment.

3. x1: Numeric; time-invariant covariate.

4. x2: Numeric; time-invariant covariate.

5. x3: Numeric; time-invariant covariate.

6. y: Numeric; the response ("dependent") variable.

The "wide" format dataset, wideData, is a numeric 1000x12 matrix containing the following vari-
ables (columns):

1. id: Simulee ID code.

62 multiData1

2. x1: Time-invariant covariate.

3. x3: Time-invariant covariate.

4. x3: Time-invariant covariate.

5. y0: Response at initial wave of assessment.

6. y1: Response at first follow-up.

7. y2: Response at second follow-up.

8. y3: Response at third follow-up.

9. t0: Time variable at initial wave of assessment (in this case, 0).

10. t1: Time variable at first follow-up (in this case, 1).

11. t2: Time variable at second follow-up (in this case, 2).

12. t3: Time variable at third follow-up (in this case, 3).

Examples

data(LongitudinalOverdispersedCounts)
head(wideData)
str(longData)
#Let's try ordinary least-squares (OLS) regression:
olsmod <- lm(y~tiem+x1+x2+x3, data=longData)
#We will see in the diagnostic plots that the residuals are poorly approximated by normality,
#and are heteroskedastic. We also know that the residuals are not independent of one another,
#because we have repeated-measures data:
plot(olsmod)
#In the summary, it looks like all of the regression coefficients are significantly different
#from zero, but we know that because the assumptions of OLS regression are violated that
#we should not trust its results:
summary(olsmod)

#Let's try a generalized linear model (GLM). We'll use the quasi-Poisson quasilikelihood
#function to see how well the y variable is approximated by a Poisson distribution
#(conditional on time and covariates):
glm.mod <- glm(y~tiem+x1+x2+x3, data=longData, family="quasipoisson")
#The estimate of the dispersion parameter should be about 1.0 if the data are
#conditionally Poisson. We can see that it is actually greater than 2,
#indicating overdispersion:
summary(glm.mod)

multiData1 Data for multiple regression

Description

Data set used in some of OpenMx’s examples.

Usage

data("multiData1")

mxAlgebra 63

Format

A data frame with 500 observations on the following variables.

x1

x2

x3

x4

y

Details

x1-x4 are predictor variables, and y is the outcome.

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(multiData1)
summary(lm(y ~ ., data=multiData1))
#results can be replicated in OpenMx.

mxAlgebra Create MxAlgebra Object

Description

This function creates a new MxAlgebra object.

Usage

mxAlgebra(expression, name = NA, dimnames = NA, ..., fixed = FALSE,
joinKey=as.character(NA), joinModel=as.character(NA))

64 mxAlgebra

Arguments

expression An R expression of OpenMx-supported matrix operators and matrix functions.

name An optional character string indicating the name of the object.

dimnames list. The dimnames attribute for the algebra: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

... Not used. Forces argument ‘fixed’ to be specified by name.

fixed If TRUE, this algebra will not be recomputed automatically when things it de-
pends on change. mxComputeOnce can be used to force it to recompute.

joinKey The name of the column in current model’s raw data that is used as a foreign key
to match against the primary key in joinModel’s raw data.

joinModel The name of the model that this matrix joins against.

Details

The mxAlgebra function is used to create algebraic expressions that operate on one or more MxMa-
trix objects. To evaluate an MxAlgebra object, it must be placed in an MxModel object, along with
all referenced MxMatrix objects and the mxFitFunctionAlgebra function. The mxFitFunctionAlgebra
function must reference by name the MxAlgebra object to be evaluated.

Note that, if the result for an MxAlgebra depends upon one or more "definition variables" (see
mxMatrix()), then the value returned after the call to mxRun() will be computed using the values
of those definition variables in the first (i.e., first before any automated sorting is done) row of the
raw dataset.

The following operators and functions are supported in mxAlgebra:

Operators

solve() Inversion

t() Transposition

^ Elementwise powering

%^% Kronecker powering

+ Addition

- Subtraction

%*% Matrix Multiplication

* Elementwise product

/ Elementwise division

%x% Kronecker product

%&% Quadratic product: pre- and post-multiply B by A and its transpose t(A), i.e: A %&% B == A
%*% B %*% t(A)

Functions

cov2cor Convert covariance matrix to correlation matrix

mxAlgebra 65

chol Cholesky Decomposition

cbind Horizontal adhesion

rbind Vertical adhesion

det Determinant

tr Trace

sum Sum

mean Arithmetic mean

prod Product

max Maximum

min Min

abs Absolute value

sin Sine

sinh Hyperbolic sine

asin Arcsine

asinh Inverse hyperbolic sine

cos Cosine

cosh Hyperbolic cosine

acos Arccosine

acosh Inverse hyperbolic cosine

tan Tangent

tanh Hyperbolic tangent

atan Arctangent

atanh Inverse hyperbolic tangent

exp Exponent

log Natural Logarithm

sqrt Square root

p2z Standard-normal quantile

logp2z Standard-normal quantile from log probabilities

lgamma Log-gamma function

lgamma1p Compute log(gamma(x+1)) accurately for small x

eigenval Eigenvalues of a square matrix. Usage: eigenval(x); eigenvec(x); ieigenval(x); ieigen-
vec(x)

rvectorize Vectorize by row

cvectorize Vectorize by column

vech Half-vectorization

vechs Strict half-vectorization

vech2full Inverse half-vectorization

66 mxAlgebra

vechs2full Inverse strict half-vectorization

vec2diag Create matrix from a diagonal vector (similar to diag)

diag2vec Extract diagonal from matrix (similar to diag)

expm Matrix Exponential

logm Matrix Logarithm

omxExponential Matrix Exponential

omxMnor Multivariate Normal Integration

omxAllInt All cells Multivariate Normal Integration

omxNot Perform unary negation on a matrix

omxAnd Perform binary and on two matrices

omxOr Perform binary or on two matrices

omxGreaterThan Perform binary greater on two matrices

omxLessThan Perform binary less than on two matrices

omxApproxEquals Perform binary equals to (within a specified epsilon) on two matrices

omxSelectRows Filter rows from a matrix

omxSelectCols Filter columns from a matrix

omxSelectRowsAndCols Filter rows and columns from a matrix

There are also several multiargument functions usable in MxAlgebras, which apply themselves
elementwise to the matrix provided as their first argument. These functions have slightly different
usage from their R counterparts. Their result is always a matrix with the same dimensions as that
provided for their first argument. Values must be provided for ALL arguments of these functions,
in order. Provide zeroes as logical values of FALSE, and non-zero numerical values as logical values
of TRUE. For most of these functions, OpenMx cycles over values of arguments other than the first,
by column (i.e., in column-major order), to the length of the first argument. Notable exceptions are
the log, log.p, and lower.tail arguments to probability-distribution-related functions, for which
only the [1,1] element is used. It is recommended that all arguments after the first be either (1)
scalars, or (2) matrices with the same dimensions as the first argument.

Function Arguments Notes
dbeta x,shape1,shape2,ncp,log The algorithm for the non-central beta distribution is used for non-negative values of ncp. Negative ncp values are ignored, and the algorithm for the central beta distribution is used.
pbeta x,shape1,shape2,ncp,lower.tail,log.p Values of ncp are handled as with dbeta().

besselJ & besselY x,nu
besselI & besselK x,nu,expon.scaled Note that OpenMx does cycle over the elements of expon.scaled.

Value

Returns a new MxAlgebra object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

MxAlgebra-class 67

See Also

MxAlgebra for the S4 class created by mxAlgebra. mxFitFunctionAlgebra for an objective function
which takes an MxAlgebra or MxMatrix object as the function to be minimized. MxMatrix and
mxMatrix for objects which may be entered in the expression argument and the function that
creates them. More information about the OpenMx package may be found here.

Examples

A <- mxMatrix("Full", nrow = 3, ncol = 3, values=2, name = "A")

Simple example: algebra B simply evaluates to the matrix A
B <- mxAlgebra(A, name = "B")

Compute A + B
C <- mxAlgebra(A + B, name = "C")

Compute sin(C)
D <- mxAlgebra(sin(C), name = "D")

Make a model and evaluate the mxAlgebra object 'D'
A <- mxMatrix("Full", nrow = 3, ncol = 3, values=2, name = "A")
model <- mxModel(model="AlgebraExample", A, B, C, D)
fit <- mxRun(model)
mxEval(D, fit)

Numbers in mxAlgebras are upgraded to 1x1 matrices
Example of Kronecker powering (%^%) and multiplication (%*%)
A <- mxMatrix(type="Full", nrow=3, ncol=3, value=c(1:9), name="A")
m1 <- mxModel(model="kron", A, mxAlgebra(A %^% 2, name="KroneckerPower"))
mxRun(m1)$KroneckerPower

Running kron
mxAlgebra 'KroneckerPower'
$formula: A %^% 2
$result:
[,1] [,2] [,3]
[1,] 1 16 49
[2,] 4 25 64
[3,] 9 36 81

MxAlgebra-class MxAlgebra Class

Description

MxAlgebra is an S4 class. An MxAlgebra object is a named entity. New instances of this class can
be created using the function mxAlgebra.

68 MxAlgebraFormula-class

Details

The MxAlgebra class has the following slots:

name - The name of the object
formula - The R expression to be evaluated

result - a matrix with the computation result

The ‘name’ slot is the name of the MxAlgebra object. Use of MxAlgebra objects in the mxConstraint
function or an objective function requires reference by name.

The ‘formula’ slot is an expression containing the expression to be evaluated. These objects are
operated on or related to one another using one or more operations detailed in the mxAlgebra help
file.

The ‘result’ slot is used to hold the results of computing the expression in the ‘formula’ slot. If the
containing model has not been executed, then the ‘result’ slot will hold a 0 x 0 matrix. Otherwise
the slot will store the computed value of the algebra using the final estimates of the free parameters.

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in
the mxAlgebra document for more information.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxAlgebra, mxMatrix, MxMatrix

MxAlgebraFormula-class

MxAlgebraFormula

Description

This is an internal class for the formulas used in mxAlgebra calls.

mxAlgebraFromString 69

mxAlgebraFromString Create MxAlgebra object from a string

Description

Create MxAlgebra object from a string

Usage

mxAlgebraFromString(algString, name = NA, dimnames = NA, ...)

Arguments

algString the character string to convert into an R expression

name An optional character string indicating the name of the object.

dimnames list. The dimnames attribute for the algebra: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

... Not used. Forces any remaining arguments to be specified by name.

See Also

mxAlgebra

Examples

A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'A')
B <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'B')
model <- mxModel(A, B, name = 'model',

mxAlgebraFromString("A * (B + A)", name = 'test'))
model <- mxRun(model)
model[['test']]$result
A$values * (B$values + A$values)

mxAlgebraObjective DEPRECATED: Create MxAlgebraObjective Object

70 mxAlgebraObjective

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use MxFitFunctionAlgebra() instead. As a temporary workaround, MxAlgebraObjective
returns a list containing a NULL MxExpectation object and an MxFitFunctionAlgebra object.

All occurrences of

mxAlgebraObjective(algebra, numObs = NA, numStats = NA)

Should be changed to

mxFitFunctionAlgebra(algebra, numObs = NA, numStats = NA)

Arguments

algebra A character string indicating the name of an MxAlgebra or MxMatrix object to
use for optimization.

numObs (optional) An adjustment to the total number of observations in the model.

numStats (optional) An adjustment to the total number of observed statistics in the model.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxFitFunctionAlgebra
as shown in the example below.

Fit functions are functions for which free parameter values are chosen such that the value of the ob-
jective function is minimized. While the other fit functions in OpenMx require an expectation func-
tion for the model, the mxAlgebraObjective function uses the referenced MxAlgebra or MxMatrix
object as the function to be minimized.

If a model’s primary objective function is a mxAlgebraObjective objective function, then the ref-
erenced algebra in the objective function must return a 1 x 1 matrix (when using OpenMx’s default
optimizer). There is no restriction on the dimensions of an objective function that is not the primary,
or ‘topmost’, objective function.

To evaluate an algebra objective function, place the following objects in a MxModel object: a
MxAlgebraObjective, MxAlgebra and MxMatrix entities referenced by the MxAlgebraObjective,
and optional MxBounds and MxConstraint entities. This model may then be evaluated using the
mxRun function. The results of the optimization may be obtained using the mxEval function on the
name of the MxAlgebra, after the model has been run.

Value

Returns a list containing a NULL MxExpectation object and an MxFitFunctionAlgebra object.
MxFitFunctionAlgebra objects should be included with models with referenced MxAlgebra and
MxMatrix objects.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

mxAvailableOptimizers 71

See Also

mxAlgebra to create an algebra suitable as a reference function to be minimized. More information
about the OpenMx package may be found here.

Examples

Create and fit a very simple model that adds two numbers using mxFitFunctionAlgebra

library(OpenMx)

Create a matrix 'A' with no free parameters
A <- mxMatrix('Full', nrow = 1, ncol = 1, values = 1, name = 'A')

Create an algebra 'B', which defines the expression A + A
B <- mxAlgebra(A + A, name = 'B')

Define the objective function for algebra 'B'
objective <- mxFitFunctionAlgebra('B')

Place the algebra, its associated matrix and
its objective function in a model
tmpModel <- mxModel(model="Addition", A, B, objective)

Evalulate the algebra
tmpModelOut <- mxRun(tmpModel)

View the results
tmpModelOut$output$minimum

mxAvailableOptimizers mxAvailableOptimizers

Description

List the Optimizers available in this version, e.g. "SLSQP" "CSOLNP"

Usage

mxAvailableOptimizers()

Details

note for advanced users: Special-purpose optimizers like Newton-Raphson or EM are not included
in this list.

Value

- list of valid Optimizer names

72 MxBaseNamed-class

See Also

- mxOption(model, "Default optimizer")

Examples

mxAvailableOptimizers()

MxBaseExpectation-class

MxBaseExpectation

Description

The virtual base class for all expectations. Expectations contain enough information to generate
simulated data. This is an internal class and should not be used directly.

See Also

mxExpectationNormal, mxExpectationRAM, mxExpectationLISREL, mxExpectationStateSpace,
mxExpectationBA81

MxBaseFitFunction-class

MxBaseFitFunction

Description

The virtual base class for all fit functions. This is an internal class and should not be used directly.

See Also

mxFitFunctionAlgebra, mxFitFunctionML, mxFitFunctionMultigroup, mxFitFunctionR, mxFitFunc-
tionWLS, mxFitFunctionRow, mxFitFunctionGREML

MxBaseNamed-class MxBaseNamed

Description

This is an internal class and should not be used directly. It is the base class for named entities. Fit
functions, expectations, and computes contain this class.

MxBaseObjectiveMetaData-class 73

MxBaseObjectiveMetaData-class

MxBaseObjectiveMetaData

Description

This is an internal class and should not be used directly. It is the virtual base class for all objective
functions meta-data

mxBounds Create MxBounds Object

Description

This function creates a new MxBounds object.

Usage

mxBounds(parameters, min = NA, max = NA)

Arguments

parameters A character vector indicating the names of the parameters on which to apply
bounds.

min A numeric value for the lower bound. NA means use default value.

max A numeric value for the upper bound. NA means use default value.

Details

Creates a set of boundaries or limits for a parameter or set of parameters. Parameters may be any
free parameter or parameters from an MxMatrix object. Parameters may be referenced either by
name or by referring to their position in the ’spec’ matrix of an MxMatrix object.

Minima and maxima may be specified as scalar numeric values.

Value

Returns a new MxBounds object. If used as an argument in an MxModel object, the parameters
referenced in the ’parameters’ argument must also be included prior to optimization.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

74 MxBounds-class

See Also

MxBounds for the S4 class created by mxBounds. MxMatrix and mxMatrix for free parameter
specification. More information about the OpenMx package may be found here.

Examples

#Create lower and upper bounds for parameters 'A' and 'B'
bounds <- mxBounds(c('A', 'B'), 3, 5)

#Create a lower bound of zero for a set of variance parameters
varianceBounds <- mxBounds(c('Var1', 'Var2', 'Var3'), 0)

MxBounds-class MxBounds Class

Description

MxBounds is an S4 class. New instances of this class can be created using the function mxBounds.

Details

The MxBounds class has the following slots:

min - The lower bound
max - The upper bound

parameters - The vector of parameter names

The ’min’ and ’max’ slots hold scalar numeric values for the lower and upper bounds on the list of
parameters, respectively.

Parameters may be any free parameter or parameters from an MxMatrix object. Parameters may be
referenced either by name or by referring to their position in the ’spec’ matrix of an MxMatrix ob-
ject. To affect an estimation or optimization, an MxBounds object must be included in an MxModel
object with all referenced MxAlgebra and MxMatrix objects.

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in
the mxBounds document for more information.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxBounds for the function that creates MxBounds objects. MxMatrix and mxMatrix for free pa-
rameter specification. More information about the OpenMx package may be found here.

MxCharOrList-class 75

MxCharOrList-class A character, list or NULL

Description

A character, list or NULL

MxCharOrNumber-class A character or integer

Description

A character or integer

mxCheckIdentification Check that a model is locally identified

Description

Use the dimension of the null space of the Jacobian to determine whether or not a model is identified
local to its current parameter values. The output is a list of the the identification status, the Jacobian,
and which parameters are not identified.

Usage

mxCheckIdentification(model, details=TRUE)

Arguments

model A MxModel object or list of MxModel objects.

details logical.

Details

The mxCheckIdentification function is used to check that a model is identified. That is, the function
will tell you if the model has a unique solution in parameter space. The function is most useful when
applied to either (a) a model that has been run and had some NA standard errors, or (b) a model that
has not been run but has reasonable starting values. In the former situation, mxCheckIdentification
is used as a diagnostic after a problem was indicated. In the latter situation, mxCheckIdentification
is used as a sanity check.

The method uses the Jacobian of the model expected means and the unique elements of the expected
covariance matrix with respect to the free parameters. It is the first derivative of the mapping
between the free parameters and the sufficient statistics for the Normal distribution. The method

76 mxCheckIdentification

does not depend on data, but does depend on the current values of the free parameters. Thus, it
only provides local identification, not global identification. Because the method does not depend
on data, the model still could be empirically unidentified due to missing data.

The Jacobian is evaluated numerically and generally takes a few seconds, but much less than a
minute.

The identification may not be accurate for model where definition variables are used. Currently,
only the first row of the definition variable is evaluated.

When TRUE, the ’details’ argument provides the names of the non-identified parameters. Other-
wise, only the status and Jacobian are returned.

Value

A named list with components

status logical. TRUE if the model is locally identified; otherwise FALSE.

jacobian matrix. The numerically evaluated Jacobian.

non_identified_parameters vector. The free parameter names that are not identified

References

Bekker, P.A., Merckens, A., Wansbeek, T.J. (1994). Identification, Equivalent Models and Com-
puter Algebra. Academic Press: Orlando, FL.

Bollen, K. A. & Bauldry, S. (2010). Model Identification and Computer Algebra. Sociological
Methods & Research, 39, p. 127-156.

See Also

mxModel

Examples

require(OpenMx)

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- "G1"
model2 <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents[1], to=manifests[1:5]),
mxPath(from = manifests, arrows = 2, lbound=1e-6),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs=500)

)
fit2 <- mxRun(model2)

id2 <- mxCheckIdentification(fit2)
id2$status

mxCI 77

The model is locally identified

Build a model from the solution of the previous one
but now the factor variance is also free
model2n <- mxModel(fit2, name="Non Identified Two Factor",

mxPath(from=latents[1], arrows=2, free=TRUE, values=1)
)

mid2 <- mxCheckIdentification(model2n)
mid2$non_identified_parameters
The factor loadings and factor variance
are not identified.

mxCI Create mxCI Object

Description

This function creates a new MxCI object, which are used to estimate likelihood-based confidence
intervals.

Usage

mxCI(reference, interval = 0.95, type=c("both", "lower", "upper"))

Arguments

reference A character vector of free parameters, mxMatrices, mxMatrix elements and mx-
Algebras on which confidence intervals are to be estimated, listed by name.

interval A scalar numeric value indicating the confidence interval to be estimated. Must
be between 0 and 1. Defaults to 0.95.

type A character string indicating whether the upper, lower or both confidence limits
are returned. Defaults to "both".

Details

The mxCI function creates MxCI objects, which can be used as arguments in MxModel objects.
When models containing MxCI objects are optimized using mxRun with the ‘intervals’ argument
set to TRUE, likelihood-based confidence intervals are returned. The likelihood-based confidence
intervals calculated by MxCI objects are symmetric with respect to the change in likelihood in
either direction, and are not necessarily symmetric around the parameter estimate. Estimation of
confidence intervals requires both that an MxCI object be included in the model and that the ‘inter-
vals’ argument of the mxRun function is set to TRUE. When estimated, confidence intervals can be
accessed in the model output at $output$confidenceIntervals or by using summary on a fitted
MxModel object.

A typical use case is when a parameter estimate is obtained that is at or near a lower bound. In this
case, there is no point in computing the lower part of the CI. Only the upper bound is needed. In all

78 mxCI

cases, a two-sided hypothesis test is assumed. Therefore, the upper bound will exclude 2.5% (for
interval=0.95) even though only one bound is requested. To obtain a one-sided CI for a one-sided
hypothesis test, interval=0.90 will obtain a 95% confidence interval.

The likelihood-based confidence intervals returned using MxCI are obtained by increasing or de-
creasing the value of each parameter until the -2 log likelihood of the model increases by an amount
corresponding to the requested interval. The confidence limit specified by the ‘interval’ argument is
transformed into a corresponding difference in the model -2 log likelihood based on the likelihood
ratio test. Thus, a requested confidence interval for a parameter will first determine the correspond-
ing quantile from the chi-squared distribution with one degree of freedom (a value of 3.841459
when a 95 percent confidence interval is requested). That quantile will be populated into either the
‘lowerdelta’ slot, the ‘upperdelta’ slot, or both in the output MxCI object.

Estimation of likelihood-based confidence intervals begins after optimization has been completed,
with each parameter moved in the direction(s) specified in the ‘type’ argument until the specified
increase in -2 log likelihood is reached. All other free parameters are left free for this stage of
optimization. This process repeats until all confidence intervals have been calculated. The calcu-
lation of likelihood-based confidence intervals can be computationally intensive, and may add a
significant amount of time to model estimation when many confidence intervals are requested.

Multiple parameters, MxMatrices and MxAlgebras may be listed in the ‘reference’ argument. In-
dividual elements of MxMatrices and MxAlgebras may be listed as well, using the syntax “ma-
trix[row,col]” (see Extract for more information). Only scalar numeric values for the ‘interval’
argument are supported. Users requesting different confidence ranges for different parameters must
use separate mxCI statements. MxModel objects can hold multiple MxCI objects, but only one
confidence interval may be requested per named-entity.

Confidence interval estimation may result in model non-convergence at the confidence limit. Sep-
arate optimizer messages may be passed for each confidence limit. This has no impact on the
parameter estimates themselves, but may indicate a problem with the referenced confidence limit.
Model non-convergence for a particular confidence limit may indicate parameter interdependence
or the influence of a parameter boundary.

These error messages and their meanings are listed in the help for mxSummary

The validity of a confidence limit can be checked by running a model with the appropriate parameter
fixed at the confidence limit in question. If the confidence limit is valid, the -2 log likelihoods of
these two models should differ by the specified chi-squared criterion (as set using the ‘lowerdelta’
or ‘upperdelta’ slots in the MxCI object (you can choose which of these to set via the type parameter
of mxCI).

Value

Returns a new MxCI object. If used as an argument in an MxModel object, the parameters, MxMa-
trices and MxAlgebras listed in the ’reference’ argument must also be included prior to optimization.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation. Addi-
tional support for mxCI() can be found on the OpenMx wiki at http://openmx.psyc.virginia.edu/wiki.

MxCI-class 79

See Also

MxCI for the S4 class created by mxCI. mxComputeConfidenceInterval is the internal compute
plan that implements the algorithm. MxMatrix and mxMatrix for free parameter specification.
More information about the OpenMx package may be found here.

Examples

library(OpenMx)

generate data
covariance <- matrix(c(1.0, 0.5, 0.5, 1.0),

nrow=2,
dimnames=list(c("a", "b"), c("a", "b")))

data <- mxData(covariance, "cov", numObs=100)

create an expected covariance matrix
expect <- mxMatrix("Symm", 2, 2,

free=TRUE,
values=c(1, .5, 1),
labels=c("var1", "cov12", "var2"),
name="expectedCov")

request 95 percent confidence intervals
ci <- mxCI(c("var1", "cov12", "var2"))

specify the model
model <- mxModel(model="Confidence Interval Example",

data, expect, ci,
mxMLObjective("expectedCov", dimnames=c("a", "b")))

run the model
results <- mxRun(model, intervals=TRUE)

view confidence intervals
print(summary(results)$CI)

view all results
summary(results)

MxCI-class MxCI Class

Description

MxCI is an S4 class. An MxCI object is a named entity. New instances of this class can be created
using the function mxCI. MxCI objects may be used as arguments in the mxModel function.

80 mxCompare

Details

The MxCI class has the following slots:

reference - The name of the object
lowerdelta - Either a matrix or a data frame
upperdelta - A vector for means, or NA if missing

The reference slot contains a character vector of named free parameters, MxMatrices and MxAlge-
bras on which confidence intervals are desired. Individual elements of MxMatrices and MxAlgebras
may be listed as well, using the syntax “matrix[row,col]” (see Extract for more information).

The lowerdelta and upperdelta slots give the changes in likelihoods used to define the confidence
interval. The upper bound of the likelihood-based confidence interval is estimated by increasing the
parameter estimate, leaving all other parameters free, until the model -2 log likelihood increased
by ‘upperdelta’. The lower bound of the confidence interval is estimated by decreasing the pa-
rameter estimate, leaving all other parameters free, until the model -2 log likelihood increased by
‘lowerdata’.

Likelihood-based confidence intervals may be specified by including one or more MxCI objects
in an MxModel object. Estimation of confidence intervals requires model optimization using the
mxRun function with the ‘intervals’ argument set to TRUE. The calculation of likelihood-based
confidence intervals can be computationally intensive, and may add a significant amount of time to
model estimation when many confidence intervals are requested.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxCI for creating MxCI objects. More information about the OpenMx package may be found here.

mxCompare Assign Model Parameters

Description

Compare the fit of a model or set of models to a reference model or set of reference models. The
output is a table with one row per model comparison.

Usage

mxCompare(base, comparison, ..., all = FALSE)

mxCompare 81

Arguments

base A MxModel object or list of MxModel objects.

comparison A MxModel object or list of MxModel objects.

... Not used. Forces remaining arguments to be specified by name.

all A boolean value on whether to compare all bases with all comparisons. Defaults
to FALSE.

Details

The mxCompare function is used to compare the fit of one or more MxMatrix objects with output
to one or more comparison models. Fit statistics for the comparison model or models are subtracted
from the fit statistics for the base model or models. All models included in the ‘base’ argument are
also listed without comparison (compared to a <NA> model) to present their raw fit statistics.

Model comparisons are made by subtracting the fit of the comparison model from the fit of a base
model. To make sure that the differences between models are positive and yield p-values for like-
lihood ratio tests, the model or models listed in the ‘base’ argument should be more saturated (i.e.,
more estimated parameters and fewer degrees of freedom) than models listed in the ‘comparison’
argument. If a comparison is made where the comparison model has a higher minus 2 log likelihood
(-2LL) than the base model, then the difference in their -2LLs will be negative. P-values for likeli-
hood ratio tests will not be reported when either the -2LL or degrees of freedom for the comparison
are negative.

When multiple models are included in both the ‘base’ and ‘comparison’ arguments, then compar-
isons are made between the two lists of models based on the value of the ‘all’ argument. If ‘all’
is set to FALSE (default), then the first model in the ‘base’ list is compared to the first model in
the ‘comparison’ list, second with second, and so on. If there are an unequal number of ‘base’ and
‘comparison’ models, then the shorter list of models is repeated to match the length of the longer
list. For example, comparing base models ‘B1’ and ‘B2’ with comparison models ‘C1’, ‘C2’ and
‘C3’ will yield three comparisons: ‘B1’ with ‘C1’, ‘B2’ with ‘C2’, and ‘B1’ with ‘C3’. Each of
those comparisons are prefaced by a comparison between the base model and a missing comparison
model to present the fit of the base model.

If ‘all’ is set to TRUE, all possible comparisons between base and comparison models are made,
and one entry is made for each base model. All comparisons involving the first model in ‘base’ are
made first, followed by all comparisons with the second ‘base’ model, and so on. When there are
multiple models in either the ‘base’ or ‘comparison’ arguments but not both, then the ‘all’ argument
does not affect the set of comparisons made.

The following columns appear in the output:

base Name of the base model.

comparison Name of the comparison model. Is <NA> for the first

ep Estimated parameters of the comparison model.

minus2LL Minus 2*log-likelihood of the comparison model. If the comparison model is <NA>,
then the minus 2*log-likelihood of the base model is given.

df Degrees in freedom of the comparison model. If the comparison model is <NA>, then the
degrees of freedom of the base model is given.

82 mxCompare

AIC Akaike’s Information Criterion for the comparison model. If the comparison model is <NA>,
then the AIC of the base model is given.

diffLL Difference in minus 2*log-likelihoods of the base and comparison models. Will be positive
when base model -2LL is higher than comparison model -2LL.

diffdf Difference in degrees of freedoms of the base and comparison models. Will be positive
when base model DF is lower than comparison model DF (base model estimated parameters
is higher than comparison model estimated parameters)

p P-value for likelihood ratio test based on diffLL and diffdf values.

The mxCompare function will give a p-value for any comparison in which both ‘diffLL’ and ‘diffdf’
are non-negative. However, this p-value is based on the assumptions of the likelihood ratio test,
specifically that the two models being compared are nested. The likelihood ratio test and associated
p-values are not valid when the comparison model is not nested in the referenced base model.

Use options(’digits’ = N) to set the minimum number of significant digits to be printed in values.
The mxCompare function does not directly accept a digits argument, and depends on the value of
the ’digits’ option.

See Also

mxModel; options (use options(’mxOptions’) to see all the OpenMx-specific options)

Examples

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G1")
model1 <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents, to=manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)

)

fit1 <- mxRun(model1)

latents <- c("G1", "G2")
model2 <- mxModel(model="Two Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents[1], to=manifests[1:3]),
mxPath(from = latents[2], to=manifests[4:5]),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs=500)

)
fit2 <- mxRun(model2)

MxCompute-class 83

mxCompare(fit1, fit2)

vary precision of the output
oldPrecision = as.numeric(options('digits'))
options('digits' = 1)
mxCompare(fit1, fit2)
options('digits' = oldPrecision)

MxCompute-class MxCompute

Description

This is an internal class and should not be used directly.

mxComputeConfidenceInterval

Find likelihood-based confidence intervals

Description

There are various ways to pose an equivalent profile likelihood problem. For good performance, it
is essential to tailor the problem to the abilities of the optimizer. The problem can be posed without
the use of constraints. This is how the code worked in version 2.1 and prior. Although this way
of posing the problem creates an ill-conditioned Hessian, NPSOL is somehow able to isolate the
poor conditioning from the rest of the problem and optimize it quickly. However, SLSQP is not so
clever and exhibits very poor performance. For SLSQP, good performance is contingent on posing
the problem using an inequality constraint on the fit.

Usage

mxComputeConfidenceInterval(plan, ..., freeSet = NA_character_,
verbose = 0L, engine = NULL, fitfunction = "fitfunction",
tolerance = NA_real_, constraintType = "ineq")

Arguments

plan compute plan to optimize the model

... Not used. Forces remaining arguments to be specified by name.

freeSet names of matrices containing free variables

verbose level of debugging output

engine deprecated

fitfunction The deviance function to constrain with an inequality constraint.

tolerance deprecated

constraintType one of c(’ineq’, ’eq’, ’both’, ’none’)

84 mxComputeEM

Details

Geometrically, SLSQP performs best on smooth likelihood surfaces with smooth derivatives. In
the profile CI problem, the distance limit on the deviance is like a wall. Walls do not have smooth
derivatives but are more like a step function. The point of mxConstraint is to isolate the parts of a
problem that are geometrically non-smooth. Constraints are dealt with specially in SLSQP to best
accommodate their sharp geometry.

For the default compute plan, the choice of constraintType is determined by which optimizer is
selected.

References

Pek, J. & Wu, H. (in press). Profile likelihood-based confidence intervals and regions for structural
equation models. Psychometrica.

mxComputeDefault Default compute plan

Description

The default compute plan is approximately as follows: mxComputeSequence(list(mxComputeGradientDescent(),mxComputeConfidenceInterval(), mxComputeNumericDeriv(),mxComputeStandardError(), mxComputeReportDeriv()))

Usage

mxComputeDefault(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

mxComputeEM Fit a model using DLR’s (1977) Expectation-Maximization (EM) al-
gorithm

Description

The EM algorithm constitutes the following steps: Start with an initial parameter vector. Predict the
missing data to form a completed data model. Optimize the completed data model to obtain a new
parameter vector. Repeat these steps until convergence criteria are met.

Usage

mxComputeEM(expectation, predict, mstep, observedFit = "fitfunction", ...,
maxIter = 500L, tolerance = 1e-09, verbose = 0L,
freeSet = NA_character_, accel = "varadhan2008",
information = NA_character_, infoArgs = list())

mxComputeEM 85

Arguments

expectation a vector of expectation names

predict what to predict from the observed data (available options depend on the expec-
tation)

mstep a compute plan to optimize the completed data model

observedFit the name of the observed data fit function (defaults to "fitfunction")

... Not used. Forces remaining arguments to be specified by name.

maxIter maximum number of iterations

tolerance optimization is considered converged when the maximum relative change in fit
is less than tolerance

verbose level of diagnostic output

freeSet names of matrices containing free variables

accel name of acceleration method ("varadhan2008" or "ramsay1975")

information name of information matrix approximation method

infoArgs arguments to control the information matrix method

Details

This compute plan does not work with any and all expectations. It requires a special kind of expec-
tation that can predict its missing data to create a completed data model.

The EM algorithm does not produce a parameter covariance matrix for standard errors. S-EM, an
implementation of Meng & Rubin (1991), is included.

Ramsay (1975) was recommended in Bock, Gibbons, & Muraki (1988).

References

Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied
Psychological Measurement, 6(4), 431-444.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1-38.

Meng, X.-L. & Rubin, D. B. (1991). Using EM to obtain asymptotic variance-covariance matrices:
The SEM algorithm. Journal of the American Statistical Association, 86 (416), 899-909.

Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40
(3), 337-360.

Varadhan, R. & Roland, C. (2008). Simple and globally convergent methods for accelerating the
convergence of any EM algorithm. Scandinavian Journal of Statistics, 35, 335-353.

86 mxComputeGradientDescent

mxComputeGradientDescent

Optimize parameters using a gradient descent optimizer

Description

This optimizer does not require analytic derivatives of the fit function. The open-source version
of OpenMx offers 2 choices, SLSQP (from the NLOPT collection) and CSOLNP. The proprietary
version of OpenMx offers the choice of three optimizers: SLSQP, CSOLNP, and NPSOL.

Usage

mxComputeGradientDescent(freeSet = NA_character_, ..., engine = NULL,
fitfunction = "fitfunction", verbose = 0L, tolerance = NA_real_,
useGradient = NULL, warmStart = NULL, nudgeZeroStarts = TRUE,
maxMajorIter = NULL, gradientAlgo = mxOption(NULL, "Gradient algorithm"),
gradientIterations = mxOption(NULL, "Gradient iterations"),
gradientStepSize = 1e-05)

Arguments

freeSet names of matrices containing free variables

... Not used. Forces remaining arguments to be specified by name.

engine specific ’NPSOL’, ’SLSQP’, or ’CSOLNP’

fitfunction name of the fitfunction (defaults to ’fitfunction’)

verbose level of debugging output

tolerance how close to the optimum is close enough (also known as the optimality toler-
ance)

useGradient whether to use the analytic gradient (if available)

warmStart a Cholesky factored Hessian to use as the NPSOL Hessian starting value (pre-
conditioner)

nudgeZeroStarts

whether to nudge any zero starting values prior to optimization (default TRUE)

maxMajorIter maximum number of major iterations

gradientAlgo one of c(’forward’,’central’)

gradientIterations

number of Richardson iterations to use for the gradient (default 2)

gradientStepSize

the step size for the gradient (default 1e-5)

mxComputeHessianQuality 87

Details

One of the most important options for SLSQP is gradientAlgo. By default, the forward method is
used. This method requires gradientIterations function evaluations per parameter per gradient.
This method often works well enough but can result in imprecise gradient estimations that may not
allow SLSQP to fully optimize a given model. If code red is reported then you are encouraged
to try the central method. The central method requires 2 times gradientIterations function
evaluations per parameter per gradient, but it can be much more accurate.

References

Luenberger, D. G. & Ye, Y. (2008). Linear and nonlinear programming. Springer.

Examples

data(demoOneFactor)
factorModel <- mxModel(name ="One Factor",

mxMatrix(type="Full", nrow=5, ncol=1, free=FALSE, values=0.2, name="A"),
mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U"),
mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),

mxExpectationNormal(covariance="R", dimnames=names(demoOneFactor)),
mxFitFunctionML(),

mxData(observed=cov(demoOneFactor)*499/500, type="cov", numObs=500),
mxComputeSequence(steps=list(
mxComputeGradientDescent(),
mxComputeNumericDeriv(),
mxComputeStandardError(),
mxComputeHessianQuality()
)))

factorModelFit <- mxRun(factorModel)
factorModelFit$output$conditionNumber # 29.5

mxComputeHessianQuality

Compute the quality of the Hessian

Description

Tests whether the Hessian is positive definite (model$output$infoDefinite) and, if so, computes the
approximate condition number (model$output$conditionNumber). See Luenberger & Ye (2008)
Second Order Test (p. 190) and Condition Number (p. 239).

Usage

mxComputeHessianQuality(freeSet = NA_character_, ..., verbose = 0L)

88 mxComputeIterate

Arguments

freeSet names of matrices containing free variables

... Not used. Forces remaining arguments to be specified by name.

verbose Level of debugging output.

Details

The condition number is approximated by norm(H) ∗ norm(H−1) where H is the Hessian. The
norm is either the 1- or infinity-norm (both obtain the same result due to symmetry).

References

Luenberger, D. G. & Ye, Y. (2008). Linear and nonlinear programming. Springer.

mxComputeIterate Repeatedly invoke a series of compute objects until change is less than
tolerance

Description

One step (typically the last) must compute the fit or maxAbsChange.

Usage

mxComputeIterate(steps, ..., maxIter = 500L, tolerance = 1e-09,
verbose = 0L, freeSet = NA_character_)

Arguments

steps a list of compute objects

... Not used. Forces remaining arguments to be specified by name.

maxIter the maximum number of iterations

tolerance iterates until maximum relative change is less than tolerance

verbose level of debugging output

freeSet Names of matrices containing free variables.

mxComputeNewtonRaphson 89

mxComputeNewtonRaphson

Optimize parameters using the Newton-Raphson algorithm

Description

This optimizer requires analytic 1st and 2nd derivatives of the fit function. Comprehensive diagnos-
tics are available by increasing the verbose level.

Usage

mxComputeNewtonRaphson(freeSet = NA_character_, ...,
fitfunction = "fitfunction", maxIter = 100L, tolerance = 1e-12,
verbose = 0L)

Arguments

freeSet names of matrices containing free variables

... Not used. Forces remaining arguments to be specified by name.

fitfunction name of the fitfunction (defaults to ’fitfunction’)

maxIter maximum number of iterations

tolerance optimization is considered converged when the maximum relative change in fit
is less than tolerance

verbose level of debugging output

References

Luenberger, D. G. & Ye, Y. (2008). Linear and nonlinear programming. Springer.

mxComputeNothing Compute nothing

Description

Note that this compute plan actually does nothing whereas mxComputeOnce("expectation", "nothing")
may remove the prediction of an expectation.

Usage

mxComputeNothing()

90 mxComputeNumericDeriv

mxComputeNumericDeriv Numerically estimate Hessian using Richardson extrapolation

Description

For N free parameters, Richardson extrapolation requires (iterations * (N^2 + N)) function evalua-
tions. The implementation is closely based on the numDeriv R package.

Usage

mxComputeNumericDeriv(freeSet = NA_character_, ...,
fitfunction = "fitfunction", parallel = TRUE, stepSize = 1e-04,
iterations = 4L, verbose = 0L, knownHessian = NULL,
checkGradient = TRUE)

Arguments

freeSet names of matrices containing free variables

... Not used. Forces remaining arguments to be specified by name.

fitfunction name of the fitfunction (defaults to ’fitfunction’)

parallel whether to evaluate the fitfunction in parallel (defaults to TRUE)

stepSize starting set size (defaults to 0.0001)

iterations number of Richardson extrapolation iterations (defaults to 4L)

verbose Level of debugging output.

knownHessian an optional matrix of known Hessian entries

checkGradient whether to check the first order convergence criterion (gradient is near zero)

Details

In addition to an estimate of the Hessian, forward, central, and backward estimates of the gradient
are made available in this compute plan’s output slot.

When checkGradient=TRUE, the central difference estimate of the gradient is used to determine
whether the first order convergence criterion is met. In addition, the forward and backward differ-
ence estimates of the gradient are compared for symmetry. When sufficient asymmetry is detected,
the standard error is flagged. In the case, profile likelihood confidence intervals should be used for
inference instead of standard errors (see mxComputeConfidenceInterval).

Examples

library(OpenMx)
data(demoOneFactor)
factorModel <- mxModel(name ="One Factor",
mxMatrix(type = "Full", nrow = 5, ncol = 1, free = FALSE, values = .2, name = "A"),
mxMatrix(type = "Symm", nrow = 1, ncol = 1, free = FALSE, values = 1 , name = "L"),
mxMatrix(type = "Diag", nrow = 5, ncol = 5, free = TRUE , values = 1 , name = "U"),

mxComputeOnce 91

mxAlgebra(A %*% L %*% t(A) + U, name = "R"),
mxExpectationNormal(covariance = "R", dimnames = names(demoOneFactor)),
mxFitFunctionML(),
mxData(cov(demoOneFactor)*499/500, type = "cov", numObs = 500),
mxComputeSequence(
list(mxComputeNumericDeriv(), mxComputeReportDeriv())
)
)
factorModelFit <- mxRun(factorModel)
factorModelFit$output$hessian

mxComputeOnce Compute something once

Description

Some models are optimized for a sparse Hessian. Therefore, it can be much more efficient to
compute the inverse Hessian in comparison to computing the Hessian and then inverting it.

Usage

mxComputeOnce(from, what = "nothing", how = NULL, ...,
freeSet = NA_character_, verbose = 0L, .is.bestfit = FALSE)

Arguments

from the object to perform the computation (a vector of expectation or fit function
names)

what what to compute (default is "nothing")

how to compute it (optional)

... Not used. Forces remaining arguments to be specified by name.

freeSet names of matrices containing free variables

verbose the level of debugging output

.is.bestfit do not use; for backward compatibility

Details

The information matrix is only valid when parameters are at the maximum likelihood estimate. The
information matrix is returned in model$output$hessian. You cannot request both the information
matrix and the Hessian. The information matrix is invarient to the sign of the log likelihood scale
whereas the Hessian is not. Use the how parameter to specify which approximation to use (one of
"default", "hessian", "sandwich", "bread", and "meat").

92 mxComputeSequence

Examples

data(demoOneFactor)
factorModel <- mxModel(name ="One Factor",

mxMatrix(type="Full", nrow=5, ncol=1, free=TRUE, values=0.2, name="A"),
mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U"),
mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),
mxFitFunctionML(),mxExpectationNormal(covariance="R", dimnames=names(demoOneFactor)),
mxData(observed=cov(demoOneFactor)*499/500, type="cov", numObs=500),
mxComputeOnce('fitfunction', 'fit'))

factorModelFit <- mxRun(factorModel)
factorModelFit$output$fit # 972.15

mxComputeReportDeriv Report derivatives

Description

Copy the internal gradient and Hessian back to R.

Usage

mxComputeReportDeriv(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

mxComputeSequence Invoke a series of compute objects in sequence

Description

Invoke a series of compute objects in sequence

Usage

mxComputeSequence(steps = list(), ..., freeSet = NA_character_,
independent = FALSE)

Arguments

steps a list of compute objects

... Not used; forces argument ’freeSet’ to be specified by name.

freeSet Names of matrices containing free parameters.

independent Whether the steps could be executed out-of-order.

mxComputeStandardError 93

mxComputeStandardError

Compute standard errors given the Hessian or inverse Hessian

Description

The fit is assumed to be in deviance units (-2 log likelihood).

Usage

mxComputeStandardError(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

mxConstraint Create MxConstraint Object

Description

This function creates a new MxConstraint object.

Usage

mxConstraint(expression, name = NA, ...)

Arguments

expression An R expression of matrix operators and matrix functions.

name An optional character string indicating the name of the object.

... Not used. Helps OpenMx catch bad input to argument ’expression’.

Details

The mxConstraint function defines relationships between two MxAlgebra or MxMatrix objects.
They are used to affect the estimation of free parameters in the referenced objects. The constraint
relation is written identically to how a MxAlgebra expression would be written. The outermost
operator in this relation must be either ‘<’, ‘==’ or ‘>’. To affect an estimation or optimization, an
MxConstraint object must be included in an MxModel object with all referenced MxAlgebra and
MxMatrix objects.

Usage Note: Use of mxConstraint should be avoided where it is possible to achieve the constraint
by equating free parameters by label or position in an MxMatrix or MxAlgebra object. Including
mxConstraints in an mxModel will disable standard errors and the calculation of the final Hessian,

94 mxConstraint

and thus should be avoided when standard errors are of importance. Constraints also add computa-
tional overhead. If one labels two parameters the same, the optimizer has one fewer parameter to
optimize. However, if one uses mxConstraint to do the same thing, both parameters remain esti-
mated and a Lagrangian multiplier is added to maintain the constraint. This constraint also has to
have its gradients computed and the order of the Hessian grows as well. So while both approaches
should work, the mxConstraint() will take longer to do so.

Alernatives to mxConstraints include using labels, lbound or ubound arguments or algebras. Free
parameters in the same MxModel may be constrained to equality by giving them the same name in
their respective ’labels’ matrices. Similarly, parameters may be fixed to an individual element in a
MxModel object or the result of an MxAlgebra object through labeling. For example, assigning a
label of “name[1,1]“ fixes the value of a parameter at the value in first row and first column of the
matrix or algebra “name“. The mxConstraint function should be used to enforce inequalities that
cannot be conveyed using other methods.

Value

Returns an MxConstraint object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxConstraint for the S4 class created by mxConstraint.

Examples

library(OpenMx)

#Create a constraint between MxMatrices 'A' and 'B'
constraint <- mxConstraint(A > B, name = 'AdominatesB')

Constrain matrix 'K' to be equal to matrix 'limit'

model <- mxModel(model="con_test",
mxMatrix(type="Full", nrow=2, ncol=2, free=TRUE, name="K"),
mxMatrix(type="Full", nrow=2, ncol=2, free=FALSE, name="limit", values=1:4),
mxConstraint(K == limit, name = "Klimit_equality"),
mxAlgebra(min(K), name="minK"),
mxFitFunctionAlgebra("minK")

)

fit <- mxRun(model)
fit$matrices$K$values

[,1] [,2]
[1,] 1 3
[2,] 2 4

MxConstraint-class 95

Constrain both free parameters of a matrix to equality using labels (both are set to "eq")
equal <- mxMatrix("Full", 2, 1, free=TRUE, values=1, labels="eq", name="D")

Constrain a matrix element in to be equal to the result of an algebra
start <- mxMatrix("Full", 1, 1, free=TRUE, values=1, labels="param", name="F")
alg <- mxAlgebra(log(start), name="logP")

Force the fixed parameter in matrix G to be the result of the algebra
end <- mxMatrix("Full", 1, 1, free=FALSE, values=1, labels="logP[1,1]", name="G")

MxConstraint-class MxConstraint Class

Description

MxConstraint is an S4 class. An MxConstraint object is a named entity. New instances of this class
can be created using the function mxConstraint.

Details

The MxConstraint class has the following slots:

name - The name of the object
formula - The R expression to be evaluated

The ‘name’ slot is the name of the MxConstraint object. Use of MxConstraint objects in other
functions in the OpenMx library may require reference by name.

The ‘formula’ slot is an expression containing the expression to be evaluated. These objects are
operated on or related to one another using one or more operations detailed in the mxConstraint
help file.

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in
the mxConstraint document for more information.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxConstraint for the function that creates MxConstraint objects.

96 mxData

mxData Create MxData Object

Description

This function creates a new MxData object.

Usage

mxData(observed, type, means = NA, numObs = NA, acov=NA, fullWeight=NA,
thresholds=NA, ..., sort=NA, primaryKey = as.character(NA))

Arguments

observed A matrix or data.frame which provides data to the MxData object.

type A character string defining the type of data in the ‘observed’ argument. Must be
one of “raw”, “cov”, or “cor”.

means An optional vector of means for use when ‘type’ is “cov”, or “cor”.

numObs The number of observations in the data supplied in the ‘observed’ argument.
Required unless ‘type’ equals “raw”.

acov Asymptotic covariance matrix of observed, means, and thresholds. Used for
weighted least squares at weight matrix.

fullWeight Full asymptotic covariance matrix of observed, means, and thresholds. Used for
weighted least squares in standard error and quasi-chi-squared calculation.

thresholds Observed thresholds. Used for weighted least squares with ordinal data.

... Not used. Forces remaining arguments to be specified by name.

sort Whether to sort raw data prior to use (default NA)

primaryKey The column name of the primary key used to uniquely identify rows (default
NA)

Details

The mxData function creates MxData objects, which can be used as arguments in MxModel objects.
The ‘observed’ argument may take either a data frame or a matrix, which is then described with
the ‘type’ argument. Data types describe compatibility and usage with expectation functions in
MxModel objects. Four different data types are supported (a fifth, sscp, is not yet implemented):

raw The contents of the ‘observed’ argument are treated as raw data. Missing values are permitted
and must be designated as the system missing value. The ‘means’ and ‘numObs’ arguments
cannot be specified, as the ‘means’ argument is not relevant and the ‘numObs’ argument is
automatically populated with the number of rows in the data. Data of this type may use fit
functions such as mxFitFunctionML function in MxModel objects, which will automatically
use covariance estimation under full-information maximum likelihood for this data type.

mxData 97

cov The contents of the ‘observed’ argument are treated as a covariance matrix. The ‘means’ ar-
gument is not required, but may be included for estimations involving means. The ‘numObs’
argument is required, which should reflect the number of observations or rows in the data
described by the covariance matrix. Data of this type may use the fit functions such as mxFit-
FunctionML, depending on the specified model.

cor The contents of the ‘observed’ argument are treated as a correlation matrix. The ‘means’ ar-
gument is not required, but may be included for estimations involving means. The ‘numObs’
argument is required, which should reflect the number of observations or rows in the data
described by the covariance matrix. Data of this type may use the fit functions such as mxFit-
FunctionML functions, depending on the specified model.

acov The best way to have data of the type is to use the mxDataWLS function. The contents of
the ‘observed’ argument are treated as the polychoric correlation matrix of the ordinal vari-
ables. The ‘means’ argument is not required, but may be included for estimations involving
means. The ‘thresholds’ argument is not required, but may be included for estimation involv-
ing thresholds and ordinal variables. The ‘numObs’ argument is required, which should reflect
the number of observations or rows in the data described by the polychoric correlation matrix.
Data of this type almost certainly use the mxFitFunctionWLS function, but may depend on
the specified model.

MxData objects may not be included in MxAlgebra objects or use the mxFitFunctionAlgebra func-
tion. If these capabilities are desired, data should be appropriately input or transformed using the
mxMatrix and mxAlgebra functions.

While column names are stored in the ‘observed’ slot of MxData objects, these names are not
recognized as variable names in MxPath objects. Variable names must be specified using the ‘man-
ifestVars’ argument of the mxModel function prior to use in MxPath objects.

The mxData function does not currently place restrictions on the size, shape, or symmetry of matri-
ces input into the ‘observed’ argument. While it is possible to specify MxData objects as covariance
or correlation matrices that do not have the properties commonly associated with these matrices,
failure to correctly specify these matrices will likely lead to problems in model estimation.

OpenMx uses the names of variables to map them onto the expectation functions and other elements
associated with your model. For data.frames, ensure you have set the names(). For matrices set
names using, for instance, row.names=c(“your”, “columns”). Covariance and correlation matrices
need to have both the row and column names set and these must be identical, for instance by using
dimnames=list(varNames, varNames).

When a primary key is provided, sorting is disabled. Otherwise, sort defaults to TRUE.

Value

Returns a new MxData object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

98 MxData-class

See Also

MxData for the S4 class created by mxData. matrix and data.frame for objects which may be
entered as arguments in the ‘observed’ slot. More information about the OpenMx package may be
found here.

Examples

library(OpenMx)

#Create a covariance matrix
covMatrix <- matrix(c(0.77642931, 0.39590663,

0.39590663, 0.49115615),
nrow = 2, ncol = 2, byrow = TRUE)

covNames <- c("x", "y")
dimList <- list(covNames, covNames)
dimnames(covMatrix) <- dimList

#Create an MxData object including that covariance matrix
testData <- mxData(observed=covMatrix, type="cov", numObs = 100)

testModel <- mxModel(model="testModel",
mxMatrix(type="Symm", nrow=2, ncol=2, values=c(.2,.1,.2),

free=TRUE, name="expCov", dimnames=dimList),
mxExpectationNormal(covariance="expCov", dimnames=covNames),
mxFitFunctionML(),
testData)

outModel <- mxRun(testModel)

summary(outModel)

MxData-class MxData Class

Description

MxData is an S4 class. An MxData object is a named entity. New instances of this class can be
created using the function mxData. MxData is an S4 class union. An MxData object is either NULL
or a MxNonNullData object.

Details

The MxNonNullData class has the following slots:

name - The name of the object

MxData-class 99

observed - Either a matrix or a data frame
vector - A vector for means, or NA if missing

type - Either ’raw’, ’cov’, or ’cor’
numObs - The number of oberservations

The ’name’ slot is the name of the MxData object.

The ‘observed’ slot is used to contain data, either as a matrix or as a data frame. Use of the data in
this slot by other functions depends on the value of the ’type’ slot. When ’type’ is equal to ’cov’ or
’cor’, the data input into the ’matrix’ slot should be a symmetric matrix or data frame.

The ’vector’ slot is used to contain a vector of numeric values, which is used as a vector of means
for MxData objects with ’type’ equal to ’cov’ or ’cor’. This slot may be used in estimation using
the mxFitFunctionML function.

The ’type’ slot may take one of four supported values:

raw The contents of the ‘observed’ slot are treated as raw data. Missing values are permitted and
must be designated as the system missing value. The ’vector’ and ’numObs’ slots cannot be
specified, as the ’vector’ argument is not relevant and the ’numObs’ argument is automati-
cally populated with the number of rows in the data. Data of this type may use the mxFit-
FunctionML function as its fit function in MxModel objects, which can deal with covariance
estimation under full-information maximum likelihood.

cov The contents of the ‘observed’ slot are treated as a covariance matrix. The ’vector’ argument
is not required, but may be included for estimations involving means. The ’numObs’ slot is
required. Data of this type may use fit functions such as the mxFitFunctionML, depending on
the specified model.

cor The contents of the ‘observed’ slot are treated as a correlation matrix. The ’vector’ argument
is not required, but may be included for estimations involving means. The ’numObs’ slot is
required. Data of this type may use fit functions such as the mxFitFunctionML, depending on
the specified model.

The ’numObs’ slot describes the number of observations in the data. If ’type’ equals ’raw’, then
’numObs’ is automatically populated as the number of rows in the matrix or data frame in the
‘observed’ slot. If ’type’ equals ’cov’ or ’cor’, then this slot must be input using the ’numObs’
argument in the mxData function when the MxData argument is created.

MxData objects may not be included in MxAlgebra objects or use the mxFitFunctionAlgebra func-
tion. If these capabilities are desired, data should be appropriately input or transformed using the
mxMatrix and mxAlgebra functions.

While column names are stored in the ‘observed’ slot of MxData objects, these names are not
recognized as variable names in MxPath objects. Variable names must be specified using the ’man-
ifestVars’ argument of the mxModel function prior to use in MxPath objects.

The mxData function does not currently place restrictions on the size, shape, or symmetry of matri-
ces input into the ‘observed’ argument. While it is possible to specify MxData objects as covariance
or correlation matrices that do not have the properties commonly associated with these matrices,
failure to correctly specify these matrices will likely lead to problems in model estimation.

100 MxDataFrameOrMatrix-class

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxData for creating MxData objects, matrix and data.frame for objects which may be entered as
arguments in the ’matrix’ slot. More information about the OpenMx package may be found here.

mxDataDynamic Create dynamic data

Description

Create dynamic data

Usage

mxDataDynamic(type, ..., expectation, verbose = 0L)

Arguments

type type of data

... Not used. Forces remaining arguments to be specified by name.

expectation the name of the expectation to provide the data

verbose Increase runtime debugging output

MxDataFrameOrMatrix-class

MxDataFrameOrMatrix

Description

Internal class that is the union of data.frame and matrix.

Details

Not to be used.

MxDataStatic-class 101

MxDataStatic-class Create static data

Description

Internal static data class.

Details

Not to be used.

mxDataWLS Create MxData Object for Least Squares (WLS, DLS, ULS) Analyses

Description

This function creates a new MxData object of type “ULS” (unweighted least squares), “WLS”
(weighted least squares) or “DLS” (diagonally-weighted least squares). The appropriate fit function
to include with these models is mxFitFunctionWLS

Usage

mxDataWLS(data, type = "WLS", useMinusTwo = TRUE, returnInverted = TRUE,
debug = FALSE, fullWeight = TRUE)

Arguments

data A matrix or data.frame which provides raw data to be used for WLS.
type A character string ’WLS’ (default), ’DLS’, or ’ULS’ for weighted, diagonal, or

unweighted least squares
useMinusTwo Logical indicating whether to use -2LL (default) or -LL.
returnInverted Logical indicating whether to return the information matrix (default) or the co-

variance matrix.
debug Logical to set debugging on or off (default)
fullWeight Logical determining if the full weight matrix is returned (default). Needed for

standard error and quasi-chi-squared calculation.

Details

The mxDataWLS function creates an MxData object, which can be used in MxModel objects. This
function takes raw data and returns an MxData object to be used in a model to fit with weighted least
squares.

Both Ordinal and continuous data are supported. A combination of these data types succeeds with-
out error, but when using ’WLS’ or ’DLS’ the answers appear incorrect. The ’ULS’ estimates for
joint ordinal and continuous data appear accurate. Consequently, do not use this function for joint
problems unless type='ULS'.

102 mxDataWLS

Value

Returns a new MxData object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxFitFunctionWLS. MxData for the S4 class created by mxData. matrix and data.frame for objects
which may be entered as arguments in the ‘observed’ slot. More information about the OpenMx
package may be found here.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionWLS

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)
wdata <- mxDataWLS(tmpFrame)

Define the matrices

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionWLS()

Define the model

tmpModel <- mxModel(model="exampleModel", S, A, I, expCov, expFunction, fitFunction,
wdata)

Fit the model and print a summary

MxDirectedGraph-class 103

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

MxDirectedGraph-class MxDirectedGraph

Description

This is an internal class and should not be used directly. It is a class for directed graphs.

mxEval Evaluate Values in MxModel

Description

This function can be used to evaluate an arbitrary R expression that includes named entities from a
MxModel object, or labels from a MxMatrix object.

Usage

mxEval(expression, model, compute = FALSE, show = FALSE, defvar.row = 1,
cache = new.env(parent = emptyenv()), cacheBack = FALSE)

mxEvalByName(name, model, compute = FALSE, show = FALSE, defvar.row = 1,
cache = new.env(parent = emptyenv()), cacheBack = FALSE)

Arguments

expression An arbitrary R expression.

model The model in which to evaluate the expression.

compute If TRUE then compute the value of algebra expressions.

show If TRUE then print the translated expression.

defvar.row The row number for definition variables when compute=TRUE; defaults to 1.
When compute=FALSE, values for definition variables are always taken from
the first (i.e., first before any automated sorting is done) row of the raw data.

cache An R environment of matrix values used to speedup computation.

cacheBack If TRUE then return the list pair (value, cache).

name The character name of an object to evaluate.

104 mxEval

Details

The argument ‘expression’ is an arbitrary R expression. Any named entities that are used within the
R expression are translated into their current value from the model. Any labels from the matrices
within the model are translated into their current value from the model. Finally the expression is
evaluated and the result is returned. To enable debugging, the ‘show’ argument has been provided.
The most common mistake when using this function is to include named entities in the model that
are identical to R function names. For example, if a model contains a named entity named ‘c’, then
the following mxEval call will return an error: mxEval(c(A, B, C), model).

The mxEvalByName function is a wrapper around mxEval that takes a character instead of an R
expression.

If ‘compute’ is FALSE, then MxAlgebra expressions return their current values as they have been
computed by the optimization call (using mxRun). If the ‘compute’ argument is TRUE, then Mx-
Algebra expressions will be calculated in R. Any references to an objective function that has not yet
been calculated will return a 1 x 1 matrix with a value of NA.

The ‘cache’ is used to speedup calculation by storing previously computing values. The cache is a
list of matrices, such that names(cache) must all be of the form “modelname.entityname”. Setting
‘cacheBack’ to TRUE will return the pair list(value, cache) where value is the result of the mxEval()
computation and cache is the updated cache.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxAlgebra to create algebraic expressions inside your model and mxModel for the model object
mxEval looks inside when evaluating.

Examples

library(OpenMx)

Set up a 1x1 matrix
matrixA <- mxMatrix("Full", nrow = 1, ncol = 1, values = 1, name = "A")

Set up an algebra
algebraB <- mxAlgebra(A + A, name = "B")

Put them both in a model
testModel <- mxModel(model="testModel", matrixA, algebraB)

Even though the model has not been run, we can evaluate the algebra
given the starting values in matrixA.
mxEval(B, testModel, compute=TRUE)

If we just print the algebra, we can see it has not been evaluated
testModel$B

MxExpectation-class 105

MxExpectation-class MxExpectation

Description

This is an internal class and should not be used directly.

mxExpectationBA81 Create a Bock & Aitkin (1981) expectation

Description

When a two-tier covariance matrix is recognized, this expectation automatically enables analytic
dimension reduction (Cai, 2010).

Usage

mxExpectationBA81(ItemSpec, item = "item", ..., qpoints = 49L, qwidth = 6,
mean = "mean", cov = "cov", verbose = 0L, weightColumn = NA_integer_,
EstepItem = NULL, debugInternal = FALSE)

Arguments

ItemSpec a single item model (to replicate) or a list of item models in the same order as
the column of ItemParam

item the name of the mxMatrix holding item parameters with one column for each
item model with parameters starting at row 1 and extra rows filled with NA

... Not used. Forces remaining arguments to be specified by name.

qpoints number of points to use for equal interval quadrature integration (default 49L)

qwidth the width of the quadrature as a positive Z score (default 6.0)

mean the name of the mxMatrix holding the mean vector

cov the name of the mxMatrix holding the covariance matrix

verbose the level of runtime diagnostics (default 0L)

weightColumn the name of the column in the data containing the row weights (default NA)

EstepItem a simple matrix of item parameters for the E-step. This option is mainly of use
for debugging derivatives.

debugInternal when enabled, some of the internal tables are returned in $debug. This is mainly
of use to developers.

106 mxExpectationGREML

Details

The standard Normal distribution of the quadrature acts like a prior distribution for difficulty. It is
not necessary to impose any additional Bayesian prior on difficulty estimates (Baker & Kim, 2004,
p. 196).

References

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters:
Application of an EM algorithm. Psychometrika, 46, 443-459.
Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychome-
trika, 75, 581-612.
Seong, T. J. (1990). Sensitivity of marginal maximum likelihood estimation of item and ability
parameters to the characteristics of the prior ability distributions. Applied Psychological Measure-
ment, 14(3), 299-311.

See Also

RPF

mxExpectationGREML Create MxExpectationGREML Object

Description

This function creates a new MxExpectationGREML object.

Usage

mxExpectationGREML(V, yvars=character(0), Xvars=list(), addOnes=TRUE, blockByPheno=TRUE,
staggerZeroes=TRUE, dataset.is.yX=FALSE, casesToDropFromV=integer(0))

Arguments

V Character string; the name of the MxAlgebra or MxMatrix to serve as the ’V’
matrix (the model-expected covariance matrix). Internally, the ’V’ matrix is
assumed to be symmetric, and its elements above the main diagonal are ignored.

yvars, Xvars, addOnes, blockByPheno, staggerZeroes

Passed to mxGREMLDataHandler().
dataset.is.yX Logical; defaults to FALSE. If TRUE, then the first column of the raw dataset is

taken as-is to be the ’y’ phenotype vector, and the remaining columns are taken
as-is to be the ’X’ matrix of covariates. In this case, mxGREMLDataHandler()
is never internally called at runtime, and all other arguments besides V and
casesToDropFromV are ignored.

casesToDropFromV

Integer vector. Its elements are the numbers of the rows and columns of covari-
ance matrix ’V’ to be dropped at runtime, usually because they correspond to
rows of ’y’ or ’X’ that contained missing observations. By default, no cases are
dropped from ’V.’ Ignored unless dataset.is.yX=TRUE.

http://cran.r-project.org/package=rpf

mxExpectationGREML 107

Details

"GREML" stands for "genomic-relatedness-matrix restricted maximum-likelihood." In the strictest
sense of the term, it refers to genetic variance-component estimation from matrices of subjects’
pairwise degree of genetic relatedness, as calculated from genome-wide marker data. It is from
this original motivation that some of the terminology originates, such as calling ’y’ the "pheno-
type" vector. However, OpenMx’s implementation of GREML is applicable for analyses from any
subject-matter domain, and in which the following assumptions are reasonable:

1. Conditional on ’X’ (the covariates), the phenotype vector (response variable) ’y’ is a single
realization from a multivariate-normal distribution having (in general) a dense covariance ma-
trix, ’V.’

2. The parameters of the covariance matrix, such as variance components, are of primary interest.

3. The random effects are normally distributed.

4. Weighted least-squares regression, using the inverse of ’V’ as a weight matrix, is an adequate
model for the phenotypic means. Note that the regression coefficients are not actually free
parameters to be numerically optimized.

Computationally, the chief distinguishing feature of an OpenMx GREML analysis is that the phe-
notype vector, ’y,’ is a single realization of a random vector that, in general, cannot be partitioned
into independent subvectors. For this reason, definition variables are not compatible (and should be
unnecessary with) GREML expectation. GREML expectation can still be used if the covariance ma-
trix is sparse, but as of this writing, OpenMx does not take advantage of the sparseness to improved
performance. Because of the limitations of restricted maximum likelihood, GREML expectation is
presently incompatible with ordinal variables.

Value

Returns a new object of class MxExpectationGREML.

References

One of the first uses of the acronym "GREML":
Benjamin DJ, Cesarini D, van der Loos MJHM, Dawes CT, Koellinger PD, et al. (2012) The
genetic architecture of economic and political preferences. Proceedings of the National Academy
of Sciences 109: 8026-8031. doi: 10.1073/pnas.1120666109

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

See MxExpectationGREML for the S4 class created by mxExpectationGREML(). More information
about the OpenMx package may be found here.

Examples

dat <- cbind(rnorm(100),rep(1,100))
colnames(dat) <- c("y","x")

ge <- mxExpectationGREML(V="V",yvars="y",Xvars=list("X"),addOnes=FALSE)
gff <- mxFitFunctionGREML(dV=c(ve="I"))

108 MxExpectationGREML-class

plan <- mxComputeSequence(steps=list(
mxComputeNewtonRaphson(freeSet=c("Ve"),fitfunction="fitfunction"),
mxComputeOnce('fitfunction',
c('fit','gradient','hessian','ihessian'),freeSet=c("Ve")),

mxComputeStandardError(freeSet=c("Ve")),
mxComputeReportDeriv(freeSet=c("Ve"))

))

testmod <- mxModel(
"GREMLtest",
mxData(observed = dat, type="raw"),
mxMatrix(type = "Full", nrow = 1, ncol=1, free=TRUE,

values = 1, labels = "ve", lbound = 0.0001, name = "Ve"),
mxMatrix("Iden",nrow=100,name="I",condenseSlots=TRUE),
mxAlgebra(I %x% Ve,name="V"),
ge,
gff,
plan

)
str(testmod)

MxExpectationGREML-class

Class "MxExpectationGREML"

Description

MxExpectationGREML is a type of expectation class. It contains the necessary elements for speci-
fying a GREML model. For more information, see mxExpectationGREML().

Objects from the Class

Objects can be created by calls of the form mxExpectationGREML(V, yvars, Xvars, addOnes, blockByPheno, staggerZeroes, dataset.is.yX, casesToDropFromV).

Slots

V: Object of class "MxCharOrNumber". Identifies the MxAlgebra or MxMatrix to serve as the ’V’
matrix.

yvars: Character vector. Each string names a column of the raw dataset, to be used as a pheno-
types.

Xvars: A list of data column names, specifying the covariates to be used with each phenotype.

addOnes: Logical; pertains to data-handling at runtime.

blockByPheno: Logical; pertains to data-handling at runtime.

staggerZeroes: Logical; pertains to data-handling at runtime.

dataset.is.yX: Logical; pertains to data-handling at runtime.

y: Object of class "MxData". Its observed slot will contain the phenotype vector, ’y.’

MxExpectationGREML-class 109

X: A matrix, to contain the ’X’ matrix of covariates.

yXcolnames: Character vector; used to store the column names of ’y’ and ’X.’

casesToDrop: Integer vector, specifying the rows and columns of the ’V’ matrix to be removed at
runtime.

b: A matrix, to contain the vector of regression coefficients calculated at runtime.

bcov: A matrix, to contain the sampling covariance matrix of the regression coefficients calculated
at runtime.

numFixEff: Integer number of covariates in ’X.’

dims: Object of class "character".

numStats: Numeric; number of observed statistics.

dataColumns: Object of class "numeric".

name: Object of class "character".

data: Object of class "MxCharOrNumber".

.runDims: Object of class "character".

Extends

Class "MxBaseExpectation", directly. Class "MxBaseNamed", by class "MxBaseExpectation", dis-
tance 2. Class "MxExpectation", by class "MxBaseExpectation", distance 2.

Methods

No methods defined with class "MxExpectationGREML" in the signature.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

See mxExpectationGREML() for creating MxExpectationGREML objects, and for more informa-
tion generally concerning GREML analyses, including a complete example. More information
about the OpenMx package may be found here.

Examples

showClass("MxExpectationGREML")

http://openmx.psyc.virginia.edu/documentation

110 mxExpectationLISREL

mxExpectationLISREL Create MxExpectationLISREL Object

Description

This function creates a new MxExpectationLISREL object.

Usage

mxExpectationLISREL(LX=NA, LY=NA, BE=NA, GA=NA, PH=NA, PS=NA, TD=NA, TE=NA, TH=NA,
TX = NA, TY = NA, KA = NA, AL = NA,
dimnames = NA, thresholds = NA, threshnames = dimnames)

Arguments

LX An optional character string indicating the name of the ’LX’ matrix.

LY An optional character string indicating the name of the ’LY’ matrix.

BE An optional character string indicating the name of the ’BE’ matrix.

GA An optional character string indicating the name of the ’GA’ matrix.

PH An optional character string indicating the name of the ’PH’ matrix.

PS An optional character string indicating the name of the ’PS’ matrix.

TD An optional character string indicating the name of the ’TD’ matrix.

TE An optional character string indicating the name of the ’TE’ matrix.

TH An optional character string indicating the name of the ’TH’ matrix.

TX An optional character string indicating the name of the ’TX’ matrix.

TY An optional character string indicating the name of the ’TY’ matrix.

KA An optional character string indicating the name of the ’KA’ matrix.

AL An optional character string indicating the name of the ’AL’ matrix.

dimnames An optional character vector that is currently ignored

thresholds An optional character string indicating the name of the thresholds matrix.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

Expectation functions define the way that model expectations are calculated. The mxExpectation-
LISREL calculates the expected covariance and means of a given MxData object given a LISREL
model. This model is defined by LInear Structual RELations (LISREL; Jöreskog & Sörbom, 1982,
1996). Arguments ’LX’ through ’AL’ must refer to MxMatrix objects with the associated properties
of their respective matrices in the LISREL modeling approach.

The full LISREL specification has 13 matrices and is sometimes called the extended LISREL model.
It is defined by the following equations.

mxExpectationLISREL 111

η = α+Bη + Γξ + ζ

y = τy + Λyη + ε

x = τx + Λxξ + δ

The table below is provided as a quick reference to the numerous matrices in LISREL models.
Note that NX is the number of manifest exogenous (independent) variables, the number of Xs. NY
is the number of manifest endogenous (dependent) variables, the number of Ys. NK is the number
of latent exogenous variables, the number of Ksis or Xis. NE is the number of latent endogenous
variables, the number of etas.

Matrix Word Abbreviation Dimensions Expression Description
Λx Lambda x LX NX x NK Exogenous Factor Loading Matrix
Λy Lambda y LY NY x NE Endogenous Factor Loading Matrix
B Beta BE NE x NE Regressions of Latent Endogenous Variables Predicting Endogenous Variables
Γ Gamma GA NE x NK Regressions of Latent Exogenous Variables Predicting Endogenous Variables
Φ Phi PH NK x NK cov(ξ) Covariance Matrix of Latent Exogenous Variables
Ψ Psi PS NE x NE cov(ζ) Residual Covariance Matrix of Latent Endogenous Variables
Θδ Theta delta TD NX x NX cov(δ) Residual Covariance Matrix of Manifest Exogenous Variables
Θε Theta epsilon TE NY x NY cov(ε) Residual Covariance Matrix of Manifest Endogenous Variables
Θδε Theta delta epsilson TH NX x NY cov(δ, ε) Residual Covariance Matrix of Manifest Exogenous with Endogenous Variables
τx tau x TX NX x 1 Residual Means of Manifest Exogenous Variables
τy tau y TY NY x 1 Residual Means of Manifest Endogenous Variables
κ kappa KA NK x 1 mean(ξ) Means of Latent Exogenous Variables
α alpha AL NE x 1 Residual Means of Latent Endogenous Variables

From the extended LISREL model, several submodels can be defined. Subtypes of the LISREL
model are defined by setting some of the arguments of the LISREL expectation function to NA.
Note that because the default values of each LISREL matrix is NA, setting a matrix to NA can be
accomplished by simply not giving it any other value.

The first submodel is the LISREL model without means.

η = Bη + Γξ + ζ

y = Λyη + ε

x = Λxξ + δ

The LISREL model without means requires 9 matrices: LX, LY, BE, GA, PH, PS, TD, TE, and TH.
Hence this LISREL model has TX, TY, KA, and AL as NA. This can be accomplished be leaving
these matrices at their default values.

The TX, TY, KA, and AL matrices must be specified if either the mxData type is “cov” or “cor”
and a means vector is provided, or if the mxData type is “raw”. Otherwise the TX, TY, KA, and AL
matrices are ignored and the model without means is estimated.

A second submodel involves only endogenous variables.

112 mxExpectationLISREL

η = Bη + ζ

y = Λyη + ε

The endogenous-only LISREL model requires 4 matrices: LY, BE, PS, and TE. The LX, GA, PH,
TD, and TH must be NA in this case. However, means can also be specified, allowing TY and AL
if the data are raw or if observed means are provided.

Another submodel involves only exogenous variables.

x = Λxξ + δ

The exogenous-model model requires 3 matrices: LX, PH, and TD. The LY, BE, GA, PS, TE, and
TH matrices must be NA. However, means can also be specified, allowing TX and KA if the data
are raw or if observed means are provided.

The model that is run depends on the matrices that are not NA. If all 9 matrices are not NA, then the
full model is run. If only the 4 endogenous matrices are not NA, then the endogenous-only model
is run. If only the 3 exogenous matrices are not NA, then the exogenous-only model is run. If some
endogenous and exogenous matrices are not NA, but not all of them, then appropriate errors are
thrown. Means are included in the model whenever their matrices are provided.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxExpectationLISREL will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

Like the mxExpectationRAM, the mxExpectationLISREL evaluates with respect to an MxData
object. The MxData object need not be referenced in the mxExpectationLISREL function, but must
be included in the MxModel object. mxExpectationLISREL requires that the ’type’ argument in the
associated MxData object be equal to ’cov’, ’cor’, or ’raw’.

To evaluate, place mxExpectationLISREL objects, the mxData object for which the expected co-
variance approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and
MxConstraint objects in an MxModel object. This model may then be evaluated using the mxRun
function. The results of the optimization can be found in the ’output’ slot of the resulting model,
and may be obtained using the mxEval function.

Value

Returns a new MxExpectationLISREL object. One and only one MxExpectationLISREL object
can be included with models using one and only one fit function object (e.g., MxFitFunctionML)
and with referenced MxAlgebra, MxData and MxMatrix objects.

References

Jöreskog, K. G. & Sörbom, D. (1996). LISREL 8: User’s Reference Guide. Lincolnwood, IL:
Scientific Software International.

Jöreskog, K. G. & Sörbom, D. (1982). Recent developments in structural equation modeling. Jour-
nal of Marketing Research, 19, 404-416.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

mxExpectationLISREL 113

See Also

demo("LISRELJointFactorModel")

Examples

Create and fit a model using mxExpectationLISREL, and mxFitFunctionML

library(OpenMx)

vNames <- paste("v",as.character(1:6),sep="")
dimList <- list(vNames, vNames)
covData <- matrix(

c(0.9223099, 0.1862938, 0.4374359, 0.8959973, 0.9928430, 0.5320662,
0.1862938, 0.2889364, 0.3927790, 0.3321639, 0.3371594, 0.4476898,
0.4374359, 0.3927790, 1.0069552, 0.6918755, 0.7482155, 0.9013952,
0.8959973, 0.3321639, 0.6918755, 1.8059956, 1.6142005, 0.8040448,
0.9928430, 0.3371594, 0.7482155, 1.6142005, 1.9223567, 0.8777786,
0.5320662, 0.4476898, 0.9013952, 0.8040448, 0.8777786, 1.3997558
), nrow=6, ncol=6, byrow=TRUE, dimnames=dimList)

Create LISREL matrices

mLX <- mxMatrix("Full", values=c(.5, .6, .8, rep(0, 6), .4, .7, .5),
name="LX", nrow=6, ncol=2,
free=c(TRUE,TRUE,TRUE,rep(FALSE, 6),TRUE,TRUE,TRUE),
dimnames=list(vNames, c("x1","x2")))

mTD <- mxMatrix("Diag", values=c(rep(.2, 6)),
name="TD", nrow=6, ncol=6, free=TRUE,
dimnames=dimList)

mPH <- mxMatrix("Symm", values=c(1, .3, 1),
name="PH", nrow=2, ncol=2, free=c(FALSE, TRUE, FALSE),
dimnames=list(c("x1","x2"),c("x1","x2")))

Create a LISREL expectation with LX, TD, and PH matrix names

expFunction <- mxExpectationLISREL(LX="LX", TD="TD", PH="PH")

Create fit function and data

tmpData <- mxData(observed=covData, type="cov", numObs=100)
fitFunction <- mxFitFunctionML()

Create the model, fit it, and print a summary.

tmpModel <- mxModel(model="exampleModel",
mLX, mTD, mPH, expFunction, fitFunction, tmpData)

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

#--------------------------------------

114 mxExpectationNormal

Fit factor model with means

require(OpenMx)

data(demoOneFactor)
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)

factorMeans <- mxMatrix("Zero", 1, 1, name="Kappa",
dimnames=list("F1", NA))

xIntercepts <- mxMatrix("Full", nvar, 1, free=TRUE, name="TauX",
dimnames=list(varnames, NA))

factorLoadings <- mxMatrix("Full", nvar, 1, TRUE, .6, name="LambdaX",
labels=paste("lambda", 1:nvar, sep=""),
dimnames=list(varnames, "F1"))

factorCovariance <- mxMatrix("Diag", 1, 1, FALSE, 1, name="Phi")
xResidualVariance <- mxMatrix("Diag", nvar, nvar, TRUE, .2, name="ThetaDelta",

labels=paste("theta", 1:nvar, sep=""))

liModel <- mxModel(model="LISREL Factor Model",
factorMeans, xIntercepts, factorLoadings,
factorCovariance, xResidualVariance,
mxExpectationLISREL(LX="LambdaX", PH="Phi",
TD="ThetaDelta", TX="TauX", KA="Kappa"),
mxFitFunctionML(),
mxData(cov(demoOneFactor), "cov",
means=colMeans(demoOneFactor), numObs=nrow(demoOneFactor))
)

liRun <- mxRun(liModel)

summary(liRun)

mxExpectationNormal Create MxExpectationNormal Object

Description

This function creates an MxExpectationNormal object.

Usage

mxExpectationNormal(covariance, means, dimnames = NA, thresholds = NA,
threshnames = dimnames)

Arguments

covariance A character string indicating the name of the expected covariance algebra.

means A character string indicating the name of the expected means algebra.

mxExpectationNormal 115

dimnames An optional character vector to be assigned to the dimnames of the covariance
and means algebras.

thresholds An optional character string indicating the name of the thresholds matrix.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

Expectation functions define the way that model expectations are calculated. The mxExpectation-
Normal function uses the algebra defined by the ’covariance’ and ’means’ arguments to define the
expected covariance and means under the assumption of multivariate normality. The ’covariance’
argument takes an MxAlgebra object, which defines the expected covariance of an associated Mx-
Data object. The ’means’ argument takes an MxAlgebra object, which defines the expected means
of an associated MxData object. The ’dimnames’ arguments takes an optional character vector. If
this argument is not a single NA, then this vector is used to assign the dimnames of the means vector
as well as the row and columns dimnames of the covariance matrix.

thresholds: The name of the thresholds matrix. When needed (for modelling ordinal data), this
matrix should be created using mxMatrix(). The thresholds matrix must have as many columns as
there are ordinal variables in the model, and number of rows equal to one fewer than the maximum
number of levels found in the ordinal variables. The starting values of this matrix must also be set
to reasonable values. Fill each column with a set of ordered start thresholds, one for each level of
this column’s factor levels minus 1. These thresholds may be free if you wish them to be estimated,
or fixed. The unused rows in each column, if any, can be set to any value including NA.

threshnames: A character vector consisting of the variables in the thresholds matrix, i.e., the names
of ordinal variables in a model. This is necessary for OpenMx to map the thresholds matrix columns
onto the variables in your data. If you set the dimnames of the columns in the thresholds matrix
then threshnames is not needed.

Usage Notes: dimnames must be supplied where the matrices referenced by the covariance and
means algebras are not themselves labeled. Failure to do so leads to an error noting that the covari-
ance or means matrix associated with the FIML objective does not contain dimnames.

mxExpectationNormal evaluates with respect to an MxData object. The MxData object need not
be referenced in the mxExpectationNormal function, but must be included in the MxModel object.
When the ’type’ argument in the associated MxData object is equal to ’raw’, missing values are
permitted in the associated MxData object.

To evaluate, place an mxExpectationNormal object, the mxData object for which the expected co-
variance approximates, referenced MxAlgebra and MxMatrix objects, optional MxBounds or Mx-
Constraint objects, and an mxFitFunction such as mxFitFunctionML in an MxModel object. This
model may then be evaluated using the mxRun function.

The results of the optimization can be reported using the summary function, or accessed directly in
the ’output’ slot of the resulting model (i.e., modelName$output). Components of the output may
be referenced using the Extract functionality.

Value

Returns an MxExpectationNormal object.

116 mxExpectationNormal

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxAlgebra,
mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

M <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),
free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"),
name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA),
name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", means="M",
dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleModel", M, S, A, I,
expCov, expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxExpectationRAM 117

mxExpectationRAM Create an MxExpectationRAM Object

Description

This function creates an MxExpectationRAM object.

Usage

mxExpectationRAM(A="A", S="S", F="F", M = NA, dimnames = NA, thresholds = NA,
threshnames = dimnames, ..., between=NULL, verbose=0L)

Arguments

A A character string indicating the name of the ’A’ matrix.

S A character string indicating the name of the ’S’ matrix.

F A character string indicating the name of the ’F’ matrix.

M An optional character string indicating the name of the ’M’ matrix.

dimnames An optional character vector to be assigned to the column names of the ’F’ and
’M’ matrices.

thresholds An optional character string indicating the name of the thresholds matrix.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

... Not used. Forces remaining arguments to be specified by name.

between A character vector of matrices that specify cross model relationships.

verbose integer. Level of runtime diagnostic output.

Details

Expectation functions define the way that model expectations are calculated. The mxExpectation-
RAM calculates the expected covariance and means of a given MxData object given a RAM model.
This model is defined by reticular action modeling (McArdle and McDonald, 1984). The ’A’, ’S’,
and ’F’ arguments must refer to MxMatrix objects with the associated properties of the A, S, and F
matrices in the RAM modeling approach.

The ’dimnames’ arguments takes an optional character vector. If this argument is not a single NA,
then this vector be assigned to be the column names of the ’F’ matrix and optionally to the ’M’
matrix, if the ’M’ matrix exists.

The ’A’ argument refers to the A or asymmetric matrix in the RAM approach. This matrix consists
of all of the asymmetric paths (one-headed arrows) in the model. A free parameter in any row
and column describes a regression of the variable represented by that row regressed on the variable
represented in that column.

The ’S’ argument refers to the S or symmetric matrix in the RAM approach, and as such must be
square. This matrix consists of all of the symmetric paths (two-headed arrows) in the model. A free

118 mxExpectationRAM

parameter in any row and column describes a covariance between the variable represented by that
row and the variable represented by that column. Variances are covariances between any variable at
itself, which occur on the diagonal of the specified matrix.

The ’F’ argument refers to the F or filter matrix in the RAM approach. If no latent variables are
included in the model (i.e., the A and S matrices are of both of the same dimension as the data
matrix), then the ’F’ should refer to an identity matrix. If latent variables are included (i.e., the A
and S matrices are not of the same dimension as the data matrix), then the ’F’ argument should
consist of a horizontal adhesion of an identity matrix and a matrix of zeros.

The ’M’ argument refers to the M or means matrix in the RAM approach. It is a 1 x n matrix,
where n is the number of manifest variables + the number of latent variables. The M matrix must
be specified if either the mxData type is “cov” or “cor” and a means vector is provided, or if the
mxData type is “raw”. Otherwise the M matrix is ignored.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxExpectationRAM will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

mxExpectationRAM evaluates with respect to an MxData object. The MxData object need not be
referenced in the mxExpectationRAM function, but must be included in the MxModel object.

To evaluate, place mxExpectationRAM objects, the mxData object for which the expected covari-
ance approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and
MxConstraint objects in an MxModel object. This model may then be evaluated using the mxRun
function. The results of the optimization can be found in the ’output’ slot of the resulting model,
and may be obtained using the mxEval function..

Value

Returns a new MxExpectationRAM object. mxExpectationRAM objects should be included with
models with referenced MxAlgebra, MxData and MxMatrix objects.

References

McArdle, J. J. and MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action
Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-
251.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxAlgebra,
mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)

mxExpectationStateSpace 119

tmpNames <- names(tmpFrame)

Define the matrices

matrixS <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"),
name = "S")

matrixA <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA),
name = "A")

matrixF <- mxMatrix(type="Iden", nrow=2, ncol=2, name="F")
matrixM <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),

free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

Define the expectation

expFunction <- mxExpectationRAM(M="M", dimnames = tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleRAMModel",
matrixA, matrixS, matrixF, matrixM,
expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxExpectationStateSpace

Create an MxExpectationStateSpace Object

Description

This function creates a new MxExpectationStateSpace object.

Usage

mxExpectationStateSpace(A, B, C, D, Q, R, x0, P0, u,
dimnames = NA, thresholds = NA, threshnames = dimnames,
..., t = NA, scores=FALSE)

120 mxExpectationStateSpace

Arguments

A A character string indicating the name of the ’A’ matrix.

B A character string indicating the name of the ’B’ matrix.

C A character string indicating the name of the ’C’ matrix.

D A character string indicating the name of the ’D’ matrix.

Q A character string indicating the name of the ’Q’ matrix.

R A character string indicating the name of the ’R’ matrix.

x0 A character string indicating the name of the ’x0’ matrix.

P0 A character string indicating the name of the ’P0’ matrix.

u A character string indicating the name of the ’u’ matrix.

dimnames An optional character vector to be assigned to the row names of the ’C’ matrix.

thresholds Not Yet Implemented. An optional character string indicating the name of the
thresholds matrix.

threshnames Not Yet Implemented. An optional character vector to be assigned to the column
names of the thresholds matrix.

... Unused. Requires further arguments to be named.

t Not to be used

scores Not to be used

Details

Expectation functions define the way that model expectations are calculated. When used in con-
junction with the mxFitFunctionML, the mxExpectationStateSpace uses maximum likelihood pre-
diction error decomposition (PED) to obtain estimates of free parameters in a model of the raw
MxData object. State space expectations treat the raw data as a multivariate time series of equally
spaced times with each row corresponding to a single occasion. This is not a model of the block
Toeplitz lagged autocovariance matrix. State space expectations implement a classical Kalman filter
to produce expectations.

The hybrid Kalman filter (combination of classical Kalman and Kalman-Bucy filters) for continuous
latent time with discrete observations is implemented and is available as mxExpectationStateSpace-
ContinuousTime. The following alternative filters are not yet implemented: square root Kalman
filter (in Cholesky or singular value decomposition form), extended Kalman filter for linear approx-
imations to nonlinear state space models, unscented Kalman filter for highly nonlinear state space
models, and Rauch-Tung-Striebel smoother for updating forecast state estimates after a complete
forward pass through the data has been made.

Missing data handling is implemented in the same fashion as full information maximum likelihood
for partially missing rows of data. Additionally, completely missing rows of data are handled by
only using the prediction step from the Kalman filter and omitting the update step.

This model uses notation for the model matrices commonly found in engineering and control theory.

The ’A’, ’B’, ’C’, ’D’, ’Q’, ’R’, ’x0’, and ’P0’ arguments must be the names of MxMatrix or
MxAlgebraobjects with the associated properties of the A, B, C, D, Q, R, x0, and P0 matrices in the
state space modeling approach.

mxExpectationStateSpace 121

The state space expectation is defined by the following model equations.

xt = Axt−1 +But + qt

yt = Cxt +Dut + rt

with qt and rt both independently and identically distributed random Gaussian (normal) variables
with mean zero and covariance matrices Q and R, respectively.

The first equation is called the state equation. It describes how the latent states change over time.
Also, the state equation in state space modeling is directly analogous to the structural model in
LISREL structural equation modeling.

The second equation is called the output equation. It describes how the latent states relate to the
observed states at a single point in time. The output equation shows how the observed output is
produced by the latent states. Also, the output equation in state space modeling is directly analogous
to the measurement model in LISREL structural equation modeling.

Note that the covariates, u, have "instantaneous" effects on both the state and output equations. If
lagged effects are desired, then the user must create a lagged covariate by shifting their observed
variable to the desired lag.

The state and output equations, together with some minimal assumptions and the Kalman filter,
imply a new expected covariance matrix and means vector for every row of data. The expected
covariance matrix of row t is

St = C(APt−1A
T +Q)CT +R

The expected means vector of row t is

ŷt = Cxt +Dut

The ’dimnames’ arguments takes an optional character vector.

The ’A’ argument refers to the A matrix in the State Space approach. This matrix consists of time
regressive coefficients from the latent variable in column j at time t− 1 to the latent variable in row
i at time t. Entries in the diagonal are autoregressive coefficients. Entries in the off-diagonal are
cross-lagged regressive coefficients. If the A and B matrices are zero matrices, then the state space
model reduces to a factor analysis. The A matrix is sometimes called the state-transition model.

The ’B’ argument refers to the B matrix in the State Space approach. This matrix consists of
regressive coefficients from the input (manifest covariate) variable j at time t to the latent variable
in row i at time t. Note that the covariate effect is contemporaneous: the covariate at time t has
influence on the latent state also at time t. A lagged effect can be created by lagged the observed
variable. The B matrix is sometimes called the control-input model.

The ’C’ argument refers to the C matrix in the State Space approach. This matrix consists of con-
temporaneous regression coefficients from the latent variable in column j to the observed variable
in row i. This matrix is directly analogous to the factor loadings matrix in LISREL and Mplus
models. The C matrix is sometimes called the observation model.

The ’D’ argument refers to the D matrix in the State Space approach. This matrix consists of con-
temporaneous regressive coefficients from the input (manifest covariate) variable j to the observed
variable in row i. The D matrix is sometimes called the feedthrough or feedforward matrix.

122 mxExpectationStateSpace

The ’Q’ argument refers to the Q matrix in the State Space approach. This matrix consists of
residual covariances among the latent variables. This matrix must be symmetric. As a special case,
it is often diagonal. The Q matrix is the covariance of the process noise. Just as in factor analysis
and general structural equation modeling, the scale of the latent variables is usually set by fixing
some factor loadings in the C matrix, or fixing some factor variances in the Q matrix.

The ’R’ argument refers to the R matrix in the State Space approach. This matrix consists of
residual covariances among the observed (manifest) variables. This matrix must be symmetric As a
special case, it is often diagonal. The R matrix is the covariance of the observation noise.

The ’x0’ argument refers to the x0 matrix in the State Space approach. This matrix consists of the
column vector of the initial values for the latent variables. The state space expectation uses the x0
matrix as the starting point to recursively estimate the latent variables’ values at each time. These
starting values can be difficult to pick, however, for sufficiently long time series they often do not
greatly impact the estimation.

The ’P0’ argument refers to the P0 matrix in the State Space approach. This matrix consists of the
initial values of the covariances of the error in the initial latent variable estimates given in x0. That
is, the P0 matrix gives the covariance of x0 − xtrue0 where xtrue0 is the vector of true initial
values. P0 is a measure of the accuracy of the intial latent state estimates. The Kalman filter uses
this initial covariance to recursively generated a new covariance for each time point based on the
previous time point. The Kalman filter updates this covariance so that it is as small as possible
(minimum trace). Similar to the x0 matrix, these starting values are often difficult to choose.

The ’u’ argument refers to the u matrix in the State Space approach. This matrix consists of the
inputs or manifest covariates of the state space expectation. The u matrix must be a column vector
with the same number of rows as the B and D matrices have columns. If no inputs are desired, u
can be a zero matrix. If time-varying inputs are desired, then they should be included as columns in
the MxData object and referred to in the labels of the u matrix as definition variables. There is an
example of this below.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxExpectationStateSpace will not return an error for incorrect specification,
but incorrect specification will likely lead to estimation problems or errors in the mxRun function.

mxExpectationStateSpace evaluates with respect to an MxData object. The MxData object need
not be referenced in the mxExpectationStateSpace function, but must be included in the MxModel
object. mxExpectationStateSpace requires that the ’type’ argument in the associated MxData object
be equal to ’raw’. Neighboring rows of the MxData object are treated as adjacent, equidistant time
points increasing from the first to the last row.

To evaluate, place mxExpectationStateSpace objects, the mxData object for which the expected
covariance approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds
and MxConstraint objects in an MxModel object. This model may then be evaluated using the
mxRun function. The results of the optimization can be found in the ’output’ slot of the resulting
model, and may be obtained using the mxEval function.

Value

Returns a new MxExpectationStateSpace object. mxExpectationStateSpace objects should be in-
cluded with models with referenced MxAlgebra, MxData and MxMatrix objects.

mxExpectationStateSpace 123

References

K.J. Åström and R.M. Murray (2010). Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press.

J. Durbin and S.J. Koopman. (2001). Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

R.E. Kalman (1960). A New Approach to Linear Filtering and Prediction Problems. Basic Engi-
neering, 82, 35-45.

G. Petris (2010). An R Package for Dynamic Linear Models. Journal of Statistical Software, 36,
1-16.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxExpectationStateSpaceContinuousTime

Examples

Create and fit a model using mxMatrix, mxExpectationStateSpace, and mxFitFunctionML
require(OpenMx)
data(demoOneFactor)
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)
ssModel <- mxModel(model="State Space Manual Example",

mxMatrix("Full", 1, 1, TRUE, .3, name="A"),
mxMatrix("Zero", 1, 1, name="B"),
mxMatrix("Full", nvar, 1, TRUE, .6, name="C", dimnames=list(varnames, "F1")),
mxMatrix("Zero", nvar, 1, name="D"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"),
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"),
mxMatrix("Zero", 1, 1, name="x0"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"),
mxMatrix("Zero", 1, 1, name="u"),
mxData(observed=demoOneFactor[1:100,], type="raw"),#fewer rows = fast
mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", "u"),
mxFitFunctionML()

)
ssRun <- mxRun(ssModel)
summary(ssRun)
Note the freely estimated Autoregressive parameter (A matrix)
is near zero as it should be for the independent rows of data
from the factor model.

Create and fit a model with INPUTS using mxMatrix, mxExpectationStateSpace, and mxFitFunctionML
require(OpenMx)
data(demoOneFactor)
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)
#demoOneFactorInputs <- cbind(demoOneFactor, V1=rep(1, nrow(demoOneFactor)))
demoOneFactorInputs <- cbind(demoOneFactor, V1=rnorm(nrow(demoOneFactor)))

124 mxExpectationStateSpaceContinuousTime

ssModel <- mxModel(model="State Space Inputs Manual Example",
mxMatrix("Full", 1, 1, TRUE, .3, name="A"),
mxMatrix("Full", 1, 1, TRUE, values=1, name="B"),
mxMatrix("Full", nvar, 1, TRUE, .6, name="C", dimnames=list(varnames, "F1")),
mxMatrix("Zero", nvar, 1, name="D"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"),
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"),
mxMatrix("Zero", 1, 1, name="x0"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"),
mxMatrix("Full", 1, 1, FALSE, labels="data.V1", name="u"),
mxData(observed=demoOneFactorInputs[1:100,], type="raw"),#fewer rows = fast
mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", u="u"),
mxFitFunctionML()

)
ssRun <- mxRun(ssModel)
summary(ssRun)
Note the freely estimated Autoregressive parameter (A matrix)
and the freely estimated Control-Input parameter (B matrix)
are both near zero as they should be for the independent rows of data
from the factor model that does not have inputs, covariates,
or exogenous variables.

mxExpectationStateSpaceContinuousTime

Create an MxExpectationStateSpace Object

Description

This function creates a new MxExpectationStateSpace object.

Usage

mxExpectationStateSpaceContinuousTime(A, B, C, D, Q, R, x0, P0, u, t = NA,
dimnames = NA, thresholds = NA, threshnames = dimnames,
..., scores=FALSE)

mxExpectationSSCT(A, B, C, D, Q, R, x0, P0, u, t = NA,
dimnames = NA, thresholds = NA, threshnames = dimnames,
..., scores=FALSE)

Arguments

A A character string indicating the name of the ’A’ matrix.

B A character string indicating the name of the ’B’ matrix.

C A character string indicating the name of the ’C’ matrix.

D A character string indicating the name of the ’D’ matrix.

Q A character string indicating the name of the ’Q’ matrix.

mxExpectationStateSpaceContinuousTime 125

R A character string indicating the name of the ’R’ matrix.

x0 A character string indicating the name of the ’x0’ matrix.

P0 A character string indicating the name of the ’P0’ matrix.

u A character string indicating the name of the ’u’ matrix.

t A character string indicating the name of the ’t’ matrix.

dimnames An optional character vector to be assigned to the row names of the ’C’ matrix.

thresholds Not Yet Implemented. An optional character string indicating the name of the
thresholds matrix.

threshnames Not Yet Implemented. An optional character vector to be assigned to the column
names of the thresholds matrix.

... Unused. Requires further arguments to be named.

scores Not to be used

Details

The mxExpectationStateSpaceContinuousTime and mxExpectationSSCT functions are identi-
cal. The latter is simply an abbreviated name. When using the former, tab completion is strongly en-
couraged to save tedious typing. Both of these functions are wrappers for the mxExpectationStateS-
pace function, which could be used for both discrete and continuous time modeling. However, there
is a strong possibility of misunderstanding the model parameters when switching between discrete
time and continuous time. The expectation matrices have the same names, but mean importantly
different things so caution is warranted. The best practice is to use mxExpectationStateSpace
for discrete time models, and mxExpectationStateSpaceContinuousTime for continuous time
models.

Expectation functions define the way that model expectations are calculated. That is to say, expec-
tation functions define how a set of model matrices get turned into expectations for the data. When
used in conjunction with the mxFitFunctionML, the mxExpectationStateSpace uses maximum like-
lihood prediction error decomposition (PED) to obtain estimates of free parameters in a model of
the raw MxData object. Continuous time state space expectations treat the raw data as a multivari-
ate time series of possibly unevenly spaced times with each row corresponding to a single occasion.
Continuous time state space expectations implement a hybrid Kalman filter to produce expectations.
The hybrid Kalman filter uses a Kalman-Bucy filter for the prediction step and the classical Kalman
filter for the update step. It is a hybrid between the classical Kalman filter used for the discrete (but
possibly unequally spaced) measurement occastions and the continous time Kalman-Bucy filter for
latent variable predictions.

Missing data handling is implemented in the same fashion as full information maximum likelihood
for partially missing rows of data. Additionally, completely missing rows of data are handled by
only using the prediction step from the Kalman-Bucy filter and omitting the update step.

This model uses notation for the model matrices commonly found in engineering and control theory.

The ’A’, ’B’, ’C’, ’D’, ’Q’, ’R’, ’x0’, and ’P0’ arguments must be the names of MxMatrix or
MxAlgebraobjects with the associated properties of the A, B, C, D, Q, R, x0, and P0 matrices in the
state space modeling approach. The ’t’ matrix must be a 1x1 matrix using definition variables that
gives the times at which measurements occurred.

The state space expectation is defined by the following model equations.

126 mxExpectationStateSpaceContinuousTime

d

dt
x(t) = Ax(t) +But + q(t)

yt = Cxt +Dut + rt

with q(t) and rt both independently and identically distributed random Gaussian (normal) variables
with mean zero and covariance matrices Q and R, respectively. Subscripts or square brackets indi-
cate discrete indices; parentheses indicate continuous indices. The derivative of x(t) with respect
to t is d

dtx(t).

The first equation is called the state equation. It describes how the latent states change over time
with a first-order linear differential equation.

The second equation is called the output equation. It describes how the latent states relate to the
observed states at a single point in time. The output equation shows how the observed output is
produced by the latent states. Also, the output equation in state space modeling is directly analogous
to the measurement model in LISREL structural equation modeling.

Note that the covariates, u, have "instantaneous" effects on both the state and output equations. If
lagged effects are desired, then the user must create a lagged covariate by shifting their observed
variable to the desired lag.

The state and output equations, together with some minimal assumptions and the Kalman filter,
imply a new expected covariance matrix and means vector for every row of data. The expected
covariance matrix of row t is

St = C(APt−1A
T +Q)CT +R

The expected means vector of row t is

ŷt = Cxt +Dut

The ’dimnames’ arguments takes an optional character vector.

The ’A’ argument refers to the A matrix in the State Space approach. This matrix gives the dynam-
ics. Entries in the diagonal give the strength of the influence of a variable’s position on its slope.
Entries in the off-diagonal give the coupling strength from one variable to another. The A matrix is
sometimes called the state-transition model.

The ’B’ argument refers to the B matrix in the State Space approach. This matrix consists of
exogenous forces that influence the dynamics. Note that the covariate effect is contemporaneous:
the covariate at time t has influence on the slope of the latent state also at time t. A lagged effect
can be created by lagged the observed variable. The B matrix is sometimes called the control-input
model.

The ’C’ argument refers to the C matrix in the State Space approach. This matrix consists of con-
temporaneous regression coefficients from the latent variable in column j to the observed variable
in row i. This matrix is directly analogous to the factor loadings matrix in LISREL and Mplus
models. The C matrix is sometimes called the observation model.

The ’D’ argument refers to the D matrix in the State Space approach. This matrix consists of con-
temporaneous regressive coefficients from the input (manifest covariate) variable j to the observed
variable in row i. The D matrix is sometimes called the feedthrough or feedforward matrix.

mxExpectationStateSpaceContinuousTime 127

The ’Q’ argument refers to the Q matrix in the State Space approach. This matrix gives the covari-
ance of the dynamic noise. The dynamic noise can be thought of as unmeasured covariate inputs
active at all times. This matrix must be symmetric, diagonal, or zero. As a special case, it is often
diagonal. The Q matrix is the covariance of the process noise. Just as in factor analysis and general
structural equation modeling, the scale of the latent variables is usually set by fixing some factor
loadings in the C matrix, or fixing some factor variances in the Q matrix.

The ’R’ argument refers to the R matrix in the State Space approach. This matrix consists of
residual covariances among the observed (manifest) variables. This matrix must be symmetric As a
special case, it is often diagonal. The R matrix is the covariance of the observation noise.

The ’x0’ argument refers to the x0 matrix in the State Space approach. This matrix consists of the
column vector of the initial values for the latent variables. The state space expectation uses the x0
matrix as the starting point to recursively estimate the latent variables’ values at each time. These
starting values can be difficult to pick, however, for sufficiently long time series they often do not
greatly impact the estimation.

The ’P0’ argument refers to the P0 matrix in the State Space approach. This matrix consists of the
initial values of the covariances of the error in the initial latent variable estimates given in x0. That
is, the P0 matrix gives the covariance of x0 − xtrue0 where xtrue0 is the vector of true initial
values. P0 is a measure of the accuracy of the intial latent state estimates. The Kalman filter uses
this initial covariance to recursively generated a new covariance for each time point based on the
previous time point. The Kalman filter updates this covariance so that it is as small as possible
(minimum trace). Similar to the x0 matrix, these starting values are often difficult to choose.

The ’u’ argument refers to the u matrix in the State Space approach. This matrix consists of the
inputs or manifest covariates of the state space expectation. The u matrix must be a column vector
with the same number of rows as the B and D matrices have columns. If no inputs are desired, u
can be a zero matrix. If time-varying inputs are desired, then they should be included as columns in
the MxData object and referred to in the labels of the u matrix as definition variables. There is an
example of this below.

The ’t’ argument refers to the tmatrix in the State Space approach. This matrix should be 1x1 (1 row
and 1 column) and not free. The label for the element of this matrix should be ’data.YourTimeVariable’.
The ’data’ part does not change, but ’YourTimeVariable’ should be a name in your data set that gives
the times at which measurement happened. The units of time are up to you. Your choice of time
units will influence of the values of the parameters you estimate. Also, recall that the model is given
x0 and P0. These always happen at t = 0. So the first row of data happens some amount of time
after zero.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxExpectationStateSpace will not return an error for incorrect specification,
but incorrect specification will likely lead to estimation problems or errors in the mxRun function.

mxExpectationStateSpaceContinuousTime evaluates with respect to an MxData object. The Mx-
Data object need not be referenced in the mxExpectationStateSpace function, but must be included
in the MxModel object. mxExpectationStateSpace requires that the ’type’ argument in the asso-
ciated MxData object be equal to ’raw’. Neighboring rows of the MxData object are treated as
adjacent, equidistant time points increasing from the first to the last row.

To evaluate, place an mxExpectationStateSpaceContinuousTime object, the mxData object for which
the expected covariance approximates, referenced MxAlgebra and MxMatrix objects, and optional
MxBounds and MxConstraint objects in an MxModel object. This model may then be evaluated

128 mxExpectationStateSpaceContinuousTime

using the mxRun function. The results of the optimization can be found in the ’output’ slot of the
resulting model, and may be obtained using the mxEval function.

Value

Returns a new MxExpectationStateSpace object. mxExpectationStateSpace objects should be in-
cluded with models with referenced MxAlgebra, MxData and MxMatrix objects.

References

K.J. Åström and R.M. Murray (2010). Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press.

J. Durbin and S.J. Koopman. (2001). Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

R.E. Kalman (1960). A New Approach to Linear Filtering and Prediction Problems. Basic Engi-
neering, 82, 35-45.

R.E. Kalman and R.S. Bucy (1961). New Results in Linear Filtering and Prediction Theory. Trans-
actions of the ASME, Series D, Journal of Basic Engineering, 83, 95-108.

G. Petris (2010). An R Package for Dynamic Linear Models. Journal of Statistical Software, 36,
1-16.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxExpectationStateSpace

Examples

#--
Example 1
Undamped linear oscillator, i.e. a noisy sine wave.
Measurement error, but no dynamic error, single indicator.
This example works great.

#--------------------------------------
Data Generation

require(OpenMx)

set.seed(405)
tlen <- 200
t <- seq(1.2, 50, length.out=tlen)

freqParam <- .5
initialCond <- matrix(c(2.5, 0))
x <- initialCond[1,1]*cos(freqParam*t)
plot(t, x, type='l')

measVar <- 1.5
y <- cbind(obs=x+rnorm(tlen, sd=sqrt(measVar)), tim=t)

mxExpectationStateSpaceContinuousTime 129

plot(t, y[,1], type='l')

#--------------------------------------
Model Specification

#Note: the bounds are here only to keep SLSQP from
stepping too far off a cliff. With the bounds in
place, SLSQP finds the right solution. Without
the bounds, SLSQP goes crazy.

cdim <- list('obs', c('ksi', 'ksiDot'))

amat <- mxMatrix('Full', 2, 2, c(FALSE, TRUE, FALSE, TRUE), c(0, -.1, 1, -.2),
name='A', lbound=-10)
bmat <- mxMatrix('Zero', 2, 1, name='B')
cmat <- mxMatrix('Full', 1, 2, FALSE, c(1, 0), name='C', dimnames=cdim)
dmat <- mxMatrix('Zero', 1, 1, name='D')
qmat <- mxMatrix('Zero', 2, 2, name='Q')
rmat <- mxMatrix('Diag', 1, 1, TRUE, .4, name='R', lbound=1e-6)
xmat <- mxMatrix('Full', 2, 1, TRUE, c(0, 0), name='x0', lbound=-10, ubound=10)
pmat <- mxMatrix('Diag', 2, 2, FALSE, 1, name='P0')
umat <- mxMatrix('Zero', 1, 1, name='u')
tmat <- mxMatrix('Full', 1, 1, name='time', labels='data.tim')

osc <- mxModel("LinearOscillator",
amat, bmat, cmat, dmat, qmat, rmat, xmat, pmat, umat, tmat,
mxExpectationSSCT('A', 'B', 'C', 'D', 'Q', 'R', 'x0', 'P0', 'u', 'time'),
mxFitFunctionML(),
mxData(y, 'raw'))

oscr <- mxRun(osc)

#--------------------------------------
Results Examination

summary(oscr)

(ssFreqParam <- mxEval(sqrt(-A[2,1]), oscr))
freqParam

(ssMeasVar <- mxEval(R, oscr))
measVar

dampingParam <- 0
(ssDampingParam <- mxEval(-A[2,2], oscr))
dampingParam

130 mxFactor

mxFactor Fail-safe Factors

Description

This is a wrapper for the R function factor.

OpenMx requires ordinal data to be ordered. R’s factor function doesn’t enforce this, hence this
wrapper exists to throw an error should you accidentally try and run with ordered = FALSE.

Also, the ‘levels’ parameter is optional in R’s factor function. However, relying on the data
to specify the data is foolhardy for the following reasons: The factor function will skip levels
missing from the data: Specifying these in levels leaves the list of levels complete. Data will often
not explore the min and max level that the user knows are possible. For these reasons this function
forces you to write out all possible levels explicitly.

Usage

mxFactor(x = character(), levels, labels = levels,
exclude = NA, ordered = TRUE, collapse = FALSE)

Arguments

x either a vector of data or a data.frame object.

levels a mandatory vector of the values that ’x’ might have taken.

labels _either_ an optional vector of labels for the levels, _or_ a character string of
length 1.

exclude a vector of values to be excluded from the set of levels.

ordered logical flag to determine if the levels should be regarded as ordered (in the order
given). Required to be TRUE.

collapse logical flag to determine if duplicate labels should collapsed into a single level

Details

If ‘x’ is a data.frame, then all of the columns of ‘x’ are converted into ordered factors. If ‘x’ is
a data.frame, then ‘levels’ and ‘labels’ may be either a list or a vector. When ‘levels’ is a list,
then different levels are assigned to different columns of the constructed data.frame object. When
‘levels’ is a vector, then the same levels are assigned to all the columns of the data.frame object.
The function will throw an error if ‘ordered’ is not TRUE or if ‘levels’ is missing. See factor for
more information on creating ordered factors.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

mxFactorScores 131

Examples

myVar <- c("s", "t", "a", "t", "i", "s", "t", "i", "c", "s")
ff <- mxFactor(myVar, levels=letters)
Note: letters is a built in list of all lowercase letters of the alphabet
ff
[1] s t a t i s t i c s
Levels: a < b < c < d < e < f < g < h < i < j < k < l < m < n < o < p < q <
r < s < t < u < v < w < x < y < z

as.integer(ff) # the internal codes

factor(ff) # NOTE: drops the levels that do not occur.
mxFactor prevents you doing this unintentionally.

This example works on a dataframe
foo <- data.frame(x=c(1:3),y=c(4:6),z=c(7:9))

Applys one set of levels to all three columns
mxFactor(foo, c(1:9))

Apply unique sets of levels to each variable
mxFactor(foo, list(c(1:3), c(4:6), c(7:9)))

mxFactor(foo, c(1:9), labels=c(1,1,1,2,2,2,3,3,3), collapse=TRUE)

mxFactorScores Estimate factor scores and standard errors

Description

This function creates the factor scores and their standard errors under different methods for an
MxModel object that has either a RAM or LISREL expectation.

Usage

mxFactorScores(model, type=c('ML', 'WeightedML', 'Regression'))

Arguments

model An MxModel object with either an MxExpectationLISREL or MxExpectation-
RAM

type The type of factor scores to compute

132 mxFactorScores

Details

This is a helper function to compute or estimate factor scores along with their standard errors.
The two maximum likelihood methods create a new model for each data row. They then estimate
the factor scores as free parameters in a model with a single data row. For ’ML’, the conditional
likelihood of the data given the factor scores is optimized:

L(D|F)

. For ’WeightedML’, the joint likelihood of the data and the factor scores is optimized:

L(D,F) = L(D|F)L(F)

. The WeightedML scores are akin to the empirical Bayes random effects estimates from mixed
effects modeling. They display the same kind of shrinkage as random effects estimates, and for
the same reason: they account for the latent variable distribution in their estimation. In many
cases, especially for ordinal data or missing data, the weighted ML scores are to be preferred over
alternatives (Estabrook & Neale, 2013).

For type=’Regression’, with LISREL expectation, factor scores are computed based on a simple
formula. This formula is equivalent to the formula for the Kalman updated scores in a state space
model with zero dynamics (Priestly & Subba Rao, 1975). Thus, to compute the regression factor
scores, the appropriate state space model is set-up and the mxKalmanScores function is used to pro-
duce the factor scores and their standard errors. With RAM expectation, factor scores are predicted
from the non-missing manifest variables for each row of the raw data, using a general linear predic-
tion formula analytically equivalent to that used with LISREL expectation. The standard errors for
regression-predicted RAM factor scores are the square roots of the indeterminate variances of the
latent variables, given the data row’s missing-data pattern and the values of any relevant definition
variables.

Value

An array with dimensions (Number of Rows of Data, Number of Latent Variables, 2). The third
dimension has the scores in the first slot and the standard errors in the second slot. The rows are
in the order of the unsorted data. Multigroup models are an exception, in that the returned value is
instead a list of such arrays, containing one per group.

References

Estabrook, R. & Neale, M. C. (2013). A Comparison of Factor Score Estimation Methods in the
Presence of Missing Data: Reliability and an Application to Nicotine Dependence. Multivariate
Behavioral Research, 48, 1-27.

Priestley, M. & Subba Rao, T. (1975). The estimation of factor scores and Kalman filtering for
discrete parameter stationary processes. International Journal of Control, 21, 971-975.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxKalmanScores

mxFIMLObjective 133

Examples

Create and estimate a factor model
require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("OneFactor",

type="LISREL",
manifestVars=list(exo=manifests),
latentVars=list(exo=latents),
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
mxPath(from='one', to=manifests),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500,

means = colMeans(demoOneFactor)))
summary(factorRun <- mxRun(factorModel))

Swap in raw data in place of summary data
factorRun <- mxModel(factorRun, mxData(observed=demoOneFactor[1:50,], type="raw"))

Estimate factor scores for the model
r1 <- mxFactorScores(factorRun, 'Regression')

mxFIMLObjective DEPRECATED: Create MxFIMLObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxExpectationNormal() and mxFitFunctionML() instead. As a temporary workaround,
mxFIMLObjective returns a list containing an MxExpectationNormal object and an MxFitFunc-
tionML object.

All occurrences of

mxFIMLObjective(covariance, means, dimnames = NA, thresholds = NA, vector = FALSE, thresh-
names = dimnames)

Should be changed to

mxExpectationNormal(covariance, means, dimnames = NA, thresholds = NA, threshnames = dim-
names) mxFitFunctionML(vector = FALSE)

Arguments

covariance A character string indicating the name of the expected covariance algebra.

means A character string indicating the name of the expected means algebra.

134 mxFIMLObjective

dimnames An optional character vector to be assigned to the dimnames of the covariance
and means algebras.

thresholds An optional character string indicating the name of the thresholds matrix.

vector A logical value indicating whether the objective function result is the likelihood
vector.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationNormal
and mxFitFunctionML as shown in the example below.

Objective functions were functions for which free parameter values are chosen such that the value
of the objective function is minimized. The mxFIMLObjective function used full-information max-
imum likelihood to provide maximum likelihood estimates of free parameters in the algebra defined
by the ’covariance’ and ’means’ arguments. The ’covariance’ argument takes an MxAlgebra ob-
ject, which defines the expected covariance of an associated MxData object. The ’means’ argument
takes an MxAlgebra object, which defines the expected means of an associated MxData object. The
’dimnames’ arguments takes an optional character vector. If this argument is not a single NA, then
this vector is used to assign the dimnames of the means vector as well as the row and columns
dimnames of the covariance matrix.

The ’vector’ argument is either TRUE or FALSE, and determines whether the objective function
returns a column vector of the likelihoods, or a single -2*(log likelihood) value.

thresholds: The name of the thresholds matrix. When needed (for modelling ordinal data), this
matrix should be created using mxMatrix(). The thresholds matrix must have as many columns as
there are ordinal variables in the model, and number of rows equal to one fewer than the maximum
number of levels found in the ordinal variables. The starting values of this matrix must also be set
to reasonable values. Fill each column with a set of ordered start thresholds, one for each level of
this column’s factor levels minus 1. These thresholds may be free if you wish them to be estimated,
or fixed. The unused rows in each column, if any, can be set to any value including NA.

threshnames: A character vector consisting of the variables in the thresholds matrix, i.e., the names
of ordinal variables in a model. This is necessary for OpenMx to map the thresholds matrix columns
onto the variables in your data. If you set the dimnames of the columns in the thresholds matrix
then threshnames is not needed.

Usage Notes: dimnames must be supplied where the matrices referenced by the covariance and
means algebras are not themselves labeled. Failure to do so leads to an error noting that the covari-
ance or means matrix associated with the FIML objective does not contain dimnames.

mxFIMLObjective evaluates with respect to an MxData object. The MxData object need not be
referenced in the mxFIMLObjective function, but must be included in the MxModel object. mx-
FIMLObjective requires that the ’type’ argument in the associated MxData object be equal to ’raw’.
Missing values are permitted in the associated MxData object.

To evaluate, place MxFIMLObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.

mxFIMLObjective 135

The results of the optimization can be reported using the summary function, or accessed directly in
the ’output’ slot of the resulting model (i.e., modelName$output). Components of the output may
be referenced using the Extract functionality.

Value

Returns a list containing an MxExpectationNormal object and an MxFitFunctionML object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

M <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),
free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", means="M", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleModel", M, S, A, I, expCov, expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

136 mxFitFunctionAlgebra

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

MxFitFunction-class MxFitFunction

Description

This is an internal class and should not be used directly.

mxFitFunctionAlgebra Create MxFitFunctionAlgebra Object

Description

mxFitFunctionAlgebra returns an MxFitFunctionAlgebra object.

Usage

mxFitFunctionAlgebra(algebra, numObs = NA, numStats = NA, ..., gradient =
NA_character_, hessian = NA_character_, verbose = 0L, units="-2lnL")

Arguments

algebra A character string indicating the name of an MxAlgebra or MxMatrix object to
use for optimization.

numObs (optional) An adjustment to the total number of observations in the model.

numStats (optional) An adjustment to the total number of observed statistics in the model.

... Not used. Forces remaining arguments to be specified by name.

gradient (optional) A character string indicating the name of an MxAlgebra object.

hessian (optional) A character string indicating the name of an MxAlgebra object.

verbose (optional An integer to increase the level of runtime log output.

units (optional) The units of the fit statistic.

mxFitFunctionAlgebra 137

Details

If you want to fit a multigroup model, the preferred way is to use mxFitFunctionMultigroup.

Fit functions are functions for which free parameter values are chosen such that the value of the ob-
jective function is minimized. While the other fit functions in OpenMx require an expectation func-
tion for the model, the mxAlgebraObjective function uses the referenced MxAlgebra or MxMatrix
object as the function to be minimized.

If a model’s fit function is an mxFitFunctionAlgebra objective function, then the referenced alge-
bra in the objective function must return a 1 x 1 matrix (when using OpenMx’s default optimizer).
There is no restriction on the dimensions of an fit function that is not the primary, or ‘topmost’,
objective function.

To evaluate an algebra fit function, place the following objects in a MxModel object: a mxFitFunctionAlgebra,
MxAlgebra and MxMatrix entities referenced by the MxAlgebraObjective, and optional MxBounds
and MxConstraint objects. This model may then be evaluated using the mxRun function. The re-
sults of the optimization may be obtained using the mxEval function on the name of the MxAlgebra,
after the model has been run.

First and second derivatives can be provided with the algebra fit function. The dimnames on the
gradient and hessian MxAlgebras are matched against names of free variables. Names that do not
match are ignored. The fit is assumed to be in deviance units (-2 log likelihood units). If you
are working in log likelihood units, the -2 scaling factor is not applied automatically. You have to
multiply by -2 yourself.

Value

Returns an MxFitFunctionAlgebra object. MxFitFunctionAlgebra objects should be included with
models with referenced MxAlgebra and MxMatrix objects.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionML, mxFitFunctionWLS, mxFitFunctionGREML,
mxFitFunctionR, mxFitFunctionRow

To create an algebra suitable as a reference function to be minimized see: mxAlgebra

More information about the OpenMx package may be found here.

Examples

Create and fit a very simple model that adds two numbers using mxFitFunctionAlgebra

library(OpenMx)

Create a matrix 'A' with no free parameters
A <- mxMatrix('Full', nrow = 1, ncol = 1, values = 1, name = 'A')

Create an algebra 'B', which defines the expression A + A

138 mxFitFunctionGREML

B <- mxAlgebra(A + A, name = 'B')

Define the objective function for algebra 'B'
objective <- mxFitFunctionAlgebra('B')

Place the algebra, its associated matrix and
its objective function in a model
tmpModel <- mxModel(model="Addition", A, B, objective)

Evalulate the algebra
tmpModelOut <- mxRun(tmpModel)

View the results
tmpModelOut$output$minimum

mxFitFunctionGREML Create MxFitFunctionGREML Object

Description

This function creates a new MxFitFunctionGREML object.

Usage

mxFitFunctionGREML(dV=character(0))

Arguments

dV Vector of character strings; defaults to a character vector of length zero. If a
value of non-zero length is provided, it must be a named character vector. This
vector’s names must be the labels of free parameters in the model. The vector’s
elements (i.e., the character strings themselves) must be the names of MxAlgebra
or MxMatrix object(s), each of which equals the first partial derivative of the ’V’
matrix with respect to the corresponding free parameter.

Details

Making effective use of argument dV will usually require a custom mxComputeSequence(). The
derivatives of the REML loglikelihood function with respect to parameters can be internally com-
puted from the derivatives of the ’V’ matrix supplied via dV. These loglikelihood derivatives will be
valid as long as (1) the derivatives of ’V’ evaluate to symmetric matrices the same size as ’V,’ and
(2) the model contains no MxConstraints. Internally, the derivatives of the ’V’ matrix are assumed
to be symmetric, and the elements above their main diagonals are ignored.

Value

Returns a new object of class MxFitFunctionGREML.

MxFitFunctionGREML-class 139

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

See MxFitFunctionGREML for the S4 class created by mxFitFunctionGREML(). For more informa-
tion generally concerning GREML analyses, including a complete example, see mxExpectationGREML().

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionML, mxFitFunctionWLS, mxFitFunctionAlgebra,
mxFitFunctionR, mxFitFunctionRow

More information about the OpenMx package may be found here.

Examples

gff <- mxFitFunctionGREML()
str(gff)

MxFitFunctionGREML-class

Class "MxFitFunctionGREML"

Description

MxFitFunctionGREML is the fitfunction class for GREML analyses.

Objects from the Class

Objects can be created by calls of the form mxFitFunctionGREML(dV).

Slots

dV: Object of class "MxCharOrNumber". Identifies the MxAlgebra or MxMatrix object(s) to serve
as the derivatives of ’V’ with respect to free parameters.

dVnames: Vector of character strings; names of the free parameters corresponding to slot dV.

MLfit: Object of class "numeric", equal to the maximum-likelihood fitfunction value (as opposed
to the restricted maximum-likelihood value).

info: Object of class "list".

dependencies: Object of class "integer".

expectation: Object of class "integer".

vector: Object of class "logical".

result: Object of class "matrix".

name: Object of class "character".

numObs: Object of class "integer".

140 mxFitFunctionML

Extends

Class "MxBaseFitFunction", directly. Class "MxBaseNamed", by class "MxBaseFitFunction", dis-
tance 2. Class "MxFitFunction", by class "MxBaseFitFunction", distance 2.

Methods

No methods defined with class "MxFitFunctionGREML" in the signature.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

See mxFitFunctionGREML() for creating MxFitFunctionGREML objects. See mxExpectationGREML()
for creating MxExpectationGREML objects, and for more information generally concerning GREML
analyses, including a complete example. More information about the OpenMx package may be
found here.

Examples

showClass("MxFitFunctionGREML")

mxFitFunctionML Create MxFitFunctionML Object

Description

This function creates a new MxFitFunctionML object.

Usage

mxFitFunctionML(vector = FALSE, rowDiagnostics = FALSE, ..., fellner =
as.logical(NA), verbose=0L, profileOut=c())

Arguments

vector A logical value indicating whether the objective function result is the likelihood
vector.

rowDiagnostics A logical value indicating whether the row-wise results of the objective function
should be returned as an attribute of the fit function.

... Not used. Forces remaining arguments to be specified by name.

fellner Whether to fully expand the covariance matrix for maximum flexibility.

verbose Level of diagnostic output

profileOut Character vector naming constant coefficients to profile out of the likelihood
(sometimes known as REML)

http://openmx.psyc.virginia.edu/documentation

mxFitFunctionML 141

Details

Fit functions are functions for which free parameter values are optimized such that the value of a
cost function is minimized. The mxFitFunctionML function computes -2*(log likelihood) of the
data given the current values of the free parameters and the expectation function (e.g., mxExpecta-
tionNormal or mxExpectationRAM) selected for the model.

The ’vector’ argument is either TRUE or FALSE, and determines whether the objective function
returns a column vector of the likelihoods, or a single -2*(log likelihood) value.

The ’rowDiagnostics’ arguent is either TRUE or FALSE, and determines whether the row likeli-
hoods are returned as an attribute of the fit function. It is sometimes useful to inspect the likelihoods
for outliers, diagnostics, or other anomalies.

When vector=FALSE and rowDiagnostics=TRUE, fitfunction can be referenced in the model and
included in algebras as a scalar. The row likelihoods are an attribute of the fit function but are not
accessible in the model during optimization. The row likelihoods are accessible to the user after the
model has been run.

Usage Notes:

The results of the optimization can be reported using the summary function, or accessed directly in
the ’output’ slot of the resulting model (i.e., modelName$output). Components of the output may
be referenced using the Extract functionality.

Value

Returns a new MxFitFunctionML object. One and only one MxFitFunctionML object should be
included in each model along with an associated mxExpectationNormal or mxExpectationRAM
object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionWLS, mxFitFunctionAlgebra,
mxFitFunctionGREML, mxFitFunctionR, mxFitFunctionRow

More information about the OpenMx package may be found here.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

142 mxFitFunctionMultigroup

Define the matrices

M <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),
free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", means="M", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML(rowDiagnostics=TRUE)
also return row likelihoods, even though the fit function
value is still 1x1

Define the model

tmpModel <- mxModel(model="exampleModel", M, S, A, I, expCov, expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

fitResOnly <- mxEval(fitfunction, tmpModelOut)
attributes(fitResOnly) <- NULL
fitResOnly

Look at the row likelihoods alone
fitLikeOnly <- attr(mxEval(fitfunction, tmpModelOut), 'likelihoods')
head(fitLikeOnly)

mxFitFunctionMultigroup

Create MxFitFunctionMultigroup object

Description

The fit function used to fit a multiple group model

mxFitFunctionMultigroup 143

Usage

mxFitFunctionMultigroup(groups, ..., verbose = 0L)

Arguments

groups vector of fit function names (strings)

... Not used. Forces subsequent arguments to be specified by name.

verbose the level of debugging output

Details

The mxFitFunctionMultigroup creates a fit function consisting of the sum of the fit statistics from a
list of submodels provided. Thus, it aggregates fit statistics from multiple submodels.

This is conceptually similar to creating an mxAlgebra consisting of the sum of the subModel ob-
jectives and also creating an mxFitFunctionAlgebra to optimize the model based on this aggregate
value.

This call to mxFitFunctionMultigroup:

mxFitFunctionMultigroup(c("model1", "model2"))

then, is almost equivalent to the following pair of statements:

mxAlgebra(model1.objective + model2.objective, name="myAlgebra")

mxFitFunctionAlgebra("myAlgebra")

The preferred method of specifying such a fit function is with this multigroup fit function, not the
algebra fit function.

In addition to being more compact and readable, using mxFitFunctionMultigroup has additional
side effects which are valuable for multi-group modeling.

Firstly, it aggregates analytic derivative calculations. Secondly, it allows mxRefModels to com-
pute saturated models for raw data, as this function can learn which are the constituent submodels.
Thirdly, it allows mxCheckIdentification to evaluate the local identification of the multigroup
model.

Note: You can refer to the algebra generated by mxFitFunctionMultigroup when used in a group
"modelName" as:

modelName.fitfunction

See Also

Other fit functions: mxFitFunctionML, mxFitFunctionWLS, mxFitFunctionAlgebra, mxFitFunctionGREML,
mxFitFunctionR, mxFitFunctionRow

More information about the OpenMx package may be found here.

144 mxFitFunctionMultigroup

Examples

#--
Brief non-running example
require("OpenMx")
mxFitFunctionMultigroup(c("model1", "model2")) # names of sub-models to be jointly optimised

#--
Longer, fully featured, running example
#
#
Create and fit a model using mxMatrix, mxExpectationRAM, mxFitFunctionML,
and mxFitFunctionMultigroup.
The model is multiple group regression.
Only the residual variances are allowed to differ across groups.

library(OpenMx)

Simulate some data

Group 1
N1=100
x=rnorm(N1, mean=0, sd=1)
y= 0.5*x + rnorm(N1, mean=0, sd=1)
ds1 <- data.frame(x, y)
dsNames <- names(ds1)

Group 2
N2=150
x=rnorm(N2, mean=0, sd=1)
y= 0.5*x + rnorm(N2, mean=0, sd=sqrt(1.5))
ds2 <- data.frame(x, y)

Define the matrices
M <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=0,

free=TRUE, labels=c("Mx", "My"), name = "M")
S1 <- mxMatrix(type = "Diag", nrow = 2, ncol = 2, values=1,

free=TRUE, labels=c("Vx", "ResidVy1"), name = "S")
S2 <- mxMatrix(type = "Diag", nrow = 2, ncol = 2, values=1,

free=TRUE, labels=c("Vx", "ResidVy2"), name = "S")
A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),

free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA),
name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation
expect <- mxExpectationRAM('A', 'S', 'I', 'M', dimnames=dsNames)

mxFitFunctionR 145

Choose a fit function
fitFunction <- mxFitFunctionML(rowDiagnostics=TRUE)
also return row likelihoods, even though the fit function
value is still 1x1

Multiple groupd fit function sums the model likelihoods
from its component models
mgFitFun <- mxFitFunctionMultigroup(c('g1model', 'g2model'))

Define the models
m1 <- mxModel(model="g1model", M, S1, A, I, expect, fitFunction,

mxData(observed=cov(ds1), type="cov", numObs=nrow(ds1),
means=colMeans(ds1)))

m2 <- mxModel(model="g2model", M, S2, A, I, expect, fitFunction,
mxData(observed=cov(ds2), type="cov", numObs=nrow(ds2),

means=colMeans(ds2)))
mg <- mxModel(model='multipleGroup', m1, m2, mgFitFun)

Fit the model and print a summary

mgOut <- mxRun(mg)

Look at summary of model
summary(mgOut)

Examine fit function results
fitResOnly <- mxEval(fitfunction, mgOut)
(g1Fit <- mxEval(g1model.fitfunction, mgOut))
(g2Fit <- mxEval(g2model.fitfunction, mgOut))

mxFitFunctionR Create MxFitFunctionR Object

Description

mxFitFunctionR returns an MxFitFunctionR object.

Usage

mxFitFunctionR(fitfun, ..., units="-2lnL")

Arguments

fitfun A function that accepts two arguments.

... The initial state information to the objective function.

units (optional) The units of the fit statistic.

146 mxFitFunctionR

Details

The mxFitFunctionR function evaluates a user-defined R function called the ’fitfun’. mxFitFunc-
tionR is useful in defining new mxFitFunctions, since any calculation that can be performed in R
can be treated as an mxFitFunction.

The ’fitfun’ argument must be a function that accepts two arguments. The first argument is the
mxModel that should be evaluated, and the second argument is some persistent state information
that can be stored between one iteration of optimization to the next iteration. It is valid for the
function to simply ignore the second argument.

The function must return either a single numeric value, or a list of exactly two elements. If the
function returns a list, the first argument must be a single numeric value and the second element
will be the new persistent state information to be passed into this function at the next iteration. The
single numeric value will be used by the optimizer to perform optimization.

The initial default value for the persistant state information is NA.

Throwing an exception (via stop) from inside fitfun may result in unpredictable behavior. You may
want to wrap your code in tryCatch while experimenting.

Value

Returns an MxFitFunctionR object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionML, mxFitFunctionWLS, mxFitFunctionAlgebra,
mxFitFunctionGREML, mxFitFunctionRow

More information about the OpenMx package may be found here.

Examples

Create and fit a model using mxFitFunctionR

library(OpenMx)

A <- mxMatrix(nrow = 2, ncol = 2, values = c(1:4), free = TRUE, name = 'A')
squared <- function(x) { x ^ 2 }

Define the objective function in R

objFunction <- function(model, state) {
values <- modelAvalues
return(squared(values[1,1] - 4) + squared(values[1,2] - 3) +

squared(values[2,1] - 2) + squared(values[2,2] - 1))
}

Define the expectation function

mxFitFunctionRow 147

fitFunction <- mxFitFunctionR(objFunction)

Define the model

tmpModel <- mxModel(model="exampleModel", A, fitFunction)

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxFitFunctionRow Create an MxFitFunctionRow Object

Description

mxFitFunctionRow returns an MxFitFunctionRow object.

Usage

mxFitFunctionRow(rowAlgebra, reduceAlgebra, dimnames,
rowResults = "rowResults", filteredDataRow = "filteredDataRow",
existenceVector = "existenceVector", units="-2lnL")

Arguments

rowAlgebra A character string indicating the name of the algebra to be evaluated row-wise.

reduceAlgebra A character string indicating the name of the algebra that collapses the row re-
sults into a single number which is then optimized.

dimnames A character vector of names corresponding to columns be extracted from the
data set.

rowResults The name of the auto-generated "rowResults" matrix. See details.
filteredDataRow

The name of the auto-generated "filteredDataRow" matrix. See details.
existenceVector

The name of the auto-generated "existenceVector" matrix. See details.

units (optional) The units of the fit statistic.

Details

Fit functions are functions for which free parameter values are optimized such that the value of a cost
function is minimized. The mxFitFunctionRow function evaluates a user-defined MxAlgebra object
called the ‘rowAlgebra’ in a row-wise fashion. It then stores results of the row-wise evaluation
in another MxAlgebra object called the ‘rowResults’. Finally, the mxFitFunctionRow function

148 mxFitFunctionRow

collapses the row results into a single number which is then used for optimization. The MxAlgebra
object named by the ‘reduceAlgebra’ collapses the row results into a single number.

The ‘filteredDataRow’ is populated in a row-by-row fashion with all the non-missing data from the
current row. You cannot assume that the length of the filteredDataRow matrix remains constant
(unless you have no missing data). The ‘existenceVector’ is populated in a row-by-row fashion with
a value of 1.0 in column j if a non-missing value is present in the data set in column j, and a value of
0.0 otherwise. Use the functions omxSelectRows, omxSelectCols, and omxSelectRowsAndCols to
shrink other matrices so that their dimensions will be conformable to the size of ‘filteredDataRow’.

Value

Returns a new MxFitFunctionRow object. Only one MxFitFunction object should be included in
each model. There is no need for an MxExpectation object when using mxFitFunctionRow.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionML, mxFitFunctionWLS, mxFitFunctionAlgebra,
mxFitFunctionGREML, mxFitFunctionR

More information about the OpenMx package may be found here.

Examples

Model that adds two data columns row-wise, then sums that column
Notice no optimization is performed here.

library(OpenMx)

xdat <- data.frame(a=rnorm(10), b=1:10) # Make data set
amod <- mxModel(model="example1",

mxData(observed=xdat, type='raw'),
mxAlgebra(sum(filteredDataRow), name = 'rowAlgebra'),
mxAlgebra(sum(rowResults), name = 'reduceAlgebra'),
mxFitFunctionRow(

rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a','b'))

)
amodOut <- mxRun(amod)
mxEval(rowResults, model=amodOut)
mxEval(reduceAlgebra, model=amodOut)

Model that find the parameter that minimizes the sum of the
squared difference between the parameter and a data row.

bmod <- mxModel(model="example2",
mxData(observed=xdat, type='raw'),
mxMatrix(values=.75, ncol=1, nrow=1, free=TRUE, name='B'),

mxFitFunctionWLS 149

mxAlgebra((filteredDataRow - B) ^ 2, name='rowAlgebra'),
mxAlgebra(sum(rowResults), name='reduceAlgebra'),
mxFitFunctionRow(

rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a'))

)
bmodOut <- mxRun(bmod)
mxEval(B, model=bmodOut)
mxEval(reduceAlgebra, model=bmodOut)
mxEval(rowResults, model=bmodOut)

mxFitFunctionWLS Create MxFitFunctionWLS Object

Description

This function creates a new MxFitFunctionWLS object.

Usage

mxFitFunctionWLS(weights = "ULS")

Arguments

weights Ignored. Uses weights from mxData

Details

Fit functions are functions for which free parameter values are optimized such that the value of a cost
function is minimized. The mxFitFunctionWLS function computes the weighted least squares dif-
ference between the data and the model-implied expectations for the data based on the free parame-
ters and the expectation function (e.g., mxExpectationNormal or mxExpectationRAM) selected for
the model.

The ’weights’ argument is ignored. Rather the weights are provided in the mxData object, often
generated by the mxDataWLS function.

Usage Notes:

The results of the optimization can be reported using the summary function, or accessed directly in
the ’output’ slot of the resulting model (i.e., modelName$output). Components of the output may
be referenced using the Extract functionality.

Value

Returns a new MxFitFunctionWLS object. One and only one MxFitFunctionWLS object should
be included in each model along with an associated mxExpectationNormal or mxExpectationRAM
object.

150 mxFitFunctionWLS

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

Other fit functions: mxFitFunctionMultigroup, mxFitFunctionML, mxFitFunctionAlgebra, mxFitFunctionGREML,
mxFitFunctionR, mxFitFunctionRow

More information about the OpenMx package may be found here.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionWLS

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)
wdata <- mxDataWLS(tmpFrame)

Define the matrices

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionWLS()

Define the model

tmpModel <- mxModel(model="exampleModel", S, A, I, expCov, expFunction, fitFunction,
wdata)

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

MxFlatModel-class 151

MxFlatModel-class MxFlatModel

Description

This is an internal class and should not be used.

mxGenerateData Generate data based on an MxModel object

Description

This function creates a randomly sampled data set based on the model.

Usage

mxGenerateData(model, nrows)

Arguments

model An MxModel object upon which the data are generated.

nrows Numeric. The number of rows of data to generate.

Details

This function looks inside the MxModel object to extract the model-implied means and covariance.
It then generates data with the same mean and covariance. Data can be generated based on Nor-
mal (mxExpectationNormal), RAM (mxExpectationRAM), LISREL (mxExpectationLISREL), and
state space (mxExpectationStateSpace) models.

Thresholds and ordinal data are implemented by generating continuous data and then using cut and
mxFactor to break the continous data at the thresholds into an ordered factor.

If the model has definition variables, then a data set must be included in the model object and the
number of rows requested must match the number of rows in the model data. In this case the means,
covariance, and thresholds are reevaluated for each row of data, potentially creating a a different
mean, covariance, and threshold structure for every generated row of data.

For state space models (i.e. models with an mxExpectationStateSpace or mxExpectationStateS-
paceContinuousTime expectation), the data are generated based on the autoregressive structure of
the model. The rows of data in a state space model are not independent replicates of a stationary
process. Rather, they are the result of a latent (possibly non-stationary) autoregressive process. For
state space models different rows of data often correspond to different times. As alluded to above,
data generation works for discrete time state space models and hybrid continuous-discrete time state
space models. The latter have a continous process that is measured as discrete times.

152 mxGenerateData

Value

A data.frame with nrows rows.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

#----------
Create data based on state space model.
require(OpenMx)
nvar <- 5
varnames <- paste("x", 1:nvar, sep="")
ssModel <- mxModel(model="State Space Manual Example",

mxMatrix("Full", 1, 1, TRUE, .3, name="A"),
mxMatrix("Zero", 1, 1, name="B"),
mxMatrix("Full", nvar, 1, TRUE, .6, name="C", dimnames=list(varnames, "F1")),
mxMatrix("Zero", nvar, 1, name="D"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"),
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"),
mxMatrix("Zero", 1, 1, name="x0"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"),
mxMatrix("Zero", 1, 1, name="u"),
mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", "u"),
mxFitFunctionML()

)

ssData <- mxGenerateData(ssModel, 200) # 200 time points

Add simulated data to model
ssModel <- mxModel(ssModel, mxData(ssData, 'raw'))

Fit model to simulated data
ssRun <- mxRun(ssModel)

Compare parameters estimated from random data to
their true generating values
cbind(Rand=omxGetParameters(ssRun), Gen=omxGetParameters(ssModel))
Note the parameters should be "close" (up to sampling error)
to the generating values

#----------
require(OpenMx)
manifests <- paste("x", 1:5, sep="")
latents <- c("G")
factorModel <- mxModel("One Factor",

type="RAM",
manifestVars = manifests,
latentVars = latents,

mxGetExpected 153

mxPath(from=latents, to=manifests, values=.8),
mxPath(from=manifests, arrows=2, values=.2),
mxPath(from=latents, arrows=2,

free=FALSE, values=1.0),
mxPath(from = 'one', to = manifests))

factorData <- mxGenerateData(factorModel, 100)

factorModel <- mxModel(factorModel,
mxData(observed=cov(factorData), type="cov",

numObs=nrow(factorData),
means = colMeans(factorData)))

factorRun <- mxRun(factorModel)
cbind(Rand=omxGetParameters(factorRun), Gen=omxGetParameters(factorModel))

mxGetExpected Extract the component from a model’s expectation

Description

This function extracts the expected means, covariance, or thresholds from a model.

Usage

mxGetExpected(model, component, defvar.row=1)
imxGetExpectationComponent(model, component, defvar.row=1)

Arguments

model MxModel object from which to extract the expectation component.

component A character. The name of the component to extract.

defvar.row A row index. Which row to load for definition variables.

Details

The expected means, covariance, or thresholds can be extracted from Normal (mxExpectationNor-
mal), RAM (mxExpectationRAM), and LISREL (mxExpectationLISREL) models. When more
than one component is requested, the components will be returned as a list.

If component ’vector’ is requested then the non-redundent coefficients of the expected manifest
distribution will be returned as a vector.

Value

See details.

154 mxGREMLDataHandler

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

#----------
require(OpenMx)
manifests <- paste("x", 1:5, sep="")
latents <- c("G")
factorModel <- mxModel("One Factor",

type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2,

free=FALSE, values=1.0),
mxPath(from = 'one', to = manifests))

mxGetExpected(factorModel, "covariance")
oops. Starting values indicate a zero covariance matrix.
Probably should adjust them.

mxGREMLDataHandler Helper Function for Structuring GREML Data

Description

This function takes a dataframe or matrix and uses it to setup the ’y’ and ’X’ matrices for a GREML
analysis; this includes trimming out NAs from ’X’ and ’y.’ The result is a matrix the first column of
which is the ’y’ vector, and the remaining columns of which constitute ’X.’

Usage

mxGREMLDataHandler(data, yvars=character(0), Xvars=list(), addOnes=TRUE,
blockByPheno=TRUE, staggerZeroes=TRUE)

Arguments

data Either a dataframe or matrix, with column names, containing the variables to be
used as phenotypes and covariates in ’y’ and ’X,’ respectively.

yvars Character vector. Each string names a column of the raw dataset, to be used as
a phenotype.

Xvars A list of data column names, specifying the covariates to be used with each
phenotype. The list should have the same length as argument yvars.

mxGREMLDataHandler 155

addOnes Logical; should lead columns of ones (for the regression intercepts) be adhered
to the covariates when assembling the ’X’ matrix? Defaults to TRUE.

blockByPheno Logical; relevant to polyphenotype analyses. If TRUE (default), then the result-
ing ’y’ will contain phenotype #1 for individuals 1 thru n, phenotype #2 for
individuals 1 thru n, ... If FALSE, then observations are "blocked by individual",
and the resulting ’y’ will contain individual #1’s scores on phenotypes 1 thru p,
individual #2’s scores on phenotypes 1 thru p, ... Note that in either case, ’X’
will be structured appropriately for ’y.’

staggerZeroes Logical; relevant to polyphenotype analyses. If TRUE (default), then each phe-
notype’s covariates in ’X’ are "staggered," and ’X’ is padded out with zeroes.
If FALSE, then ’X’ is formed simply by stacking the phenotypes’ covariates;
this requires each phenotype to have the same number of covariates (i.e., each
character vector in Xvars must be of the same length). The default (TRUE) is in-
tended for instances where the multiple phenotypes truly are different variables,
whereas staggerZeroes=FALSE is intended for instances where the multiple
"phenotypes" actually represent multiple observations on the same variable. One
example of the latter case is longitudinal data where the multiple "phenotypes"
are repeated measures on a single phenotype.

Details

For a monophenotype analysis (only), argument Xdata can be a character vector. In a polypheno-
type analysis, if the same covariates are to be used with all phenotypes, then Xdata can be a list of
length 1.

Note the synergy between the output of mxGREMLDataHandler() and arguments dataset.is.yX
and casesToDropFromV to mxExpectationGREML().

If the dataframe or matrix supplied for argument data has n rows, and argument yvars is of length
p, then the resulting ’y’ and ’X’ matrices will have np rows. Then, if either matrix contains any NA’s,
the rows containing the NA’s are trimmed from both ’X’ and ’y’ before being returned in the output
(in which case they will obviously have fewer than np rows). Function mxGREMLDataHandler()
reports which rows of the full-size ’X’ and ’y’ were trimmed out due to missing observations.
These row indices can be provided as argument casesToDropFromV to mxExpectationGREML().

Value

A list with these two components:

yX Numeric matrix. The first column is the phenotype vector, ’y,’ while the re-
maining columns constitutethe ’X’ matrix of covariates. If this matrix is used
as the raw dataset for a model, then the model’s GREML expectation can be
constructed with dataset.is.yX=TRUE in mxExpectationGREML().

casesToDrop Numeric vector. Contains the indices of the rows of the ’y’ and ’X’ that were
dropped due to containing NA’s. Can be provided as as argument casesToDropFromV
to mxExpectationGREML().

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

156 mxJoin

See Also

For more information generally concerning GREML analyses, including a complete example, see
mxExpectationGREML(). More information about the OpenMx package may be found here.

Examples

dat <- cbind(rnorm(100),rep(1,100))
colnames(dat) <- c("y","x")
dat[42,1] <- NA
dat[57,2] <- NA
dat2 <- mxGREMLDataHandler(data=dat, yvars="y", Xvars=list("x"),

addOnes = FALSE)
str(dat2)

MxInterval-class MxInterval

Description

This is an internal class and should not be used directly.

See Also

mxCI

mxJoin Specify a join between data

Description

The MxJoin object contains the information necessary to join two models on some key.

Usage

mxJoin(foreignKey, expectation, regression)

Arguments

foreignKey the name of the foreign key in the current model to join against the primary key
in the other model

expectation the name of the other model

regression the name of the between level mapping matrix that specifies the regressions or
factor loadings between models

mxKalmanScores 157

Value

An MxJoin object

See Also

mxExpectationRAM

mxKalmanScores Estimate Kalman scores and error covariance matrices

Description

This function creates the Kalman predicted, Kalman updated, and Rauch-Tung-Striebel smoothed
latent state and error covariance estimates for an MxModel object that has an MxExpectationStateS-
pace object.

Usage

mxKalmanScores(model, data=NA)

Arguments

model An MxModel object with an MxExpectationStateSpace.

data An optional data.frame or matrix.

Details

This is a helper function that computes the results of the classical Kalman filter. In particular, for
every row of data there is a predicted latent score, an error covariance matrix for the predicted latent
scores that provides an estimate of the predictions precision, an updated latent score, and an updated
error covariance matrix for the updated lated scores. Additionally, the Rauch-Tung-Striebel (RTS)
smoothed latent scores and error covariance matrices are returned.

Value

A list with components xPredicted, PPredicted, xUpdated, PUpdated, xSmoothed, PSmoothed,
m2ll, and L. The rows of xPredicted, xUpdated, and xSmoothed correspond to different time
points. The columns are the different latent variables. The third index of PPredicted, PUpdated,
and PSmoothed corresponds to different times. This works nicely with the R default print method
for arrays. At each time there is a covariance matrix of the latent variable scores. For all items listed
below, the first element goes with the zeroth time point (See example).

xPredicted matrix of Kalman predicted scores

PPredicted array of Kalman predicted error covariances

xUpdated matrix of Kalman updated scores

PUpdated array of Kalman updated error covariances

158 mxKalmanScores

xSmoothed matrix of RTS smoothed scores

PSmoothed array of RTS smoothed error covariances

m2ll minus 2 log likelihood

L likelihood

References

J. Durbin and S.J. Koopman. (2001). Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

R.E. Kalman (1960). A New Approach to Linear Filtering and Prediction Problems. Basic Engi-
neering, 82, 35-45.

H.E. Rauch, F. Tung, C.T. Striebel. (1965). Maximum Likelihood Estimates of Linear Dynamic
Systems. American Institute of Aeronautics and Astronautics Journal, 3, 1445-1450.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxExpectationStateSpace

Examples

Create and fit a model using mxMatrix, mxExpectationStateSpace, and mxFitFunctionML
require(OpenMx)
data(demoOneFactor)
Use only first 50 rows, for speed of example
data <- demoOneFactor[1:50,]
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)
ssModel <- mxModel(model="State Space Manual Example",

mxMatrix("Full", 1, 1, TRUE, .3, name="A"),
mxMatrix("Zero", 1, 1, name="B"),
mxMatrix("Full", nvar, 1, TRUE, .6, name="C", dimnames=list(varnames, "F1")),
mxMatrix("Zero", nvar, 1, name="D"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"),
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"),
mxMatrix("Zero", 1, 1, name="x0"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"),
mxMatrix("Zero", 1, 1, name="u"),
mxData(observed=data, type="raw"),
mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", "u"),
mxFitFunctionML()

)
ssRun <- mxRun(ssModel)
summary(ssRun)
Note the freely estimated Autoregressive parameter (A matrix)
is near zero as it should be for the independent rows of data
from the factor model.

ssScores <- mxKalmanScores(ssRun)

MxLISRELModel-class 159

cor(cbind(ssScores$xPredicted[,1], ssScores$xUpdated[,1], ssScores$xSmoothed[,1]))
Because the autoregressive dynamics are near zero, the predicted and updated scores
correlate minimally, and the updated and smoothed latent state estimates
are extremely close.

The first few latent predicted scores
head(ssScores$xPredicted)

The predicted latent score for time 10
ssScores$xPredicted[10+1,]

The error covariance of the predicted score at time 10
ssScores$PPredicted[,,10+1]

MxLISRELModel-class MxLISRELModel

Description

This is an internal class and should not be used directly.

mxLISRELObjective Create MxLISRELObjective Object

Description

This function creates a new MxLISRELObjective object.

Usage

mxLISRELObjective(LX=NA, LY=NA, BE=NA, GA=NA, PH=NA, PS=NA, TD=NA, TE=NA, TH=NA,
TX = NA, TY = NA, KA = NA, AL = NA,
dimnames = NA, thresholds = NA, vector = FALSE, threshnames = dimnames)

Arguments

LX An optional character string indicating the name of the ’LX’ matrix.

LY An optional character string indicating the name of the ’LY’ matrix.

BE An optional character string indicating the name of the ’BE’ matrix.

GA An optional character string indicating the name of the ’GA’ matrix.

PH An optional character string indicating the name of the ’PH’ matrix.

PS An optional character string indicating the name of the ’PS’ matrix.

TD An optional character string indicating the name of the ’TD’ matrix.

160 mxLISRELObjective

TE An optional character string indicating the name of the ’TE’ matrix.

TH An optional character string indicating the name of the ’TH’ matrix.

TX An optional character string indicating the name of the ’TX’ matrix.

TY An optional character string indicating the name of the ’TY’ matrix.

KA An optional character string indicating the name of the ’KA’ matrix.

AL An optional character string indicating the name of the ’AL’ matrix.

dimnames An optional character vector that is currently ignored

thresholds An optional character string indicating the name of the thresholds matrix.

vector A logical value indicating whether the objective function result is the likelihood
vector.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

Objective functions are functions for which free parameter values are chosen such that the value
of the objective function is minimized. The mxLISRELObjective provides maximum likelihood
estimates of free parameters in a model of the covariance of a given MxData object. This model
is defined by LInear Structual RELations (LISREL; Jöreskog & Sörbom, 1982, 1996). Arguments
’LX’ through ’AL’ must refer to MxMatrix objects with the associated properties of their respective
matrices in the LISREL modeling approach.

The full LISREL specification has 13 matrices and is sometimes called the extended LISREL model.
It is defined by the following equations.

η = α+Bη + Γξ + ζ

y = τy + Λyη + ε

x = τx + Λxξ + δ

The table below is provided as a quick reference to the numerous matrices in LISREL models.
Note that NX is the number of manifest exogenous (independent) variables, the number of Xs. NY
is the number of manifest endogenous (dependent) variables, the number of Ys. NK is the number
of latent exogenous variables, the number of Ksis or Xis. NE is the number of latent endogenous
variables, the number of etas.

Matrix Word Abbreviation Dimensions Expression Description
Λx Lambda x LX NX x NK Exogenous Factor Loading Matrix
Λy Lambda y LY NY x NE Endogenous Factor Loading Matrix
B Beta BE NE x NE Regressions of Latent Endogenous Variables Predicting Endogenous Variables
Γ Gamma GA NE x NK Regressions of Latent Exogenous Variables Predicting Endogenous Variables
Φ Phi PH NK x NK cov(ξ) Covariance Matrix of Latent Exogenous Variables
Ψ Psi PS NE x NE cov(ζ) Residual Covariance Matrix of Latent Endogenous Variables
Θδ Theta delta TD NX x NX cov(δ) Residual Covariance Matrix of Manifest Exogenous Variables
Θε Theta epsilon TE NY x NY cov(ε) Residual Covariance Matrix of Manifest Endogenous Variables
Θδε Theta delta epsilson TH NX x NY cov(δ, ε) Residual Covariance Matrix of Manifest Exogenous with Endogenous Variables

mxLISRELObjective 161

τx tau x TX NX x 1 Residual Means of Manifest Exogenous Variables
τy tau y TY NY x 1 Residual Means of Manifest Endogenous Variables
κ kappa KA NK x 1 mean(ξ) Means of Latent Exogenous Variables
α alpha AL NE x 1 Residual Means of Latent Endogenous Variables

From the extended LISREL model, several submodels can be defined. Subtypes of the LISREL
model are defined by setting some of the arguments of the LISREL objective to NA. Note that be-
cause the default values of each LISREL matrix is NA, setting a matrix to NA can be accomplished
by simply not giving it any other value.

The first submodel is the LISREL model without means.

η = Bη + Γξ + ζ

y = Λyη + ε

x = Λxξ + δ

The LISREL model without means requires 9 matrices: LX, LY, BE, GA, PH, PS, TD, TE, and TH.
Hence this LISREL model has TX, TY, KA, and AL as NA. This can be accomplished be leaving
these matrices at their default values.

The TX, TY, KA, and AL matrices must be specified if either the mxData type is “cov” or “cor”
and a means vector is provided, or if the mxData type is “raw”. Otherwise the TX, TY, KA, and AL
matrices are ignored and the model without means is estimated.

A second submodel involves only endogenous variables.

η = Bη + ζ

y = Λyη + ε

The endogenous-only LISREL model requires 4 matrices: LY, BE, PS, and TE. The LX, GA, PH,
TD, and TH must be NA in this case. However, means can also be specified, allowing TY and AL
if the data are raw or if observed means are provided.

Another submodel involves only exogenous variables.

x = Λxξ + δ

The exogenous-model model requires 3 matrices: LX, PH, and TD. The LY, BE, GA, PS, TE, and
TH matrices must be NA. However, means can also be specified, allowing TX and KA if the data
are raw or if observed means are provided.

The model that is run depends on the matrices that are not NA. If all 9 matrices are not NA, then the
full model is run. If only the 4 endogenous matrices are not NA, then the endogenous-only model
is run. If only the 3 exogenous matrices are not NA, then the exogenous-only model is run. If some
endogenous and exogenous matrices are not NA, but not all of them, then appropriate errors are
thrown. Means are included in the model whenever their matrices are provided.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxLISRELObjective will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

162 MxListOrNull-class

Like the mxRAMObjective, the mxLISRELObjective evaluates with respect to an MxData object.
The MxData object need not be referenced in the mxLISRELObjective function, but must be in-
cluded in the MxModel object. mxLISRELObjective requires that the ’type’ argument in the asso-
ciated MxData object be equal to ’cov’, ’cor’, or ’raw’.

To evaluate, place MxLISRELObjective objects, the mxData object for which the expected co-
variance approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and
MxConstraint objects in an MxModel object. This model may then be evaluated using the mxRun
function. The results of the optimization can be found in the ’output’ slot of the resulting model,
and may be obtained using the mxEval function.

Value

Returns a new MxLISRELObjective object. MxLISRELObjective objects should be included with
models with referenced MxAlgebra, MxData and MxMatrix objects.

References

Jöreskog, K. G. & Sörbom, D. (1996). LISREL 8: User’s Reference Guide. Lincolnwood, IL:
Scientific Software International.

Jöreskog, K. G. & Sörbom, D. (1982). Recent developments in structural equation modeling. Jour-
nal of Marketing Research, 19, 404-416.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

#####------------------------------#####
Factor Model
mLX <- mxMatrix("Full", values=c(.5, .6, .8, rep(0, 6), .4, .7, .5),

name="LX", nrow=6, ncol=2,
free=c(TRUE,TRUE,TRUE,rep(FALSE, 6),TRUE,TRUE,TRUE))

mTD <- mxMatrix("Diag", values=c(rep(.2, 6)), name="TD", nrow=6, ncol=6,
free=TRUE)

mPH <- mxMatrix("Symm", values=c(1, .3, 1), name="PH", nrow=2, ncol=2,
free=c(FALSE, TRUE, FALSE))

Create a LISREL objective with LX, TD, and PH matrix names
objective <- mxLISRELObjective(LX="LX", TD="TD", PH="PH")

testModel <- mxModel(model="testModel", mLX, mTD, mPH, objective)

MxListOrNull-class An optional list

Description

An optional list

mxMakeNames 163

mxMakeNames mxMakeNames

Description

Adjust a character vector so that it can be used as MxMatrix column or row names. OpenMx is
(much) more restrictive than base R’s make.names.

Usage

mxMakeNames(names, unique = FALSE)

Arguments

names a character vector

unique whether the pass the result through make.unique

See Also

make.names

Examples

demo <- c("", "103", "data", "foo.bar[3,2]", "+!", "!+")
mxMakeNames(demo, unique=TRUE)

mxMatrix Create MxMatrix Object

Description

This function creates a new MxMatrix object.

Usage

mxMatrix(type = "Full", nrow = NA, ncol = NA,
free = FALSE, values = NA, labels = NA, lbound = NA,
ubound = NA, byrow = getOption('mxByrow'), dimnames = NA, name = NA,
condenseSlots=getOption('mxCondenseMatrixSlots'),
..., joinKey=as.character(NA), joinModel=as.character(NA))

164 mxMatrix

Arguments

type A character string indicating the matrix type, where type indicates the range
of values and equalities in the matrix. Must be one of: ‘Diag’, ‘Full’, ‘Iden’,
‘Lower’, ‘Sdiag’, ‘Stand’, ‘Symm’, ‘Unit’, or ‘Zero’.

nrow Integer; the desired number of rows. One or both of ‘nrow’ and ‘ncol’ is re-
quired when ‘values’, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’ arguments are not
matrices, depending on the desired MxMatrix type.

ncol Integer; the desired number of columns. One or both of ‘nrow’ and ‘ncol’ is
required when ‘values’, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’ arguments are
not matrices, depending on the desired MxMatrix type.

free A vector or matrix of logicals for free parameter specification. A single ‘TRUE’
or ‘FALSE’ will set all allowable variables to free or fixed, respectively.

values A vector or matrix of numeric starting values. By default, all values are set to
zero.

labels A vector or matrix of characters for variable label specification.

lbound A vector or matrix of numeric lower bounds. Default bounds are specified with
an NA.

ubound A vector or matrix of numeric upper bounds. Default bounds are specified with
an NA.

byrow Logical; defaults to value of global option ’mxByRow’. If FALSE (default),
the ‘values’, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’ matrices are populated by
column rather than by row.

dimnames List. The dimnames attribute for the matrix: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

name An optional character string indicating the name of the MxMatrix object.

condenseSlots Logical; defaults to value of global option ’mxByRow’ If TRUE, then the result-
ing MxMatrix will "condense" its ‘labels’, ‘free’, ‘lbound’, and ‘ubound’ down
to 1x1 matrices if they contain only FALSE (‘free’) or NA (the other three). If
FALSE, those four matrices and the ‘values’ matrix will all be of equal dimen-
sions.

... Not used. Forces remaining arguments to be specified by name.

joinKey The name of the column in current model’s raw data that is used as a foreign key
to match against the primary key in joinModel’s raw data.

joinModel The name of the model that this matrix joins against.

Details

The mxMatrix function creates MxMatrix objects, which consist of five matrices and a ‘type’ argu-
ment. The ‘values’ matrix is made up of numeric elements whose usage and capabilities in other
functions are defined by the ‘free’ matrix. If an element is specified as a fixed parameter in the
‘free’ matrix, then the element in the ‘values’ matrix is treated as a constant value and cannot be
altered or updated by an objective function when included in an mxRun function. If an element is

mxMatrix 165

specified as a free parameter in the ‘free’ matrix, the element in the ‘value’ matrix is considered a
starting value and can be changed by an objective function when included in an mxRun function.

Element labels beginning with 'data.' can be used if the MxMatrix is to be used in an MxModel
object that has a raw dataset (i.e., an MxData object of type="raw"). Such a label instructs OpenMx
to use a particular column of the raw dataset to fill in the value of that element. For historical
reasons, the variable contained in that column is called a "definition variable." For example, if an
MxMatrix element has the label 'data.x', then OpenMx will use the first value of the data column
named "x" when evaluating the fitfunction for the first row, and will use the second value of column
"x" when evaluating the fitfunction for the second row, and so on. After the call to mxRun(), the
values for elements labeled with 'data.x' are returned as the value from the first (i.e., first before
any automated sorting is done) element of column "x" in the data.

Objects created by the mxMatrix() function are of a specific ‘type’, which specifies the number
and location of parameters in the ‘labels’ matrix and the starting values in the ‘values’ matrix. Input
‘values’, ‘free’, and ‘labels’ matrices must be of appropriate shape and have appropriate values for
the matrix type requested. Nine types of matrices are supported:

‘Diag’ matrices must be square, and only elements on the principal diagonal may be specified as free parameters or take non-zero values. All other elements are required to be fixed parameters with a value of 0.
‘Full’ matrices may be either rectangular or square, and all elements in the matrix may be freely estimated. This type is the default for the mxMatrix() function.
‘Iden’ matrices must be square, and consist of no free parameters. Matrices of this type have a value of 1 for all entries on the principal diagonal and the value 0 in all off-diagonal entries.
‘Lower’ matrices must be square, with a value of 0 for all entries in the upper triangle and no free parameters in the upper triangle.
‘Sdiag’ matrices must be square, with a value of 0 for all entries in the upper triangle and along the diagonal. No free parameters in the upper triangle or along the diagonal.
‘Symm’ matrices must be square, and elements in the principle diagonal and lower triangular portion of the matrix may be free parameters of any value. Elements in the upper triangular portion of the matrix are constrained to be equal to those in the lower triangular portion, such that the value and parameter specificiation of the element in row i and column j is identical to to the value and specification of the element in row j and column i.
‘Stand’ matrices are symmetric matrices (see ’Symm’) with 1’s along the main diagonal.
‘Unit’ matrices may be either rectangular or square, and contain no free parameters. All elements in matrices of this type have a value of 1 for all elements.
‘Zero’ matrices may be either rectangular or square, and contain no free parameters. All elements in matrices of this type have a value of 0 for all elements.

When ‘type’ is ‘Lower’ or ‘Symm’, then the arguments to ‘free’, ‘values’, ‘labels’, ‘lbound’, or
‘ubound’ may be vectors of length N ∗ (N + 1)/2, where N is the number of rows and columns
of the matrix. When ‘type’ is ‘Sdiag’ or ‘Stand’, then the arguments to ‘free’, ‘values’, ‘labels’,
‘lbound’, or ‘ubound’ may be vectors of length N ∗ (N − 1)/2.

Value

Returns a new MxMatrix object, which consists of a ‘values’ matrix of numeric starting values,
a ‘free’ matrix describing free parameter specification, a ‘labels’ matrix of labels for the variable
names, and ‘lbound’ and ‘ubound’ matrices of the lower and upper parameter bounds. This Mx-
Matrix object can be used as an argument in the mxAlgebra(), mxBounds(), mxConstraint() and
mxModel() functions.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxMatrix for the S4 class created by mxMatrix. More information about the OpenMx package
may be found here.

166 mxMatrix

Examples

Create a 3 x 3 identity matrix

idenMatrix <- mxMatrix(type = "Iden", nrow = 3,
ncol = 3, name = "I")

Create a full 4 x 2 matrix from existing
value matrix with all free parameters

vals <- matrix(1:8, nrow = 4)
fullMatrix <- mxMatrix(type = "Full", values = vals,

free = TRUE, name = "foo")

Create a 3 x 3 symmetric matrix with free off-
diagonal parameters and starting values

symmMatrix <- mxMatrix(type = "Symm", nrow = 3, ncol = 3,
free = c(FALSE, TRUE, TRUE, FALSE, TRUE, FALSE),
values = c(1, .8, .8, 1, .8, 1),
labels = c(NA, "free1", "free2", NA, "free3", NA),
name = "bar")

Create an mxMatrix from a character matrix. All numbers are
interpreted as fixed and non-numbers are interpreted as free
parameters.

matrixFromChar <- function(inputm, name=NA) {
inputmFixed <- suppressWarnings(matrix(
as.numeric(inputm),nrow = nrow(inputm), ncol = ncol(inputm)))

inputmCharacter <- inputm
inputmCharacter[!is.na(inputmFixed)] <- NA
mxMatrix(nrow=nrow(inputm), ncol=ncol(inputm),

free=!is.na(inputmCharacter),
values=inputmFixed,
labels=inputmCharacter,
dimnames=dimnames(inputm), name=name)

}

Demonstrate some of the behavior of the condensed slots
Create a 3x3 matrix with condensed slots

a <- mxMatrix('Full', 3, 3, values=1, condenseSlots=TRUE)
a@free # at operator returns the stored 1x1 matrix
a$free # dollar operator constructs full matrix for printing

assignment with the dollar operator
de-condenses the slots to create the
full 3x3 matrix
a$free[1,1] <- TRUE
a@free

MxMatrix-class 167

MxMatrix-class MxMatrix Class

Description

MxMatrix is a virtual S4 class that comprises the nine types of matrix objects used by OpenMx (see
mxMatrix() for details). An MxMatrix object is a named entity. New instances of this class can
be created using the function mxMatrix(). MxMatrix objects may be used as arguments in other
functions from the OpenMx package, including mxAlgebra(), mxConstraint(), and mxModel().

Objects from the Class

All nine types of object that the class comprises can be created via mxMatrix().

Slots

name: Character string; the name of the MxMatrix object. Note that this is the object’s "Mx name"
(so to speak), which identifies it in OpenMx’s internal namespace, rather than the symbol
identifying it in R’s worskpace. Use of MxMatrix objects in an mxAlgebra or mxConstraint
function requires reference by name.

values: Numeric matrix of values. If an element is specified as a fixed parameter in the ’free’
matrix, then the element in the ’values’ matrix is treated as a constant value and cannot be
altered or updated by an objective function when included in an mxRun() function. If an
element is specified as a free parameter in the ’free’ matrix, the element in the ’value’ matrix
is considered a starting value and can be changed by an objective function when included in
an mxRun() function.

labels: Matrix of character strings which provides the labels of free and fixed parameters. Fixed
parameters with identical labels must have identical values. Free parameters with identical
labels impose an equality constraint. The same label cannot be applied to a free parameter and
a fixed parameter. A free parameter with the label ’NA’ implies a unique free parameter, that
cannot be constrained to equal any other free parameter.

free: Logical matrix specifying whether each element is free versus fixed. An element is a free pa-
rameter if-and-only-if the corresponding value in the ’free’ matrix is ’TRUE’. Free parameters
are elements of an MxMatrix object whose values may be changed by a fitfunction when that
MxMatrix object is included in an MxModel object and evaluated using the mxRun() function.

lbound: Numeric matrix of lower bounds on free parameters.

ubound: Numeric matrix of upper bounds on free parameters.

.squareBrackets: Logical matrix; used internally by OpenMx. Identifies which elements have
labels with square brackets in them.

.persist: Logical; used internally by OpenMx. Governs how mxRun() handles the MxMatrix
object when it is inside the MxModel being run.

168 MxMatrix-class

.condenseSlots: Logical; used internally by OpenMx. If FALSE, then the matrices in the ’values’,
’labels’, ’free’, ’lbound’, and ’ubound’ slots are all of equal dimensions. If TRUE, then the last
four of those slots will "condense" a matrix consisting entirely of FALSE or NA down to 1x1.

display: Character string; used internally by OpenMx when parsing MxAlgebras.

dependencies: Integer; used internally by OpenMx when parsing MxAlgebras.

Methods

$ signature(x = "MxMatrix"): ...

$<- signature(x = "MxMatrix"): ...

[signature(x = "MxMatrix"): ...

[<- signature(x = "MxMatrix"): ...

dim signature(x = "MxMatrix"): ...

dimnames signature(x = "MxMatrix"): ...

dimnames<- signature(x = "MxMatrix"): ...

length signature(x = "MxMatrix"): ...

names signature(x = "MxMatrix"): ...

ncol signature(x = "MxMatrix"): ...

nrow signature(x = "MxMatrix"): ...

print signature(x = "MxMatrix"): ...

show signature(object = "MxMatrix"): ...

Note that some methods are documented separately (see below, under "See Also").

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxMatrix() for creating MxMatrix objects. Note that functions imxCreateMatrix(), imxDeparse(),
imxSquareMatrix(), imxSymmetricMatrix(), and imxVerifyMatrix() are separately documented
methods for this class. More information about the OpenMx package may be found here.

Examples

showClass("MxMatrix")

http://openmx.psyc.virginia.edu/documentation

mxMI 169

mxMI Estimate Modification Indices for MxModel Objects

Description

This function estimates the change in fit function value resulting from freeing currently fixed pa-
rameters.

Usage

mxMI(model, matrices=NA, full=TRUE)

Arguments

model An MxModel for which modification indices are desired.

matrices Character vector. The names of the matrices in which to search for modification

full Logical. Whether or not to return the full modification index in addition to the
restricted.

Details

Modification indices provide an estimate of how much the fit function value would change if a pa-
rameter that is currently fixed was instead freely estimated. There are two versions of this estimate:
a restricted version and an full version. The restricted version is reported as the MI and is much
faster to compute. The full version is reported as MI.Full. The full version accounts for the total
change in fit function value resulting from the newly freed parameter. The restricted version only
accounts for the change in the fit function due to the movement of the new free parameter. In par-
ticular, the restricted version does not account for the change in fit function value due to the other
free parameters moving in response to the new parameter.

The algorithm respects fixed parameter labels. That is, when a fixed parameter has a label and
occurs in more than one spot, then that fixed parameter is freed in all locations in which it occurs to
evaluate the modification index for that fixed parameter.

When the fit function is in minus two log likelihood units (e.g. mxFitFunctionML), then the MI
will be approximately chi squared distributed with 1 degree of freedom. Using a p-value of 0.01
has been suggested. Hence, a MI greater than qchisq(p=1-0.01, df=1), or 6.63, is suggestive of
a modification.

Users should be cautious in their use of modification indices. If a model was created with the aid
of MIs, then it should always be reported. Do not pretend that you have a theoretical reason for
part of a model that was put there because it was suggested by a modification index. This is fraud.
When using modification indices there are two options for best practices. First, you can report the
analyses as exploratory. Document all the explorations that you did, and know that your results
may or may not generalize. Second, you can use cross-validation. Reserve part of your data for
exploration, and use the remaining data to test if the exploratory model generalizes to new data.

170 mxMI

Value

A named list with components

MI The restricted modification index.

MI.Full The full modification index.

plusOneParamModels A list of models with one additional free parameter

References

Sörbom, D. (1989). Model Modification. Psychometrika, 54, 371-384.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create a model
require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor",

type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2,

free=FALSE, values=1.0),
mxPath(from = 'one', to = manifests),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500,

means = colMeans(demoOneFactor)))
#No SEs for speed
factorModel <- mxOption(factorModel, 'Standard Errors', 'No')
factorRun <- mxRun(factorModel)

See if it should be modified
Notes
Using full=FALSE for faster performance
Using matrices= 'A' and 'S' to not get MIs for
the F matrix which is always fixed.
fim <- mxMI(factorRun, matrices=c('A', 'S'), full=FALSE)
round(fim$MI, 3)
plot(fim$MI, ylim=c(0, 10))
abline(h=qchisq(p=1-0.01, df=1)) # line of "significance"

mxMLObjective 171

mxMLObjective DEPRECATED: Create MxMLObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxExpectationNormal() and mxFitFunctionML() instead. As a temporary workaround,
mxMLObjective returns a list containing an MxExpectationNormal object and an MxFitFunctionML
object.

mxMLObjective(covariance, means = NA, dimnames = NA, thresholds = NA) All occurrences of

mxMLObjective(covariance, means = NA, dimnames = NA, thresholds = NA)

Should be changed to

mxExpectationNormal(covariance, means = NA, dimnames = NA, thresholds = NA, threshnames =
dimnames) mxFitFunctionML(vector = FALSE)

Arguments

covariance A character string indicating the name of the expected covariance algebra.

means An optional character string indicating the name of the expected means algebra.

dimnames An optional character vector to be assigned to the dimnames of the covariance
and means algebras.

thresholds An optional character string indicating the name of the thresholds matrix.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationNormal
and mxFitFunctionML as shown in the example below.

Objective functions are functions for which free parameter values are chosen such that the value of
the objective function is minimized. The mxMLObjective function uses full-information maximum
likelihood to provide maximum likelihood estimates of free parameters in the algebra defined by the
’covariance’ argument given the covariance of an MxData object. The ’covariance’ argument takes
an MxAlgebra object, which defines the expected covariance of an associated MxData object. The
’dimnames’ arguments takes an optional character vector. If this argument is not a single NA, then
this vector be assigned to be the dimnames of the means vector, and the row and columns dimnames
of the covariance matrix.

mxMLObjective evaluates with respect to an MxData object. The MxData object need not be
referenced in the mxMLObjective function, but must be included in the MxModel object. mxM-
LObjective requires that the ’type’ argument in the associated MxData object be equal to ’cov’ or
’cov’. The ’covariance’ argument of this function evaluates with respect to the ’matrix’ argument
of the associated MxData object, while the ’means’ argument of this function evaluates with respect
to the ’vector’ argument of the associated MxData object. The ’means’ and ’vector’ arguments are
optional in both functions. If the ’means’ argument is not specified (NA), the optional ’vector’ argu-
ment of the MxData object is ignored. If the ’means’ argument is specified, the associated MxData
object should specify a ’means’ argument of equivalent dimension as the ’means’ algebra.

172 mxMLObjective

dimnames must be supplied where the matrices referenced by the covariance and means algebras
are not themselves labeled. Failure to do so leads to an error noting that the covariance or means
matrix associated with the ML objective does not contain dimnames.

To evaluate, place MxMLObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.
The results of the optimization can be found in the ’output’ slot of the resulting model, or using the
mxEval function.

Value

Returns a list containing an MxExpectationNormal object and an MxFitFunctionML object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleModel", S, A, I, expCov, expFunction, fitFunction,
mxData(observed=cov(tmpFrame), type="cov", numObs=dim(tmpFrame)[1]))

mxModel 173

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxModel Create MxModel Object

Description

This function creates a new MxModel object.

Usage

mxModel(model = NA, ..., manifestVars = NA, latentVars = NA,
remove = FALSE, independent = NA, type = NA, name = NA)

Arguments

model This argument is either an MxModel object or a string. If ’model’ is an Mx-
Model object, then all elements of that model are placed in the resulting Mx-
Model object. If ’model’ is a string, then a new model is created with the string
as its name. If ’model’ is either unspecified or ’model’ is a named entity, data
source, or MxPath object, then a new model is created.

... An arbitrary number of mxMatrix, mxPath, mxData, and other functions such
as mxConstraints and mxCI. These will all be added or removed from the model
as specified in the ’model’ argument, based on the ’remove’ argument.

manifestVars For RAM-type models, A list of manifest variables to be included in the model.

latentVars For RAM-type models, A list of latent variables to be included in the model.

remove logical. If TRUE, elements listed in this statement are removed from the original
model. If FALSE, elements listed in this statement are added to the original
model.

independent logical. If TRUE then the model is evaluated independently of other models.

type character vector. The model type to assign to this model. Defaults to op-
tions("mxDefaultType"). See below for valid types

name An optional character vector indicating the name of the object.

174 mxModel

Details

The mxModel function is used to create MxModel objects. Objects created by this function may be
new, or may be modified versions of existing MxModel objects. By default a new MxModel object
will be created: To create a modified version of an existing MxModel object, include this model in
the ’model’ argument.

Other named-entities may be added as arguments to the mxModel function, which are then added
to or removed from the model specified in the ‘model’ argument. Other functions you can use to
add objects to the model to this way are mxCI, mxAlgebra, mxBounds, mxConstraint, mxData,
and mxMatrix objects, as well as objective functions. You can also include MxModel objects as
sub-models of the output model, and may be estimated separately or jointly depending on shared
parameters and the ‘independent’ flag discussed below. Only one MxData object and one objective
function may be included per model, but there are no restrictions on the number of other named-
entities included in an mxModel statement.

All other arguments must be named (i.e. ‘latentVars = names’), or they will be interpreted as
elements of the ellipsis list. The ‘manifestVars’ and ‘latentVars’ arguments specify the names of
the manifest and latent variables, respectively, for use with the mxPath function. The ‘remove’
argument may be used when mxModel is used to create a modified version of an existing MxMatrix
object. When ‘remove’ is set to TRUE, the listed objects are removed from the model specified in
the ‘model’ argument. When ‘remove’ is set to FALSE, the listed objects are added to the model
specified in the ‘model’ argument.

Model independence may be specified with the ‘independent’ argument. If a model is independent
(‘independent = TRUE’), then the parameters of this model are not shared with any other model.
An independent model may be estimated with no dependency on any other model. If a model is not
independent (‘independent = FALSE’), then this model shares parameters with one or more other
models such that these models must be jointly estimated. These dependent models must be entered
as arguments in another model, so that they are simultaneously optimized.

The model type is determined by a character vector supplied to the ‘type’ argument. The type of a
model is a dynamic property, ie. it is allowed to change during the lifetime of the model. To see
a list of available types, use the mxTypes command. When a new model is created and no type is
specified, the type specified by options("mxDefaultType") is used.

To be estimated, MxModel objects must include objective functions as arguments (mxAlgebraOb-
jective, mxFIMLObjective, mxMLObjective or mxRAMObjective) and executed using the mxRun
function. When MxData objects are included in models, the ’type’ argument of these objects may
require or exclude certain objective functions, or set an objective function as default.

Named entities in MxModel objects may be viewed and referenced by name using the $ symbol. For
instance, for an MxModel named "yourModel" containing an MxMatrix named "yourMatrix", the
contents of "yourMatrix" can be accessed as yourModel$yourMatrix. Slots (i.e., matrices, algebras,
etc.) in an mxMatrix may also be referenced with the $ symbol (e.g., yourModel$matrices or
yourModel$algebras). See the documentation for Classes and the examples in Classes for more
information.

Value

Returns a new MxModel object. MxModel objects must include an objective function to be used as
arguments in mxRun functions.

mxModel 175

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

See mxCI for information about adding Confidence Interval calculations to a model. See mxPath for
information about adding paths to RAM-type models. See mxMatrix for information about adding
matrices to models. See mxData for specifying the data a model is to be evaluated against. See
MxModel for the S4 class created by mxMatrix. Many advanced options can be set via mxOption
(such as calculating the Hessian). More information about the OpenMx package may be found here.

Examples

library(OpenMx)

At the simplest, you can create an empty model,
placing it in an object, and add to it later
emptyModel <- mxModel(model="IAmEmpty")

Create a model named 'firstdraft' with one matrix 'A'
firstModel <- mxModel(model='firstdraft',

mxMatrix(type='Full', nrow = 3, ncol = 3, name = "A"))

Update 'firstdraft', and rename the model 'finaldraft'
finalModel <- mxModel(model=firstModel,

mxMatrix(type='Symm', nrow = 3, ncol = 3, name = "S"),
mxMatrix(type='Iden', nrow = 3, name = "F"),
name= "finaldraft")

Add data to the model from an existing data frame in object 'data'
data(twinData) # load some data
finalModel <- mxModel(model=finalModel, mxData(twinData, type='raw'))

Two ways to view the matrix named "A" in MxModel object 'model'

finalModel$A

finalModel$matrices$A

A working example using OpenMx Path Syntax
data(HS.ability.data) # load the data

The manifest variables loading on each proposed latent variable
Spatial <- c("visual", "cubes", "paper")
Verbal <- c("general", "paragrap", "sentence")
Math <- c("numeric", "series", "arithmet")

latents <- c("vis", "math", "text")
manifests <- c(Spatial, Math, Verbal)

HSModel <- mxModel(model="Holzinger_and_Swineford_1939", type="RAM",

176 MxModel-class

manifestVars = manifests, # list the measured variables (boxes)
latentVars = latents, # list the latent variables (circles)
factor loadings from latents to manifests
mxPath(from="vis", to=Spatial),# factor loadings
mxPath(from="math", to=Math), # factor loadings
mxPath(from="text", to=Verbal), # factor loadings

Allow latent variables to covary
mxPath(from="vis" , to="math", arrows=2, free=TRUE),
mxPath(from="vis" , to="text", arrows=2, free=TRUE),
mxPath(from="math", to="text", arrows=2, free=TRUE),

Allow latent variables to have variance (first fixed @ 1)
mxPath(from=latents, arrows=2, free=c(FALSE,TRUE,TRUE), values=1.0),
Manifest have residual variance
mxPath(from=manifests, arrows=2),
the data to be analysed
mxData(cov(HS.ability.data[,manifests]), type = "cov", numObs = 301))

fitModel <- mxRun(HSModel) # run the model
summary(fitModel) # examine the output: Fit statistics and path loadings

MxModel-class MxModel Class

Description

MxModel is an S4 class. An MxModel object is a named entity.

Details

The ‘matrices’ slot contains a list of the MxMatrix objects included in the model. These objects
are listed by name. Two objects may not share the same name. If a new MxMatrix is added to
an MxModel object with the same name as an MxMatrix object in that model, the added version
replaces the previous version. There is no imposed limit on the number of MxMatrix objects that
may be added here.

The ‘algebras’ slot contains a list of the MxAlgebra objects included in the model. These objects
are listed by name. Two objects may not share the same name. If a new MxAlgebra is added to
an MxModel object with the same name as an MxAlgebra object in that model, the added version
replaces the previous version. All MxMatrix objects referenced in the included MxAlgebra objects
must be included in the ‘matrices’ slot prior to estimation. There is no imposed limit on the number
of MxAlgebra objects that may be added here.

The ‘constraints’ slot contains a list of the MxConstraint objects included in the model. These ob-
jects are listed by name. Two objects may not share the same name. If a new MxConstraint is added
to an MxModel object with the same name as an MxConstraint object in that model, the added ver-
sion replaces the previous version. All MxMatrix objects referenced in the included MxConstraint
objects must be included in the ‘matrices’ slot prior to estimation. There is no imposed limit on the
number of MxConstraint objects that may be added here.

MxModel-class 177

The ‘intervals’ slot contains a list of the confidence intervals requested by included MxCI objects.
These objects are listed by the free parameters, MxMatrices and MxAlgebras referenced in the
MxCI objects, not the list of MxCI objects themselves. If a new MxCI object is added to an Mx-
Model object referencing one or more free parameters MxMatrices or MxAlgebras previously listed
in the ‘intervals’ slot, the new confidence interval(s) replace the existing ones. All listed confidence
intervals must refer to free parameters MxMatrices or MxAlgebras in the model.

The ‘latentVars’ slot contains a list of latent variable names, which may be referenced by MxPath
objects. This slot defaults to ’NA’, and is only used when the mxPath function is used.

The ‘manifestVars’ slot contains a list of latent variable names, which may be referenced by MxPath
objects. This slot defaults to ’NA’, and is only used when the mxPath function is used.

The ‘data’ slot contains an MxData object. This slot must be filled prior to execution when a
fitfunction referencing data is used. Only one MxData object may be included per model, but
submodels may have their own data in their own ‘data’ slots. If an MxData object is added to an
MxModel which already contains an MxData object, the new object replaces the existing one.

The ‘submodels’ slot contains references to all of the MxModel objects included as submodels of
this MxModel object. Models held as arguments in other models are considered to be submodels.
These objects are listed by name. Two objects may not share the same name. If a new submodel
is added to an MxModel object with the same name as an existing submodel, the added version
replaces the previous version. When a model containing other models is executed using mxRun, all
included submodels are executed as well. If the submodels are dependent on one another, they are
treated as one larger model for purposes of estimation.

The ‘independent’ slot contains a logical value indicating whether or not the model is independent.
If a model is independent (independent=TRUE), then the parameters of this model are not shared
with any other model. An independent model may be estimated with no dependency on any other
model. If a model is not independent (independent=FALSE), then this model shares parameters
with one or more other models such that these models must be jointly estimated. These dependent
models must be entered as submodels of another MxModel objects, so that they are simultaneously
optimized.

The ‘options’ slot contains a list of options for the model. The name of each entry in the list is the
option name to be used at runtime. The values in this list are the values of the optimizer options.
The standard interface for updating options is through the mxOption function.

The ‘output’ slot contains a list of output added to the model by the mxRun function. Output
includes parameter estimates, optimization information, model fit, and other information. If a model
has not been optimized using the mxRun function, the ’output’ slot will be ’NULL’.

Named entities in MxModel objects may be viewed and referenced by name using the $ symbol. For
instance, for an MxModel named "yourModel" containing an MxMatrix named "yourMatrix", the
contents of "yourMatrix" can be accessed as yourModel$yourMatrix. Slots (i.e., matrices, algebras,
etc.) in an mxMatrix may also be referenced with the $ symbol (e.g., yourModel$matrices or
yourModel$algebras). See the documentation for Classes and the examples in mxModel for more
information.

Objects from the Class

Objects can be created by calls of the form mxModel().

178 MxModel-class

Slots

name: Character string. The name of the model object.

matrices: List of the model’s MxMatrix objects.

algebras: List of the model’s MxAlgebra objects.

constraints: List of the model’s MxConstraint objects.

intervals: List of the model’s MxInterval objects, requested via mxCI().

latentVars: "Latent variables;" object of class "MxCharOrList".

manifestVars: "Manifest variables;" object of class "MxCharOrList".

data: Object of class MxData.

submodels: List of MxModel objects.

expectation: Object of class MxExpectation; dictates the model’s specification.

fitfunction: Object of class MxFitFunction; dictates the cost function to be minimized when
fitting the model.

compute: Object of class MxCompute–the model’s compute plan, which contains instructions on
what the model is to compute and how to do so.

independent: Logical; is the model to be run independently from other submodels?

options: List of model-specific options, set by mxOption().

output: List of model output produced during a call to mxRun().

runstate: List produced by mxRun(), which contains the pre-run state of the model object.

.newobjects: Logical; for internal use.

.resetdata: Logical; for internal use.

.wasRun: Logical; for internal use.

.modifiedSinceRun: Logical; for internal use.

.version: Object of class "package_version"; for internal use.

Methods

$ signature(x = "MxModel"): Accessor. Accesses slots by slot-name. Also accesses constituent
named entities, by name.

$<- signature(x = "MxModel"): Assignment. Generally, this method will not allow the user to
make unsafe changes to the MxModel object.

[[signature(x = "MxModel"): Accessor for constituent named entities.

[[<- signature(x = "MxModel"): Assignment for a named entity.

names signature(x = "MxModel"): Returns names of slots and named entities.

print signature(x = "MxModel"): "Print" method.

show signature(object = "MxModel"): "Show" method.

Note that imxInitModel(), imxModelBuilder(), imxTypeName(), and imxVerifyModel() are
separately documented methods for class "MxModel".

mxOption 179

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxModel for creating MxModel objects. More information about the OpenMx package may be
found here.

Examples

showClass("MxModel")

mxOption Set or Clear an Optimizer Option

Description

The function sets, shows, or clears an option that is specific to the optimizer in the back-end.

Usage

mxOption(model, key, value, reset = FALSE)

Arguments

model An MxModel object or NULL

key The name of the option.

value The value of the option.

reset If TRUE then reset all options to their defaults.

Details

mxOption is used to set, clear, or query an option (given in the ‘key’ argument) in the back-end
optimizer. Valid option keys are listed below.

Use value = NULL to remove an existing option. Leaving value blank will return the current value
of the option specified by ‘key’.

To reset all options to their default values, use ‘reset = TRUE’. When reset = TRUE, ‘key’ and
‘value’ are ignored.

If the ‘model’ argument is set to NULL, the default optimizer option (i.e those applying to all
models by default) will be set.

To see the defaults, use getOption('mxOptions').

Before the model is submitted to the back-end, all keys and values are converted into strings using
the as.character function.

The “Default optimizer” option can only be set globally (i.e., with model=NULL), and not specifically
to a given MxModel.

180 mxOption

Currently, options “Gradient algorithm” and “Gradient iterations” are ignored by all optimizers
other than SLSQP. Also, currently option “Analytic Gradients” only affects SLSQP and NPSOL.

The maximum number of major iterations (the option “Major iterations”) for optimization for
NPSOL can be specified either by using a numeric value (such as 50, 1000, etc) or by specify-
ing a user-defined function. The user-defined function should accept two arguments as input, the
number of parameters and the number of constraints, and return a numeric value as output.

OpenMx options

Number of Threads i the number of processor cores to use. Use detectCores() to find how many are available.
Calculate Hessian [Yes | No] calculate the Hessian explicitly after optimization.

Standard Errors [Yes | No] return standard error estimates from the explicitly calculate hessian.
Default optimizer [NPSOL | SLSQP | CSOLNP] the gradient-descent optimizer to use

Number of Threads [0|1|2|...|10|...] number of threads used for optimization. This is how parallelism works. Default value of 0 uses detectCores() - 1.
Feasibility tolerance r the maximum acceptable absolute violations in linear and nonlinear constraints.
Optimality tolerance r the maximum acceptable difference in fit.

Gradient algorithm see list finite difference method, either ’forward’ or ’central’.
Gradient iterations 1:4 the number of Richardson extrapolation iterations
Analytic Gradients [Yes | No] should the optimizer use analytic gradients (if available)?
loglikelihoodScale i factor by which the loglikelihood is scaled.

NPSOL-specific options

Nolist this option suppresses printing of the options
Print level i the value of i controls the amount of printout produced by the major iterations

Minor print level i the value of i controls the amount of printout produced by the minor iterations
Print file i for i > 0 a full log is sent to the file with logical unit number i .

Summary file i for i > 0 a brief log will be output to file i .
Function precision r a measure of accuracy with which the fitfunction and constraint functions can be computed.
Infinite bound size r if r > 0 defines the "infinite" bound bigbnd.

Major iterations i or a function the maximum number of major iterations before termination.
Verify level [-1:3 | Yes | No] see NPSOL manual.

Line search tolerance r controls the accuracy with which a step is taken.
Derivative level [0-3] see NPSOL manual.

Hessian [Yes | No] return the Hessian (Yes) or the transformed Hessian (No).
Step Limit r maximum change in free parameters at first step of linesearch.

CSOLNP-specific options

Major iteration_CSOLNP i maximum number of major iterations.
Minor iteration_CSOLNP i maximum number of minor iterations.

Function precision_CSOLNP i a measure of accuracy with which the fitfunction and constraint functions can be computed.

Checkpointing options

Always Checkpoint [Yes | No] whether to checkpoint all models during optimization.

mxOption 181

Checkpoint Directory path the directory into which checkpoint files are written.
Checkpoint Prefix string the string prefix to add to all checkpoint filenames.

Checkpoint Fullpath path overrides the directory and prefix (useful to output to /dev/fd/2)
Checkpoint Units see list the type of units for checkpointing: ’minutes’, ’iterations’, or ’evaluations’.

Checkpoint Count i the number of units between checkpoint intervals.

Model transformation options

Error Checking [Yes | No] whether model consistency checks are performed in the OpenMx front-end
No Sort Data character vector of model names for which FIML data sorting is not performed

RAM Inverse Optimization [Yes | No] whether to enable solve(I - A) optimization
RAM Max Depth i the maximum depth to be used when solve(I - A) optimization is enabled

Multivariate normal integration parameters

mvnMaxPointsA i base number of integration points
mvnMaxPointsB i number of integration points per row
mvnMaxPointsC i number of integration points per rows^2

mvnAbsEps i absolute tolerance
mvnRelEps i relative tolerance

Value

If a model is provided, it is returned with the optimizer option either set or cleared. If value is
empty, the current value is returned.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxModel all uses of mxOption are via an mxModel whose options are set or cleared.

Examples

set the Numbder of Threads (cores to use)
mxOption(NULL, "Number of Threads", detectCores() - 1)

testModel <- mxModel(model = "testModel") # make a model to use for example
testModel$options # show the model options (none yet)
options()$mxOptions # list all mxOptions (global settings)

testModel <- mxOption(testModel, "Function precision", 1e-5) # set precision
testModel <- mxOption(testModel, "Function precision", NULL) # clear precision
N.B. This is model-specific precision (defaults to global setting)

182 MxOptionalMatrix-class

may optimize for speed
at cost of not getting standard errors
testModel <- mxOption(testModel, "Calculate Hessian", "No")
testModel <- mxOption(testModel, "Standard Errors" , "No")

testModel$options # see the list of options you set

MxOptionalChar-class An optional character

Description

An optional character

MxOptionalCharOrNumber-class

A character, integer, or NULL

Description

A character, integer, or NULL

MxOptionalLogical-class

An optional logical

Description

This is an internal class, the union of NULL and logical.

MxOptionalMatrix-class

An optional matrix

Description

An optional matrix

MxOptionalNumeric-class 183

MxOptionalNumeric-class

An optional numeric

Description

An optional numeric

mxPath Create List of Paths

Description

This function creates a list of paths.

Usage

mxPath(from, to = NA, connect = c("single", "all.pairs", "unique.pairs",
"all.bivariate", "unique.bivariate"), arrows = 1,
free = TRUE, values = NA, labels = NA,
lbound = NA, ubound = NA, ..., joinKey = as.character(NA))

Arguments

from character vector. These are the sources of the new paths.

to character vector. These are the sinks of the new paths.

connect String. Specifies the type of source to sink connection: "single", "all.pairs",
"all.bivariate", "unique.pairs", "unique.bivariate". Default value is "single".

arrows numeric value. Must be either 1 (for single-headed) or 2 (for double-headed
arrows).

free boolean vector. Indicates whether paths are free or fixed.

values numeric vector. The starting values of the parameters.

labels character vector. The names of the paths.

lbound numeric vector. The lower bounds of free parameters.

ubound numeric vector. The upper bounds of free parameters.

... Not used. Allows OpenMx to catch the use of the deprecated ‘all’ argument.

joinKey character vector. The name of the foreign key to join against some other model
to create a cross model path (regression or factor loading.

184 mxPath

Details

The mxPath function creates MxPath objects. These consist of a list of paths describing the relation-
ships between variables in a model using the RAM modeling approach (McArdle and MacDonald,
1984). Variables are referenced by name, and these names must appear in the ‘manifestVar’ and
‘latentVar’ arguments of the mxModel function.

Paths are specified as going "from" one variable (or set of variables) "to" another variable or set of
variables using the ‘from’ and ‘to’ arguments, respectively. If ‘to’ is left empty, it will be set to the
value of ‘from’.

‘connect’ has five possible connection types: "single", "all.pairs", "all.bivariate", "unique.pairs",
"unique.bivariate". The default value is "single". Assuming the values c(‘a’,‘b’,‘c’) for the ‘to’ and
‘from’ fields the paths produced by each connection type are as follows:

"all.pairs": (a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c).

"unique.pairs": (a,a), (a,b), (a,c), (b,b), (b,c), (c,c).

"all.bivariate": (a,b), (a,c), (b,a), (b,c), (c,a), (c,b).

"unique.bivariate": (a,b), (a,c), (b,c).

"single": (a,a), (b,b), (c,c).

Multiple variables may be input as a vector of variable names. If the ‘connect’ argument is set to
"single", then paths are created going from each entry in the ‘from’ vector to the corresponding
entry in the ‘to’ vector. If the ‘to’ and ‘from’ vectors are of different lengths when the ‘connect’
argument is set to "single", the shorter vector is repeated to make the vectors of equal length.

The ‘free’ argument specifies whether the paths created by the mxPath function are free or fixed
parameters. This argument may take either TRUE for free parameters, FALSE for fixed parameters,
or a vector of TRUEs and FALSEs to be applied in order to the created paths.

The ‘arrows’ argument specifies the type of paths created. A value of 1 indicates a one-headed
arrow representing regression. This path represents a regression of the ‘to’ variable on the ‘from’
variable, such that the arrow points to the ‘to’ variable in a path diagram. A value of 2 indicates a
two-headed arrow, representing a covariance or variance. If multiple paths are created in the same
mxPath function, then the ‘arrows’ argument may take a vector of 1s and 2s to be applied to the set
of created paths.

The ‘values’ is a numeric vectors containing the starting values of the created paths. ‘values’ gives
a starting value for estimation. The ‘labels’ argument specifies the names of the resulting MxPath
object. The ‘lbound’ and ‘ubound’ arguments specify lower and upper bounds for the created paths.

Value

Returns a list of paths.

Note

The previous implementation of ‘all’ had unsafe features. Its use is now deprecated, and has been
replaced by the new mechanism ‘connect’ which supports safe and controlled generation of desired
combinations of paths.

mxPath 185

References

McArdle, J. J. and MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action
Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-
251.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxMatrix for a matrix-based approach to path specification; mxModel for the container in which
mxPaths are embedded. More information about the OpenMx package may be found here.

Examples

A simple Example: 1 factor Confirmatory Factor Analysis

library(OpenMx)

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2,free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov",numObs=500)

)
factorFit <-mxRun(factorModel)
summary(factorFit)

A more complex example using features of R to compress
what would otherwise be a long and error-prone script

list of 100 variable names: "01" "02" "03"...
myManifest <- sprintf("%02d", c(1:100))

the latent variables for the model
myLatent <- c("G1", "G2", "G3", "G4", "G5")

Start building the model:
Define its type, and add the manifest and latent variable name lists
testModel <- mxModel(model="testModel", type = "RAM",

manifestVars = myManifest, latentVars = myLatent)

Create covariances between the latent variables and add to the model
Here we use combn to create the covariances
nb: To create the variances and covariances in one operation you could use
expand.grid(myLatent,myLatent) to specify from and to

186 MxRAMModel-class

uniquePairs <- combn(myLatent,2)
covariances <- mxPath(from = uniquePairs[1,],

to=uniquePairs[2,], arrows = 2, free = TRUE, values = 1)
testModel <- mxModel(model=testModel, covariances)

Create variances for the latent variables
variances <- mxPath(from = myLatent,

to=myLatent, arrows = 2, free = TRUE, values = 1)
testModel <- mxModel(model=testModel, variances) # add variances to the model

Make a list of paths from each packet of 20 manifests
to one of the 5 latent variables
nb: The first loading to each latent is fixed to 1 to scale its variance.
singles <- list()
for (i in 1:5) {

j <- i*20
singles <- append(singles, mxPath(

from = myLatent[i], to = myManifest[(j - 19):j],
arrows = 1,
free = c(FALSE, rep(TRUE, 19)),
values = c(1, rep(0.75, 19))))

}

add single-headed paths to the model
testModel <- mxModel(model=testModel, singles)

MxRAMGraph-class MxRAMGraph

Description

This is an internal class and should not be used directly. It is a class for RAM directed graphs.

MxRAMMetaData-class Meta Data for RAM

Description

This is an internal class, the meta data for RAM.

MxRAMModel-class MxRAMModel

Description

This is an internal class and should not be used directly.

mxRAMObjective 187

mxRAMObjective DEPRECATED: Create MxRAMObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxExpectationRAM() and mxFitFunctionML() instead. As a temporary workaround,
mxRAMObjective returns a list containing an MxExpectationNormal object and an MxFitFunc-
tionML object.

All occurrences of

mxRAMObjective(A, S, F, M = NA, dimnames = NA, thresholds = NA, vector = FALSE, thresh-
names = dimnames)

Should be changed to

mxExpectationRAM(A, S, F, M = NA, dimnames = NA, thresholds = NA, threshnames = dim-
names) mxFitFunctionML(vector = FALSE)

Arguments

A A character string indicating the name of the ’A’ matrix.

S A character string indicating the name of the ’S’ matrix.

F A character string indicating the name of the ’F’ matrix.

M An optional character string indicating the name of the ’M’ matrix.

dimnames An optional character vector to be assigned to the column names of the ’F’ and
’M’ matrices.

thresholds An optional character string indicating the name of the thresholds matrix.

vector A logical value indicating whether the objective function result is the likelihood
vector.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationRAM and
mxFitFunctionML as shown in the example below.

Objective functions were functions for which free parameter values are chosen such that the value
of the objective function was minimized. The mxRAMObjective provided maximum likelihood
estimates of free parameters in a model of the covariance of a given MxData object. This model
is defined by reticular action modeling (McArdle and McDonald, 1984). The ’A’, ’S’, and ’F’
arguments must refer to MxMatrix objects with the associated properties of the A, S, and F matrices
in the RAM modeling approach.

The ’dimnames’ arguments takes an optional character vector. If this argument is not a single NA,
then this vector be assigned to be the column names of the ’F’ matrix and optionally to the ’M’
matrix, if the ’M’ matrix exists.

188 mxRAMObjective

The ’A’ argument refers to the A or asymmetric matrix in the RAM approach. This matrix consists
of all of the asymmetric paths (one-headed arrows) in the model. A free parameter in any row
and column describes a regression of the variable represented by that row regressed on the variable
represented in that column.

The ’S’ argument refers to the S or symmetric matrix in the RAM approach, and as such must be
square. This matrix consists of all of the symmetric paths (two-headed arrows) in the model. A free
parameter in any row and column describes a covariance between the variable represented by that
row and the variable represented by that column. Variances are covariances between any variable at
itself, which occur on the diagonal of the specified matrix.

The ’F’ argument refers to the F or filter matrix in the RAM approach. If no latent variables are
included in the model (i.e., the A and S matrices are of both of the same dimension as the data
matrix), then the ’F’ should refer to an identity matrix. If latent variables are included (i.e., the A
and S matrices are not of the same dimension as the data matrix), then the ’F’ argument should
consist of a horizontal adhesion of an identity matrix and a matrix of zeros.

The ’M’ argument refers to the M or means matrix in the RAM approach. It is a 1 x n matrix,
where n is the number of manifest variables + the number of latent variables. The M matrix must
be specified if either the mxData type is “cov” or “cor” and a means vector is provided, or if the
mxData type is “raw”. Otherwise the M matrix is ignored.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxRAMObjective will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

mxRAMObjective evaluates with respect to an MxData object. The MxData object need not
be referenced in the mxRAMObjective function, but must be included in the MxModel object.
mxRAMObjective requires that the ’type’ argument in the associated MxData object be equal to
’cov’ or ’cor’.

To evaluate, place MxRAMObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.
The results of the optimization can be found in the ’output’ slot of the resulting model, and may be
obtained using the mxEval function..

Value

Returns a list containing an MxExpectationRAM object and an MxFitFunctionML object.

References

McArdle, J. J. and MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action
Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-
251.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxAlgebra,

mxRename 189

mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

matrixS <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"),
name = "S")

matrixA <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA),
name = "A")

matrixF <- mxMatrix(type="Iden", nrow=2, ncol=2, name="F")
matrixM <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),

free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

Define the expectation

expFunction <- mxExpectationRAM(M="M", dimnames = tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleRAMModel",
matrixA, matrixS, matrixF, matrixM,
expFunction, fitFunction,
mxData(observed=cov(tmpFrame), type="cov", numObs=nrow(tmpFrame),

means = colMeans(tmpFrame)))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxRename Rename MxModel or a Submodel

Description

This functions renames either the top model or a submodel to a new name. All internal references
to the old model name are replaced with references to the new name.

190 mxRestore

Usage

mxRename(model, newname, oldname = NA)

Arguments

model a MxModel object.

newname the new name of the model.

oldname the name of the target model to rename. If NA then rename top model.

Value

Return a mxModel object with the target model renamed.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

library(OpenMx)

create two empty models
modelA <- mxModel(model='modelA')
modelB <- mxModel(model='modelB')

create a parent model with two submodels
modelC <- mxModel(model='modelC', modelA, modelB)

Rename modelC to model1
model1 <- mxRename(modelC, 'model1')

Rename submodel modelB to model2
model1 <- mxRename(model1, oldname = 'modelB', newname = 'model2')

model1

mxRestore Restore From Checkpoint File

Description

The function loads the last saved state from a checkpoint file.

Usage

mxRestore(model, chkpt.directory = ".", chkpt.prefix = "", line=NULL, strict=FALSE)

mxRestore 191

Arguments

model MxModel object to be loaded.
chkpt.directory

character. Directory where the checkpoint file is located.

chkpt.prefix character. Prefix of the checkpoint file.

line integer. Which line from the checkpoint file to restore (defaults to the last line)

strict logical. Require that the checkpoint name and model name match.

Details

In general, the arguments ‘chkpt.directory’ and ‘chkpt.prefix’ should be identical to the mxOption:
‘Checkpoint Directory’ and ‘Checkpoint Prefix’ that were specificed on the model before execution.

Alternatively, the checkpoint file can be manually loaded as a data.frame in R. Use read.table
with the options header=TRUE, sep="\t", stringsAsFactors=FALSE, check.names=FALSE.

Value

Returns an MxModel object with free parameters updated to the last saved values. When ‘line’ is
provided, the MxModel is updated to the values on that line within the checkpoint file.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Create a model that includes an expected covariance matrix,
an expectation function, a fit function, and an observed covariance matrix

data <- mxData(cov(tmpFrame), type="cov", numObs = 1000)
expCov <- mxMatrix(type="Symm", nrow=2, ncol=2, values=c(.2,.1,.2), free=TRUE, name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)
fitFunction <- mxFitFunctionML()
testModel <- mxModel(model="testModel", expCov, data, expFunction, fitFunction)

#Use mxRun to optimize the free parameters in the expected covariance matrix
modelOut <- mxRun(testModel, checkpoint = TRUE)
modelOut$expCov

192 mxRObjective

#Use mxRestore to load the last checkpoint saved state of the model
modelRestore <- mxRestore(testModel)
modelRestore$expCov

mxRObjective DEPRECATED: Create MxRObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxFitFunctionR() instead. As a temporary workaround, mxRObjective returns a list
containing a NULL MxExpectation object and an MxFitFunctionR object.

All occurrences of

mxRObjective(fitfun, ...)

Should be changed to

mxFitFunctionR(fitfun, ...)

Arguments

objfun A function that accepts two arguments.

... The initial state information to the objective function.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationNormal
and mxFitFunctionML as shown in the example below.

The fitfun argument must be a function that accepts two arguments. The first argument is the
mxModel that should be evaluated, and the second argument is some persistent state information
that can be stored between one iteration of optimization to the next iteration. It is valid for the
function to simply ignore the second argument.

The function must return either a single numeric value, or a list of exactly two elements. If the
function returns a list, the first argument must be a single numeric value and the second element
will be the new persistent state information to be passed into this function at the next iteration. The
single numeric value will be used by the optimizer to perform optimization.

The initial default value for the persistant state information is NA.

Throwing an exception (via stop) from inside fitfun may result in unpredictable behavior. You may
want to wrap your code in tryCatch while experimenting.

Value

Returns a list containing a NULL mxExpectation object and an MxFitFunctionR object.

mxRowObjective 193

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxFitFunctionR

library(OpenMx)

A <- mxMatrix(nrow = 2, ncol = 2, values = c(1:4), free = TRUE, name = 'A')
squared <- function(x) { x ^ 2 }

Define the objective function in R

objFunction <- function(model, state) {
values <- modelAvalues
return(squared(values[1,1] - 4) + squared(values[1,2] - 3) +

squared(values[2,1] - 2) + squared(values[2,2] - 1))
}

Define the expectation function

fitFunction <- mxFitFunctionR(objFunction)

Define the model

tmpModel <- mxModel(model="exampleModel", A, fitFunction)

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxRowObjective DEPRECATED: Create MxRowObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxFitFunctionRow() instead. As a temporary workaround, mxRowObjective returns a
list containing a NULL MxExpectation object and an MxFitFunctionRow object.

All occurrences of

mxRowObjective(rowAlgebra, reduceAlgebra, dimnames, rowResults = "rowResults", filteredDataRow
= "filteredDataRow", existenceVector = "existenceVector")

Should be changed to

mxFitFunctionRow(rowAlgebra, reduceAlgebra, dimnames, rowResults = "rowResults", filtered-
DataRow = "filteredDataRow", existenceVector = "existenceVector")

194 mxRowObjective

Arguments

rowAlgebra A character string indicating the name of the algebra to be evaluated row-wise.

reduceAlgebra A character string indicating the name of the algebra that collapses the row re-
sults into a single number which is then optimized.

dimnames A character vector of names corresponding to columns be extracted from the
data set.

rowResults The name of the auto-generated "rowResults" matrix. See details.
filteredDataRow

The name of the auto-generated "filteredDataRow" matrix. See details.
existenceVector

The name of the auto-generated "existenceVector" matrix. See details.

Details

Objective functions are functions for which free parameter values are chosen such that the value
of the objective function is minimized. The mxRowObjective function evaluates a user-defined
MxAlgebra object called the ‘rowAlgebra’ in a row-wise fashion. It then stores results of the row-
wise evaluation in another MxAlgebra object called the ‘rowResults’. Finally, the mxRowObjective
function collapses the row results into a single number which is then used for optimization. The
MxAlgebra object named by the ‘reduceAlgebra’ collapses the row results into a single number.

The ‘filteredDataRow’ is populated in a row-by-row fashion with all the non-missing data from the
current row. You cannot assume that the length of the filteredDataRow matrix remains constant
(unless you have no missing data). The ‘existenceVector’ is populated in a row-by-row fashion with
a value of 1.0 in column j if a non-missing value is present in the data set in column j, and a value of
0.0 otherwise. Use the functions omxSelectRows, omxSelectCols, and omxSelectRowsAndCols to
shrink other matrices so that their dimensions will be conformable to the size of ‘filteredDataRow’.

Value

Please use mxFitFunctionRow() instead. As a temporary workaround, mxRowObjective returns a
list containing a NULL MxExpectation object and an MxFitFunctionRow object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Model that adds two data columns row-wise, then sums that column
Notice no optimization is performed here.

library(OpenMx)

xdat <- data.frame(a=rnorm(10), b=1:10) # Make data set
amod <- mxModel(model="example1",

mxData(observed=xdat, type='raw'),
mxAlgebra(sum(filteredDataRow), name = 'rowAlgebra'),
mxAlgebra(sum(rowResults), name = 'reduceAlgebra'),

mxRun 195

mxFitFunctionRow(
rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a','b'))

)
amodOut <- mxRun(amod)
mxEval(rowResults, model=amodOut)
mxEval(reduceAlgebra, model=amodOut)

Model that find the parameter that minimizes the sum of the
squared difference between the parameter and a data row.

bmod <- mxModel(model="example2",
mxData(observed=xdat, type='raw'),
mxMatrix(values=.75, ncol=1, nrow=1, free=TRUE, name='B'),
mxAlgebra((filteredDataRow - B) ^ 2, name='rowAlgebra'),
mxAlgebra(sum(rowResults), name='reduceAlgebra'),
mxFitFunctionRow(

rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a'))

)
bmodOut <- mxRun(bmod)
mxEval(B, model=bmodOut)
mxEval(reduceAlgebra, model=bmodOut)
mxEval(rowResults, model=bmodOut)

mxRun Send a Model to the Optimizer

Description

This function begins optimization on the top-level model.

Usage

mxRun(model, ..., intervals = NULL, silent = FALSE, suppressWarnings = FALSE,
unsafe = FALSE, checkpoint = FALSE, useSocket = FALSE, onlyFrontend = FALSE,
useOptimizer = TRUE)

Arguments

model A MxModel object to be optimized.

... Not used. Forces remaining arguments to be specified by name.

intervals A boolean indicating whether to compute the specified confidence intervals.

silent A boolean indicating whether to print status to terminal.
suppressWarnings

A boolean indicating whether to suppress warnings.

196 mxRun

unsafe A boolean indicating whether to ignore errors.

checkpoint A boolean indicating whether to periodically write parameter values to a file.

useSocket A boolean indicating whether to periodically write parameter values to a socket.

onlyFrontend A boolean indicating whether to run only front-end model transformations.

useOptimizer A boolean indicating whether to run only the log-likelihood of the current free
parameter values but not move any of the free parameters.

Details

The mxRun function is used to optimize free parameters in MxModel objects based on an expec-
tation function and fit function. MxModel objects included in the mxRun function must include an
appropriate expectation and fit functions.

If the ‘silent’ flag is TRUE, then model execution will not print any status messages to the terminal.

If the ‘suppressWarnings’ flag is TRUE, then model execution will not issue a warning if NPSOL
returns a non-zero status code.

If the ‘unsafe’ flag is TRUE, then any error conditions will throw a warning instead of an error. It
is strongly recommended to use this feature only for debugging purposes.

Free parameters are estimated or updated based on the expectation and fit functions. These esti-
mated values, along with estimation information and model fit, can be found in the ’output’ slot of
MxModel objects after mxRun has been used.

If a model is dependent on or shares parameters with another model, both models must be included
as arguments in another MxModel object. This top-level MxModel object must include expectation
and fit functions in both submodels, as well as an additional fit function describing how the results
of the first two should be combined.

Value

Returns an MxModel object with free parameters updated to their final values. The return value
contains an "output" slot with the results of optimization.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and run the 1-factor CFA on the openmx.psyc.virginia.edu front page

library(OpenMx)

data(demoOneFactor) # load the demoOneFactor dataframe

manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable
model <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,

mxSave 197

mxPath(from=latents, to=manifests, labels=paste("b", 1:5, sep="")),
mxPath(from=manifests, arrows=2, labels=paste("u", 1:5, sep="")),
mxPath(from=latents , arrows=2, free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov", numObs=500)

)
model <- mxRun(model) # Run the model, returning the result into model
summary(model) # Show summary of the fitted model

mxSave Save End State to Checkpoint File

Description

The function saves the last state of a model to a checkpoint file.

Usage

mxSave(model, chkpt.directory = ".", chkpt.prefix = "")

Arguments

model MxModel object to be loaded.

chkpt.directory

character. Directory where the checkpoint file is located.

chkpt.prefix character. Prefix of the checkpoint file.

Details

In general, the arguments ‘chkpt.directory’ and ‘chkpt.prefix’ should be identical to the mxOption:
‘Checkpoint Directory’ and ‘Checkpoint Prefix’ that were specificed on the model before execution.

Alternatively, the checkpoint file can be manually loaded as a data.frame in R. Use read.table
with the options header=TRUE, sep="\t", stringsAsFactors=FALSE, check.names=FALSE.

Value

Returns a logical indicating the succes of writing the checkpoint file to the checkpoint directory.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

198 mxSetDefaultOptions

Examples

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Create a model that includes an expected covariance matrix,
an expectation function, a fit function, and an observed covariance matrix

data <- mxData(cov(tmpFrame), type="cov", numObs = 1000)
expCov <- mxMatrix(type="Symm", nrow=2, ncol=2, values=c(.2,.1,.2), free=TRUE, name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)
fitFunction <- mxFitFunctionML()
testModel <- mxModel(model="testModel", expCov, data, expFunction, fitFunction)

#Use mxRun to optimize the free parameters in the expected covariance matrix
modelOut <- mxRun(testModel)
modelOut$expCov

Save the ending state of modelOut in a checkpoint file
mxSave(modelOut)

Restore the saved model from the checkpoint file
modelSaved <- mxRestore(testModel)
modelSaved$expCov

Imagine how much time you saved by not having to re-run the
model that took hours or days to run.

mxSetDefaultOptions Reset global options to the default

Description

Reset global options to the default

Usage

mxSetDefaultOptions()

mxSimplify2Array 199

mxSimplify2Array Like simplify2array but works with vectors of different lengths

Description

Vectors are filled column-by-column into a matrix. Shorter vectors are padded with NAs to fill
whole columns.

Usage

mxSimplify2Array(x, higher = FALSE)

Arguments

x a list of vectors

higher whether to produce a higher rank array (defaults to FALSE)

Examples

v1 <- 1:3
v2 <- 4:5
v3 <- 6:10
mxSimplify2Array(list(v1,v2,v3))

[,1] [,2] [,3]
[1,] 1 4 6
[2,] 2 5 7
[3,] 3 NA 8
[4,] NA NA 9
[5,] NA NA 10

mxStandardizeRAMpaths Standardize RAM models’ path coefficients

Description

Provides a dataframe containing the standardized values of all nonzero path coefficients appearing
in the A and S matrices of models that use RAM expectation (either of type="RAM" or containing an
explicit mxExpectationRAM() statement). These standardized values are what the path coefficients
would be if all variables in the analysis–both manifest and latent–were standardized to unit variance.
Can optionally include asymptotic standard errors for those standardized coefficients, computed via
the delta method.

Usage

mxStandardizeRAMpaths(model,SE=FALSE)

200 mxStandardizeRAMpaths

Arguments

model An mxModel object, that either uses RAM expectation or contains at least one
submodel that does.

SE Logical. Should standard errors be included with the standardized point esti-
mates? Defaults to FALSE. Certain conditions are required for use of SE=TRUE;
see "Details" below.

Details

Matrix A contains the Asymmetric paths, i.e. the single-headed arrows. Matrix S contains the
Symmetric paths, i.e. the double-headed arrows. The function will work even if mxMatrix objects
named "A" and "S" are absent from the model, since it identifies which matrices in the model have
been assigned the roles of A and S in the mxExpectationRAM statement. Note that, in models of
type="RAM", the necessary matrices and expectation statement are automatically assembled from
the mxPath objects.

If model contains any submodels with independent=TRUE that use RAM expectation, mxStandardizeRAMpaths()
automatically applies itself recursively over those submodels.

Use of SE=TRUE requires that package numDeriv be installed. It also requires that model contain no
mxConstraint statements, and have a nonempty hessian element in its output slot. There are three
common reasons why the latter condition may not be met. First, the model may not have been run
yet, i.e. it was not output by mxRun(). Second, mxOption "Hessian" might be set to "No". Third,
computing the Hessian matrix might possibly have been skipped per a user-defined mxCompute*
statement (if any are present in the model). If model contains RAM-expectation submodels with
independent=TRUE, these conditions are checked separately for each such submodel.

In any event, using these standard errors for hypothesis-testing or forming confidence intervals is
not generally advised. Instead, it is considered best practice to conduct likelihood-ratio tests or
compute likelihood-based confidence intervals (from mxCI()), as in examples below.

The user should note that mxStandardizeRAMpaths() only cares whether an element of A or S is
nonzero, and not whether it is a fixed or free parameter. So, for instance, if the function is used on a
model not yet run, any free parameters in A or S initialized at zero will not appear in the function’s
output.

The user is warned to interpret the output of mxStandardizeRAMpaths() cautiously if any elements
of A or S depend upon definition variables.

Value

If argument model is a single-group model that uses RAM expecation, then mxStandardizeRAMpaths()
returns a dataframe, with one row for each nonzero path coefficient in A and S, and with the follow-
ing columns:

name Character strings that uniquely identify each nonzero path coefficient in terms
of the model name, the matrix ("A" or "S"), the row number, and the column
number.

label Character labels for those path coefficients that are labeled elements of an mxMatrix
object, and NA for those that are not. Note that path coefficients having the same

mxStandardizeRAMpaths 201

label (and therefore the same UNstandardized value) can have different stan-
dardized values, and therefore the same label may appear more than once in this
dataframe.

matrix Character strings of "A" or "S", depending on which matrix contains the given
path coefficient.

row Character. The rownames of the matrix containing each path coefficient; row
numbers are used instead if the matrix has no rownames.

col Character. The colnames of the matrix containing each path coefficient; column
numbers are used instead if the matrix has no colnames.

Raw.Value Numeric values of the raw (i.e., UNstandardized) path coefficients.

Raw.SE Numeric values of the asymptotic standard errors of the raw path coefficients if
if SE=TRUE, or NA otherwise.

Std.Value Numeric values of the standardized path coefficients.

Std.SE Numeric values of the asymptotic standard errors of the standardized path coef-
ficients if SE=TRUE, or NA otherwise.

If model is a multi-group model containing at least one submodel with RAM expectation, then
mxStandardizeRAMpaths() returns a list. The list has a number of elements equal to the number
of submodels that either have RAM expectation or contain a submodel that does. List elements cor-
responding to RAM-expectation submodels contain a dataframe, as described above. List elements
corresponding to "container" submodels are themselves lists, of the kind described here.

Examples

library(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2, values=0.1),
mxPath(from=latents, arrows=2,free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov",numObs=500)

)
factorFit <-mxRun(factorModel)
summary(factorFit)$parameters
mxStandardizeRAMpaths(model=factorFit,SE=FALSE)

Likelihood ratio test of variable x1's factor loading:
factorModelNull <- omxSetParameters(factorModel,labels="One Factor.A[1,6]",

values=0,free=FALSE)
factorFitNull <- mxRun(factorModelNull)
mxCompare(factorFit,factorFitNull)[2,"p"] #<--p-value

Confidence intervals for all standardized paths:
factorModel2 <- mxModel(model=factorModel,

mxMatrix(type="Iden",nrow=nrow(factorModel$A),name="I"),

202 mxThreshold

mxAlgebra(vec2diag(diag2vec(solve(I-A)%*%S%*%t(solve(I-A)))%^%-0.5) ,
name="InvSD"),

mxAlgebra(InvSD %*% A %*% solve(InvSD),
name="Az",dimnames=dimnames(factorModel$A)),

mxAlgebra(InvSD %*% S %*% InvSD,
name="Sz",dimnames=dimnames(factorModel$S)),

mxCI(c("Az","Sz"))
)
factorFit2 <- mxRun(factorModel2,intervals=TRUE)
Contains point values and confidence limits for all paths:
summary(factorFit2)$CI

mxThreshold Create List of Thresholds

Description

This function creates a list of thresholds.

Usage

mxThreshold(vars, nThresh=NA,
free=FALSE, values=NA, labels=NA,
lbound=NA, ubound=NA)

Arguments

vars character vector. These are the variables for which thresholds are to be specified.

nThresh numeric vector. These are the number of thresholds for each variables listed in
‘vars’.

free boolean vector. Indicates whether threshold parameters are free or fixed.

values numeric vector. The starting values of the parameters.

labels character vector. The names of the parameters.

lbound numeric vector. The lower bounds of free parameters.

ubound numeric vector. The upper bounds of free parameters.

Details

If you are new to ordinal data modeling and just want something quick to make your ordinal data
work, we recommend you try the umxThresholdMatrix function in the umx package.

The mxPath function creates MxThreshold objects. These consist of a list of ordinal variables and
the thresholds that define the relationship between the observed ordinal variable and the continuous
latent variable assumed to underly it. This function directly mirrors the usage of mxPath, but is used
to specify thresholds rather than means, variances and bivariate relationships.

The ‘vars’ argument specifies which variables you wish to specify thresholds for. Variables are
referenced by name, and these names must appear in the ‘manifestVar’ argument of the mxModel

mxThreshold 203

function if thresholds are to be correctly processed. Additionally, variables for which thresholds are
specified must be specified as ordinal factors in whatever data is included in the model.

The ‘nThresh’ argument specifies how many thresholds are to be specified for the variable or vari-
ables included in the ‘vars’ argument. The number of thresholds for a particular variable should be
one fewer than the number of categories specified for that variable.

The ‘free’ argument specifies whether the thresholds created by the mxThreshold function are free
or fixed parameters. This argument may take either TRUE for free parameters, FALSE for fixed
parameters, or a vector of TRUEs and FALSEs to be applied in order to the created thresholds.

The ‘values’ is a numeric vectors containing the starting values of the created thresholds. ‘values’
gives a starting value for estimation. The ‘labels’ argument specifies the names of the parameters in
the resulting MxThreshold object. The ‘lbound’ and ‘ubound’ arguments specify lower and upper
bounds for the created threshold parameters.

Thresholds for multiple variables may be specified simultaneously by including a vector of variable
names to the ‘vars’ argument. When multiple variables are included in the ‘vars’ argument, the
length of the ‘vars’ argument must be evenly divisable by the length of the ‘nThresh’ argument. All
subsequent arguments (‘free’ through ‘ubound’) should have their lengths be a factor of the total
number of thresholds specified for all variables.

If four variables are included in the ‘vars’ argument, then the ‘nThresh’ argument should contain ei-
ther one, two or four elements. If the ‘nThresh’ argument specifies two thresholds for each variable,
then ‘free’, ‘values’, and all subsequent arguments should specify eight values by including one,
two, four or eight elements. Whenever fewer values are specified than are required (e.g., specify
two values for eight thresholds), then the entire vector of values is repeated until the required num-
ber of values is reached, and will return an error if the correct number of values cannot be achieved
by repeating the entire vector.

Value

Returns a list of thresholds.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

demo("mxThreshold")

mxPath for comparable specification of paths. mxMatrix for a matrix-based approach to thresholds
specification; mxModel for the container in which mxThresholds are embedded. More information
about the OpenMx package may be found here.

204 mxTryHard

mxTryHard Make multiple attempts to run a model

Description

Makes multiple attempts to fit an MxModel object with mxRun() until the optimizer yields an ac-
ceptable solution or the maximum number of attempts is reached. Each attempt uses the parameter
estimates of the previous attempt as start values, but they are each perturbed by random numbers,
and optimization-control parameters may be altered. From among its attempts, the function returns
the fitted, post-mxRun() model with the smallest fit-function value, and can print to the console the
start values it used for that model.

Usage

mxTryHard(model, extraTries = 10, greenOK = FALSE, loc = 1, scale = 0.25,
initialGradientStepSize = .00001,
initialGradientIterations = as.integer(options()$mxOption$'Gradient iterations'),
initialTolerance=as.numeric(options()$mxOption$'Optimality tolerance'),
checkHess = TRUE, fit2beat = Inf, paste = TRUE,iterationSummary=FALSE,
bestInitsOutput=TRUE, showInits=FALSE, verbose=0, intervals = FALSE,
finetuneGradient=TRUE, jitterDistrib=c("runif","rnorm","rcauchy"), exhaustive=FALSE,
maxMajorIter=3000, OKstatuscodes, wtgcsv=c("prev","best","initial"))

mxTryHardOrig(model, finetuneGradient=FALSE, maxMajorIter=NA,
wtgcsv=c("prev","best"), ...)

mxTryHardctsem(model, initialGradientStepSize = .00001,
initialGradientIterations = 1,
initialTolerance=1e-12,jitterDistrib="rnorm", ...)

mxTryHardWideSearch(model, finetuneGradient=FALSE, jitterDistrib="rcauchy",
exhaustive=TRUE, wtgcsv="prev", ...)

mxTryHardOrdinal(model, greenOK = TRUE,checkHess = FALSE,
finetuneGradient=FALSE, exhaustive=TRUE,
OKstatuscodes=c(0,1,5,6), wtgcsv=c("prev","best"), ...)

Arguments

model The MxModel to be run.

extraTries The number of attempts to run the model in addition to the first. In effect, is the
maximum number of attempts mxTryHard() will make, since the function will
stop once an acceptable solution is reached. Defaults to 10 (for mxTryHard()),
in which case a maximum of 11 total attempts will be made.

greenOK Logical; is a solution with Mx status GREEN (optimizer status code 1) accept-
able? Defaults to FALSE (for mxTryHard()). Ignored if a value is provided for
OKstatuscodes.

mxTryHard 205

loc, scale Numeric. The location and scale parameters of the distribution from which ran-
dom values are drawn to perturb start values between attempts, defaulting re-
spectively to 1 and 0.25. See below, under "Details," for additional information.

initialGradientStepSize, initialGradientIterations, initialTolerance

Numeric. Initial values of optimization-control parameters passed to mxComputeGradientDescent()
if model is using the default compute plan.

checkHess Logical; is a positive-definite Hessian a requirement for an acceptable solution?
Defaults to TRUE (for mxTryHard()). If TRUE, the Hessian and standard errors
are calculated with each fit attempt, irrespective of the value of relevant options.

fit2beat Numeric upper limit to the fitfunction value that an acceptable solution may
have. Useful if a nested submodel of model has already been fitted, since
model, with its additional free parameters, should not yield a fitfunction value
any greater than that of the submodel.

paste Logical. If TRUE (default), start values for the returned fitted model are printed
to console as a comma-separated string. This is useful if the user wants to copy-
paste these values into an R script, say, in an omxSetParameters() statement.
If FALSE, the vector of start values is printed as-is. Note that this vector, from
omxGetParameters(), has names corresponding to the free parameters; these
names are not displayed when paste=TRUE.

iterationSummary

Logical. If TRUE, displays parameter estimates and fit values for every fit at-
tempt. Defaults to FALSE.

bestInitsOutput

Logical. If TRUE, displays starting values that resulted in best fit, according to
format specified by paste argument. Defaults to TRUE.

showInits Logical. If TRUE, displays starting values for every fit attempt. Defaults to
FALSE.

verbose If model is using the default compute plan, is passed to mxComputeGradientDescent()
to specify level of output printed to console during optimization.

intervals Logical. If TRUE, OpenMx will estimate any specified confidence intervals.

finetuneGradient

Logical. If TRUE (default for mxTryHard()), then as repeated fit attempts ap-
pear to be improving, mxTryHard() will adjust optimization-control param-
eters gradientStepSize, gradientIterations, and tolerance, as well as
argument scale, to "fine-tune" its convergence toward an optimal solution.
finetuneGradient=FALSE is recommended for analyses involving thresholds.

jitterDistrib Character string naming which random-number distribution–either uniform (rect-
angular), normal (Gaussian), or Cauchy–to be used to perturb start values. De-
faults to the uniform distribution (for mxTryHard()). See below, under "De-
tails," for additional information.

exhaustive Logical. If FALSE (default for mxTryHard()), mxTryHard() stops making ad-
ditional attempts once it reaches an acceptable solution. If TRUE, the func-
tion instead continues until it reaches its maximum number of attempts (as per
extraTries), and returns the best solution it found.

206 mxTryHard

maxMajorIter Integer; passed to mxComputeGradientDescent(). Defaults to 3000, which
was the internally hardcoded value mxTryHard() used in at least one prior ver-
sion of OpenMx. Value of NA is permitted, in which case mxTryHard() will
calculate a value via the on-load default formula for the "Major iterations" op-
tion.

OKstatuscodes Optional integer vector containing optimizer status codes that an acceptable so-
lution is permitted to have. mxTryHard() always considers a status code of
0 to be acceptable, this argument notwithstanding. By default, mxTryHard()
will consider status code 0 acceptable, and, if greenOK=TRUE, status code 1 as
well. If a value is supplied for OKstatuscodes that conflicts with greenOK,
OKstatuscodes controls.

wtgcsv Character vector. "Where to get current start values." See below, under "De-
tails," for additional information.

... Additional arguments to be passed to mxTryHard().

Details

mxTryHardOrig(), mxTryHardctsem(), mxTryHardWideSearch(), and mxTryHardOrdinal() are
wrapper functions to the main workhorse function mxTryHard(). Each wrapper function has de-
fault values for certain arguments that are tailored toward a specific purpose. mxTryHardOrig()
imitates the functionality of the earliest implementations of mxTryHard() in OpenMx’s history; its
chief purpose is to find good start values that lead to an acceptable solution. mxTryHardctsem()
uses mxTryHard() to "zero in" on an acceptable solution with models that can be difficult to opti-
mize, such as continuous-time state-space models. mxTryHardWideSearch() uses mxTryHard()
to search a wide region of the parameter space, in hope of avoiding local fitfunction minima.
mxTryHardOrdinal() attempts to use mxTryHard() as well as it can be used with models involving
ordinal data.

Argument wtgcsv dictates where mxTryHard() is permitted to find free-parameter values, at the
start of each fit attempt after the first, before randomly perturbing them to create the current fit
attempt’s start values. If "prev" is included, then mxTryHard() is permitted to use the parameter
estimates of the most recent non-error fit attempt. If "best" is included, then mxTryHard() is
permitted to use the parameter estimates at the best solution so far. If "initial" is included, then
mxTryHard() is permitted to use the initial start values in model, as provided by the user. The
default is to permit all three, in which case mxTryHard() is written to use the best solution’s values
if available, and otherwise to use the most recent solution’s values, but to periodically revert to the
initial values if recent fit attempts have not improved on the best solution.

Once the start values are located for the current fit attempt, they are randomly perturbed before be-
ing assigned to the MxModel. The distributional family from which the perturbations are randomly
generated is dictated by argument jitterDistrib. The distribution is parametrized by arguments
loc and scale, respectively the location and scale parameters. The location parameter is the distri-
bution’s median. For the uniform distribution, scale is the absolute difference between its median
and extrema (i.e., half the width of the rectangle); for the normal distribution, scale is its standard
deviation; and for the Cauchy, scale is one-half its interquartile range. Start values are first multi-
plied by random draws from a distribution with the provided loc and scale, then added to random
draws from a distribution with the same scale but with a median of zero.

mxTypes 207

Value

Usually, mxTryHard() returns a post-mxRun() MxModel object. Specifically, this will be the fitted
model having the smallest fit-function value found by mxTryHard() during its attempts. The start
values used to obtain this fitted model are printed to console if bestInitsOutput=TRUE.

If every attempt at running model fails, mxTryHard() returns an object of class ’try-error’.

mxTryHard() throws a warning if the returned MxModel object has a nonzero status code (unless
nonzero status codes are considered acceptable per argument greenOK or OKstatuscodes).

See Also

mxRun()

Examples

library(OpenMx)

data(demoOneFactor) # load the demoOneFactor dataframe

manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable
model <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests, labels=paste("b", 1:5, sep="")),
mxPath(from=manifests, arrows=2, labels=paste("u", 1:5, sep="")),
mxPath(from=latents , arrows=2, free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov", numObs=500)

)
model <- mxTryHard(model) # Run the model, returning the result into model
summary(model) # Show summary of the fitted model

mxTypes List Currently Available Model Types

Description

This function returns a vector of the currently available type names.

Usage

mxTypes()

Value

Returns a character vector of type names.

208 mxVersion

Examples

mxTypes()

mxVersion Returns Current Version String

Description

This function returns a string with the current version number of OpenMx. Optionally (with ver-
bose = TRUE (the default)), it prints a message containing the version of R, the platform, and the
optimiser.

Usage

mxVersion(model = NULL, verbose = TRUE)

Arguments

model optional MxModel to request optimizer from (default = NULL)

verbose Whether to print version information to the console (default = TRUE)

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Print useful version information.
mxVersion()
If you just want the version, use this call.
x = mxVersion(verbose=FALSE)

library(OpenMx)
data(demoOneFactor) # load the demoOneFactor dataframe
manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable
model <- mxModel(model = "One Factor", type = "RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents, to = manifests, labels = paste("b", 1:5, sep = "")),
mxPath(from = manifests, arrows = 2 , labels = paste("u", 1:5, sep = "")),
mxPath(from = latents , arrows = 2 , free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)

)
mxVersion(model, verbose = TRUE)

myAutoregressiveData 209

myAutoregressiveData Example data with autoregressively related columns

Description

Data set used in some of OpenMx’s examples.

Usage

data("myAutoregressiveData")

Format

A data frame with 100 observations on the following variables.

x1 x variable and time 1

x2 x variable and time 2

x3 x variable and time 3

x4 x variable and time 4

x5 x variable and time 5

Details

The rows are independently and identically distributed, but the columns are and auto-correlation
structure.

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(myAutoregressiveData)
round(cor(myAutoregressiveData), 2)
note the sub-diagonal correlations (lag 1)
x1-x2, x2-x3, x3-x4, x4-x5
and the second sub-diagonal correlations (lag 2)
x1-x3, x2-x4, x3-x5

210 myGrowthKnownClassData

myFADataRaw Example 500-row dataset with 12 generated variables

Description

Twelve columns of generated numeric data: x1 x2 x3 x4 x5 x6 y1 y2 y3 z1 z2 z3.

Usage

data(myFADataRaw)

Details

The x variables intercorrelate around .6 with each other.

The y variables intercorrelate around .5 with each other, and correlate around .3 with the X vars.

There are three ordinal variables, z1, z2, and z3.

The data are used in some OpenMx examples, especially confirmatory factor analysis.

There are no missing data.

Examples

data(myFADataRaw)
str(myFADataRaw)

myGrowthKnownClassData

Data for a growth mixture model with the true class membership

Description

Data set used in some of OpenMx’s examples.

Usage

data("myGrowthKnownClassData")

Format

A data frame with 500 observations on the following variables.

x1 x variable and time 1
x2 x variable and time 2
x3 x variable and time 3
x4 x variable and time 4
x5 x variable and time 5
c Known class membership variable

myGrowthMixtureData 211

Details

The same as myGrowthMixtureData, but with the class membership variable.

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(myGrowthKnownClassData)

#plot the observed trajectories
blue lines are class 1, green lines are class 2
colSel <-c('blue', 'green')[myGrowthKnownClassData$c]
matplot(t(myGrowthKnownClassData[,-6]), type='l', lty=1, col=colSel)

myGrowthMixtureData Data for a growth mixture model

Description

Data set used in some of OpenMx’s examples.

Usage

data("myGrowthMixtureData")

Format

A data frame with 500 observations on the following variables.

x1 x variable and time 1

x2 x variable and time 2

x3 x variable and time 3

x4 x variable and time 4

x5 x variable and time 5

Details

The same as myGrowthKnownClassData, but without the class membership variable.

212 myLongitudinalData

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(myGrowthMixtureData)

matplot(t(myGrowthMixtureData), type='l', lty=1)

data(myGrowthKnownClassData)
all(myGrowthKnownClassData[,-6]==myGrowthMixtureData)

myLongitudinalData Data for a linear latent growth curve model

Description

Data set used in some of OpenMx’s examples.

Usage

data("myLongitudinalData")

Format

A data frame with 500 observations on the following variables.

x1 x variable and time 1

x2 x variable and time 2

x3 x variable and time 3

x4 x variable and time 4

x5 x variable and time 5

Details

Linear growth model with mean intercept around 10, and slope of about 1.5.

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

myRegData 213

Examples

data(myLongitudinalData)

matplot(t(myLongitudinalData), type='l', lty=1)

myRegData Example regression data with correlated predictors

Description

Data set used in some of OpenMx’s examples.

Usage

data("myRegData")

Format

A data frame with 100 observations on the following variables.

w Predictor variable

x Predictor variable

y Predictor variable

z Outcome varialbe

Details

w, x, and y are predictors of z. x and y are correlated.

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(myRegData)
summary(lm(z ~ ., data=myRegData))

214 myRegDataRaw

myRegDataRaw Example regression data with correlated predictors

Description

Data set used in some of OpenMx’s examples.

Usage

data("myRegDataRaw")

Format

A data frame with 100 observations on the following variables.

w Predictor variable

x Predictor variable

y Predictor variable

z Outcome varialbe

Details

w, x, and y are predictors of z. x and y are correlated. Equal to myRegData.

Source

Simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(myRegData)
data(myRegDataRaw)

all(myRegDataRaw == myRegData)

myTwinData 215

myTwinData Twin data on weight and height

Description

Data set used in some of OpenMx’s examples.

Usage

data("myTwinData")

Format

A data frame with 3808 observations on the following variables.

fam Family ID variable
age Age of the twin pair. Range: 17 to 88.
zyg Integer codes for zygosity and gender combinations
part

wt1 Weight in kilograms for twin 1
wt2 Weight in kilograms for twin 2
ht1 Height in meters for twin 1
ht2 Height in meters for twin 2
htwt1 Product of ht and wt for twin 1
htwt2 Product of ht and wt for twin 2
bmi1 Body Mass Index for twin 1
bmi2 Body Mass Index for twin 2

Details

Height and weight are highly correlated, and each individually highly heritable. These data present
and opportunity for multivariate behavior genetics modeling.

Source

Timothy Bates

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(myTwinData)

plot(ht1 ~ wt1, myTwinData)

216 mzfData

mzfData MZ female example twin data

Description

Data for extended twin example ETC88.R

Usage

data("mzfData")

Format

A data frame with 3099 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

mzmData 217

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(mzfData)
str(mzfData)

mzmData MZ Male example data

Description

Data for extended twin example ETC88.R

Usage

data("mzmData")

Format

A data frame with 3019 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

218 mzmData

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(mzmData)
str(mzmData)

Named-entity 219

Named-entity Named Entities

Description

A named entity is an S4 object that can be referenced by name.

Details

Every named entity is guaranteed to have a slot called "name". Within a model, the named entities
of that model can be accessed using the $ operator. Access is limited to one nesting depth, such that
if ’B’ is a submodel of ’A’, and ’C’ is a matrix of ’B’, then ’C’ must be accessed using ABC.

The following S4 classes are named entities in the OpenMx library: MxAlgebra, MxConstraint,
MxMatrix, MxModel, MxData, and MxObjective.

Examples

library(OpenMx)

Create a model, add a matrix to it, and then access the matrix by name.

testModel <- mxModel(model="anEmptyModel")

testMatrix <- mxMatrix(type="Full", nrow=2, ncol=2, values=c(1,2,3,4), name="yourMatrix")

yourModel <- mxModel(testModel, testMatrix, name="noLongerEmpty")

yourModel$yourMatrix

nuclear_twin_design_data

Twin data from a nuclear family design

Description

Data set used in some of OpenMx’s examples.

Usage

data("nuclear_twin_design_data")

220 numHess1

Format

A data frame with 1743 observations on the following variables.

Twin1

Twin2

Father

Mother

zyg Zygosity of the twin pair

Details

This is a wide format data set. A single variable has values for different member of the same nuclear
family.

Source

Likely simulated.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

data(nuclear_twin_design_data)

cor(nuclear_twin_design_data[,-5], use="pairwise.complete.obs")

numHess1 numeric Hessian data 1

Description

data file used by the HessianTest.R script

Usage

data("numHess1")

Format

A 12 by 12 data frame containing Hessian (numeric variables a-l)

Examples

data(numHess1)
str(numHess1)

numHess2 221

numHess2 numeric Hessian data 2

Description

data file used by the HessianTest.R script

Usage

data("numHess2")

Format

A 12 by 12 data frame containing Hessian matrix (numeric variables a-l)

Examples

data(numHess2)
str(numHess2)

omxAllInt All Interval Multivariate Normal Integration

Description

omxAllInt computes the probabilities of a large number of cells of a multivariate normal distri-
bution that has been sliced by a varying number of thresholds in each dimension. While the same
functionality can be achieved by repeated calls to omxMnor, omxAllInt is more efficient for re-
peated operations on a single covariance matrix. omxAllInt returns an nx1 matrix of probabilities
cycling from lowest to highest thresholds in each column with the rightmost variable in covariance
changing most rapidly.

Usage

omxAllInt(covariance, means, ...)

Arguments

covariance the covariance matrix describing the multivariate normal distribution.

means a row vector containing means of the variables of the underlying distribution.

... a matrix or set of matrices containing one column of thresholds for each column
of covariance. Each column must contain a strictly increasing set of thresholds
for the corresponding variable of the underlying distribution. NA values in these
thresholds indicate that the list of thresholds in that column has ended.

222 omxAllInt

Details

covariance and means contain the covariances and means of the multivariate distribution from
which probabilities are to be calculated.

covariance must be a square covariance or correlation matrix with one row and column for each
variable.

means must be a vector of length nrows(covariance) that contains the mean for each correspond-
ing variable.

All further arguments are considered threshold matrices.

Threshold matrices contain locations of the hyperplanes delineating the intervals to be calculated.
The first column of the first matrix corresponds to the thresholds for the first variable represented
by the covariance matrix. Subsequent columns of the same matrix correspond to thresholds for
subsequent variables in the covariance matrix. If more variables exist in the covariance matrix than
in the first threshold matrix, the first column of the second threshold matrix will be used, and so
on. That is, if covariance is a 4x4 matrix, and the three threshold matrices are specified, one with
a single column and the others with two columns each, the first column of the first matrix will
contain thresholds for the first variable in covariance , the two columns of the second matrix will
correspond to the second and third variables of covariance , respectively, and the first column of the
third threshold matrix will correspond to the fourth variable. Any extra columns will be ignored.

Each column in the threshold matrices must contain some number of strictly increasing thresholds,
delineating the boundaries of a cell of integration. That is, if the integral from -1 to 0 and 0 to 1 are
required for a given variable, the corresponding threshold column should contain the values -1, 0,
and 1, in that order. Thresholds may be set to Inf or -Inf if a boundary at positive or negative infinity
is desired.

Within a threshold column, a value of +Inf, if it exists, is assumed to be the largest threshold, and
any rows after it are ignored in that column. A value of NA, if it exists, indicates that there are no
further thresholds in that column, and is otherwise ignored. A threshold column consisting of only
+Inf or NA values will cause an error.

For all i>1, the value in row i must be strictly larger than the value in row i-1 in the same column.

The return value of omxAllInt is a matrix consisting of a single column with one row for each
combination of threshold levels.

See Also

omxMnor

Examples

data(myFADataRaw)

covariance <- cov(myFADataRaw[,1:5])
means <- colMeans(myFADataRaw[,1:5])

Integrate from -Infinity to 0 and 0 to 1 on first variable
thresholdForColumn1 <- cbind(c(-Inf, 0, 1))
Note: The first variable will never be calculated from 1 to +Infinity.

omxApply 223

These columns will be integrated from -Inf to -1, -1 to 0, etc.
thresholdsForColumn2 <- cbind(c(-Inf, -1, 0, 1, Inf))
thresholdsForColumns3and4 <- cbind(c(-Inf, 1.96, 2.326, Inf),

c(-Inf, -1.96, 2.326, Inf))

The integration
omxAllInt(covariance, means,

thresholdForColumn1, thresholdsForColumn2,
thresholdsForColumns3and4, thresholdsForColumn2)

Notice that columns 2 and 5 are assigned identical thresholds.

#---
An alternative specification of the same calculation follows
covariance <- cov(myFADataRaw[,1:5])
means <- colMeans(myFADataRaw[,1:5])

Note NAs to indicate the end of the sequence of thresholds.
thresholds <- cbind(c(-Inf, 0, 1, NA, NA),

c(-Inf, -1, 0, 1, Inf),
c(-Inf, 1.96, 2.32, Inf, NA),
c(-Inf, -1.96, 2.32, Inf, NA),
c(-Inf, -1, 0, 1, Inf))

omxAllInt(covariance, means, thresholds)

omxApply On-Demand Parallel Apply

Description

If the snowfall library is loaded, then this function calls sfApply. Otherwise it invokes apply.

Usage

omxApply(x, margin, fun, ...)

Arguments

x a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.

margin a vector giving the subscripts which the function will be applied over.

fun the function to be applied to each element of x.

... optional arguments to fun.

See Also

omxLapply, omxSapply

224 omxAssignFirstParameters

Examples

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
dimnames(x)[[1]] <- letters[1:8]
omxApply(x, 2, mean, trim = .2)

omxAssignFirstParameters

Assign First Available Values to Model Parameters

Description

Sometimes you may have a free parameter with two different starting values in your model. OpenMx
will not run a model until all instances of a free parameter have the same starting value. It is often
sufficient to arbitrarily select one of those starting values for optimization.

This function accomplishes that task of assigning valid starting values to the free parameters of a
model. It selects an arbitrary current value (the "first" value it finds, where "first" is not defined) for
each free parameter and uses that value for all instances of that parameter in the model.

Usage

omxAssignFirstParameters(model, indep = FALSE)

Arguments

model a MxModel object.

indep assign parameters to independent submodels.

See Also

omxGetParameters, omxSetParameters

Examples

A <- mxMatrix('Full', 3, 3, values = c(1:9), labels = c('a','b', NA),
free = TRUE, name = 'A')

model <- mxModel(model=A, name = 'model')
model <- omxAssignFirstParameters(model)

Note: All cells with the same label now have the same start value.
Note also that NAs are untouched.

model$matrices$A

$labels
[,1] [,2] [,3]

omxBrownie 225

[1,] "a" "a" "a"
[2,] "b" "b" "b"
[3,] NA NA NA
#
$values
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 6 9

omxBrownie Make Brownies in OpenMx

Description

This function returns a brownie recipe.

Usage

omxBrownie(quantity=1, walnuts=TRUE)

Arguments

quantity Number of batches of brownies desired. Defaults to one.

walnuts Logical. Indicates whether walnuts are to be included in the brownies. Defaults
to TRUE.

Details

Returns a brownie recipe. Alter the ‘quantity‘ variable to make more pans of brownies. Ingredients,
equipment and procedure are listed, but neither ingredients nor equipment are provided.

Value

Returns a brownie recipe.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

More information about the OpenMx package may be found here.

Examples

Return a brownie recipe
omxBrownie()

226 omxCheckEquals

omxCheckEquals Equality Testing Function

Description

This function tests whether two objects are equal using the ‘==’ operator.

Usage

omxCheckEquals(a, b)

Arguments

a the first value to compare.

b the second value to compare.

Details

Performs the ‘==’ comparison on the two arguments. If the two arguments are not equal, then an er-
ror will be thrown. If ‘a’ and ‘b’ are equal to each other, by default the function will print a statement
informing the user the test has passed. To turn off these print statements use options("mxPrintUnitTests" = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckSetEquals, omxCheckTrue, omxCheckIdentical

Examples

omxCheckEquals(c(1, 2, 3), c(1, 2, 3))

omxCheckEquals(FALSE, FALSE)

Throws an error
try(omxCheckEquals(c(1, 2, 3), c(2, 1, 3)))

omxCheckError 227

omxCheckError Correct Error Message Function

Description

This function tests whether the correct error message is thrown.

Usage

omxCheckError(expression, message)

Arguments

expression an R expression that produces an error

message a character string with the desired error message

Details

Arguments ‘expression’ and ‘message’ give the expression that generates the error and the message
that is supposed to be generated, respectively.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckWarning omxCheckWithinPercentError, omxCheckIdentical, omxCheckSetEquals,
omxCheckTrue, omxCheckEquals

Examples

A <- mxMatrix('Full', 1, 1, labels = 'data.foo', free = TRUE, name = 'A')
model <- mxModel('model', A)
omxCheckError(mxRun(model),
paste("The definition variable 'data.foo'",
"has been assigned to a",
"free parameter in matrix 'A'"))
omxCheckCloseEnough(matrix(3, 3, 3), matrix(4, 3, 3), epsilon = 2)
Throws error, check the message
tmsg <- paste("In omxCheckCloseEnough(c(1, 2, 3), c(1.1, 1.9, 3), 0.01)",
": not equal to within 0.01 : '1 2 3' and '1.1 1.9 3'")
omxCheckError(omxCheckCloseEnough(c(1, 2, 3), c(1.1, 1.9 ,3.0), .01), tmsg)

228 omxCheckIdentical

omxCheckIdentical Exact Equality Testing Function

Description

This function tests whether two objects are equal.

Usage

omxCheckIdentical(a, b)

Arguments

a the first value to compare.

b the second value to compare.

Details

Performs the ‘identical’ comparison on the two arguments. If the two arguments are not equal,
then an error will be thrown. If ‘a’ and ‘b’ are equal to each other, by default the function will
print a statement informing the user the test has passed. To turn off these print statements use
options("mxPrintUnitTests" = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckSetEquals, omxCheckTrue, omxCheckEquals

Examples

omxCheckIdentical(c(1, 2, 3), c(1, 2, 3))

omxCheckIdentical(FALSE, FALSE)

Throws an error
try(omxCheckIdentical(c(1, 2, 3), c(2, 1, 3)))

omxCheckNamespace 229

omxCheckNamespace omxCheckNamespace

Description

This is an internal function exported for those people who know what they are doing.

Usage

omxCheckNamespace(model, namespace)

Arguments

model model

namespace namespace

Details

This function checks that the named entities in the model are valid.

omxCheckSetEquals Set Equality Testing Function

Description

This function tests whether two vectors contain the same elements.

Usage

omxCheckSetEquals(a, b)

Arguments

a the first vector to compare.

b the second vector to compare.

Details

Performs the ‘setequal’ function on the two arguments. If the two arguments do not contain the
same elements, then an error will be thrown. If ‘a’ and ‘b’ contain the same elements, by default
the function will print a statement informing the user the test has passed. To turn off these print
statements use options("mxPrintUnitTests" = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

230 omxCheckTrue

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckIdentical, omxCheckTrue, omxCheckEquals

Examples

omxCheckSetEquals(c(1, 1, 2, 2, 3), c(3, 2, 1))

omxCheckSetEquals(matrix(1, 1, 1), matrix(1, 3, 3))

Throws an error
try(omxCheckSetEquals(c(1, 2, 3, 4), c(2, 1, 3)))

omxCheckTrue Boolean Equality Testing Function

Description

This function tests whether an object is equal to TRUE.

Usage

omxCheckTrue(a)

Arguments

a the value to test.

Details

Checks element-wise whether an object is equal to TRUE. If any of the elements are false, then an
error will be thrown. If ‘a’ is TRUE, by default the function will print a statement informing the user
the test has passed. To turn off these print statements use options("mxPrintUnitTests" = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckIdentical, omxCheckSetEquals,
omxCheckEquals

omxCheckWarning 231

Examples

omxCheckTrue(1 + 1 == 2)

omxCheckTrue(matrix(TRUE, 3, 3))

Throws an error
try(omxCheckTrue(FALSE))

omxCheckWarning Correct Warning Message Function

Description

This function tests whether the correct warning message is thrown.

Usage

omxCheckWarning(expression, message)

Arguments

expression an R expression that produces a warning

message a character string with the desired warning message

Details

Arguments ‘expression’ and ‘message’ give the expression that generates the warning and the mes-
sage that is supposed to be generated, respectively.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckError omxCheckWithinPercentError, omxCheckIdentical, omxCheckSetEquals, omxCheckTrue,
omxCheckEquals

Examples

msg <- paste("Objective functions like mxFIMLObjective()",
"have been deprecated in favor of expectation and fit functions.\n",
"Please use mxExpectationNormal(covariance= , means = , ...) instead,",
"and add a call to mxFitFunctionML().",
"See examples at help(mxExpectationNormal)")
foo <- omxCheckWarning(mxFIMLObjective('cov', 'mean'), msg)

232 omxCheckWithinPercentError

omxCheckWithinPercentError

Approximate Percent Equality Testing Function

Description

This function tests whether two numeric vectors or matrixes are approximately equal to one another,
within a specified percentage.

Usage

omxCheckWithinPercentError(a, b, percent = 0.1)

Arguments

a a numeric vector or matrix.

b a numeric vector or matrix.

percent a non-negative percentage.

Details

Arguments ‘a’ and ‘b’ must be of the same type, ie. they must be either vectors of equal dimension
or matrices of equal dimension. The two arguments are compared element-wise for approximate
equality. If the absolute value of the difference of any two values is greater than the percentage
difference of ‘a’, then an error will be thrown. If ‘a’ and ‘b’ are approximately equal to each other,
by default the function will print a statement informing the user the test has passed. To turn off
these print statements use options("mxPrintUnitTests" = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckIdentical, omxCheckSetEquals, omxCheckTrue, omxCheckEquals

Examples

omxCheckWithinPercentError(c(1, 2, 3), c(1.1, 1.9 ,3.0), percent = 50)

omxCheckWithinPercentError(matrix(3, 3, 3), matrix(4, 3, 3), percent = 150)

Throws an error
try(omxCheckWithinPercentError(c(1, 2, 3), c(1.1, 1.9 ,3.0), percent = 0.01))

omxConstrainMLThresholds 233

omxConstrainMLThresholds

omxConstrainMLThresholds

Description

Add constraint to ML model to keep thresholds in order

Usage

omxConstrainMLThresholds(model, dist = 0.1)

Arguments

model the MxModel to which constraints should be added

dist unused

Details

This function adds a nonlinear constraint to an ML model. The constraint keeps the thresholds in
order. Constraints often slow model estimation, however, keeping the thresholds in increasing order
helps ensure the likelihood function is well-defined. If you’re having problems with ordinal data,
this is one of the things to try.

Value

a new MxModel object with the constraints added

See Also

demo("omxConstrainMLThresholds")

omxDetectCores omxDetectCores

Description

Detects the number of cores on the local machine

Usage

omxDetectCores(...)

Arguments

... unused

234 omxGetParameters

omxGetNPSOL omxGetNPSOL

Description

Get the non-CRAN version of OpenMx from the OpenMx website.

Usage

omxGetNPSOL()

Details

This function

Value

Invisible NULL

Examples

Not run: omxGetNPSOL()

omxGetParameters Fetch Model Parameters

Description

Return a vector of the chosen parameters from the model.

Usage

omxGetParameters(model, indep = FALSE, free = c(TRUE, FALSE, NA),
fetch = c('values', 'free', 'lbound', 'ubound', 'all'))

Arguments

model a MxModel object

indep fetch parameters from independent submodels.

free fetch either free parameters (TRUE), or fixed parameters or both types. Default
value is TRUE.

fetch which attribute of the parameters to fetch. Default choice is ‘values’.

omxGetParameters 235

Details

The argument ‘free’ dictates whether to return only free parameters or only fixed parameters or both
free and fixed parameters. The function can return unlabelled free parameters (parameters with a la-
bel of NA). These anonymous free parameters will be identified as ‘modelname.matrixname[row,col]’.
It will not return fixed parameters that have a label of NA. No distinction is made between ordinary
labels, definition variables, and square bracket constraints. The function will return either a vector
of parameter values, or free/fixed designations, or lower bounds, or upper bounds, depending on
the ‘fetch’ argument. Using fetch with ‘all’ returns a data frame that is populated with all of the
attributes.

See Also

omxSetParameters, omxLocateParameters, omxAssignFirstParameters

Examples

library(OpenMx)

A <- mxMatrix('Full', 2, 2, labels = c("A11", "A12", "A21", NA), values= 1:4,
free = c(TRUE,TRUE,FALSE,TRUE), byrow=TRUE, name = 'A')

model <- mxModel(A, name = 'model')

Request all free parameters in model
omxGetParameters(model)

A11 A12 model.A[2,2]
1 2 4

Request fixed parameters from model
omxGetParameters(model, free = FALSE)
A21
3

A$labels
[,1] [,2]
[1,] "A11" "A12"
[2,] "A21" NA

A$free
[,1] [,2]
[1,] TRUE TRUE
[2,] FALSE TRUE

A$labels
[,1] [,2]
[1,] "A11" "A12"
[2,] "A21" NA

Example using un-labelled parameters

236 omxGetRAMDepth

Read in some demo data
data(demoOneFactor)
Grab the names for manifestVars
manifestVars <- names(demoOneFactor)
nVar = length(manifestVars) # 5 variables
factorModel <- mxModel("One Factor",

mxMatrix(name="A", type="Full", nrow=nVar, ncol=1, values=0.2, free=TRUE,
lbound = 0.0, labels=letters[1:nVar]),

mxMatrix(name="L", type="Symm", nrow=1, ncol=1, values=1, free=FALSE),
the "U" matrix has nVar (5) anonymous free parameters
mxMatrix(name="U", type="Diag", nrow=nVar, ncol=nVar, values=1, free=TRUE),
mxAlgebra(expression=A %&% L + U, name="R"),
mxExpectationNormal(covariance="R", dimnames=manifestVars),
mxFitFunctionML(),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500)

)

Get all free parameters
params <- omxGetParameters(factorModel)
lbound <- omxGetParameters(factorModel, fetch="lbound")
Set new values for these params, saving them in a new model
newFactorModel <- omxSetParameters(factorModel, names(params), values = 1:10)
Read out the values from the new model
newParams <- omxGetParameters(newFactorModel)

omxGetRAMDepth omxGetRAMDepth

Description

Get the potency of a matrix for inversion speed-up

Usage

omxGetRAMDepth(A, maxdepth = nrow(A) - 1)

Arguments

A MxMatrix object

maxdepth Numeric. maximum depth to check

Details

This function is used internally by the mxExpectationRAM function to determine how far to expand
(I − A)−1 = I + A+ A2 + A3 + It is similarly used by mxExpectationLISREL in expanding
(I −B)−1 = I +B +B2 +B3 + In many situations A2 is a zero matrix (nilpotent of order 2).
So when A has large dimension it is much faster to compute I +A than (I −A)−1.

omxGraphviz 237

omxGraphviz Show RAM Model in Graphviz Format

Description

The function accepts a RAM style model and outputs a visual representation of the model in
Graphviz format. The function will output either to a file or to the console. The recommended
file extension for an output file is ".dot".

Usage

omxGraphviz(model, dotFilename = "")

Arguments

model An RAM-type model.

dotFilename The name of the output file. Use "" to write to console.

Value

Invisibly returns a string containing the model description in graphviz format.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

omxLapply On-Demand Parallel Lapply

Description

If the snowfall library is loaded, then this function calls sfLapply. Otherwise it invokes lapply.

Usage

omxLapply(x, fun, ...)

Arguments

x a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.

fun the function to be applied to each element of x.

... optional arguments to fun.

238 omxLocateParameters

See Also

omxApply, omxSapply

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
omxLapply(x,mean)

omxLocateParameters Summarize Model Parameters

Description

Return a data.frame object summarizing the free parameters in the model.

Usage

omxLocateParameters(model, labels = NULL, indep = FALSE)

Arguments

model a MxModel object

labels optionally specify which free parameters to retrieve.

indep fetch parameters from independent submodels.

Details

Invoking the function with the default value for the ‘labels’ argument retrieves all the free parame-
ters. The ‘labels’ argument can be used to select a subset of the free parameters. Note that ‘NA’ is
a valid possible input to the ‘labels’ argument.

See Also

omxGetParameters, omxSetParameters, omxAssignFirstParameters

Examples

A <- mxMatrix('Full', 2, 2, labels = c("A11", "A12", NA, NA), values= 1:4,
free = TRUE, byrow = TRUE, name = 'A')

model <- mxModel(A, name = 'model')

Request all free parameters in model
omxLocateParameters(model)

omxLogical 239

Request free parameters "A11" and all NAs
omxLocateParameters(model, c("A11", NA))

omxLogical Logical mxAlgebra() operators

Description

omxNot computes the unary negation of the values of a matrix. omxAnd computes the binary and
of two matrices. omxOr computes the binary or of two matrices. omxGreaterThan computes a
binary greater than of two matrices. omxLessThan computes the binary less than of two matrices.
omxApproxEquals computes a binary equals within a specified epsilon of two matrices.

Usage

omxNot(x)
omxAnd(x, y)
omxOr(x, y)
omxGreaterThan(x, y)
omxLessThan(x, y)
omxApproxEquals(x, y, epsilon)

Arguments

x the first argument, the matrix which the logical operation will be applied to.

y the second argument, applicable to binary functions.

epsilon the third argument, specifies the error threshold for omxApproxEquals. Abs(x[i][j]-
y[i][j]) must be less than epsilon[i][j].

Examples

A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'A')
B <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'B')
EPSILON <- mxMatrix(values = 0.04*1:25, nrow = 5, ncol = 5, name = "EPSILON")

model <- mxModel(A, B, EPSILON, name = 'model')

mxEval(omxNot(A), model)
mxEval(omxGreaterThan(A,B), model)
mxEval(omxLessThan(B,A), model)
mxEval(omxOr(omxNot(A),B), model)
mxEval(omxAnd(omxNot(B), A), model)
mxEval(omxApproxEquals(A,B, EPSILON), model)

240 omxMatrixOperations

omxManifestModelByParameterJacobian

Estimate the Jacobian of manifest model with respect to parameters

Description

The manifest model excludes any latent variables or processes. For RAM and LISREL models, the
manifest model contains only the manifest variables with free means, covariance, and thresholds.

Usage

omxManifestModelByParameterJacobian(model, defvar.row = 1)

Arguments

model an mxModel

defvar.row which row to use for definition variables

Details

The Jacobian is estimated by the central finite difference.

Value

a matrix with manifests in the rows and original parameters in the columns

See Also

mxGetExpected

omxMatrixOperations MxMatrix operations

Description

omxCbind columnwise binding of two or more MxMatrices. omxRbind rowwise binding of two or
more MxMatrices. omxTranspose transpose of MxMatrix.

omxMnor 241

Usage

omxCbind(..., allowUnlabeled =
getOption("mxOptions")[["Allow Unlabeled"]],
dimnames = NA, name = NA)

omxRbind(..., allowUnlabeled =
getOption("mxOptions")[["Allow Unlabeled"]],
dimnames = NA, name = NA)

omxTranspose(matrix, allowUnlabeled =
getOption("mxOptions")[["Allow Unlabeled"]],
dimnames = NA, name = NA)

Arguments

... two or more MxMatrix objects

matrix MxMatrix input

allowUnlabeled whether or not to accept free parameters with NA labels

dimnames list. The dimnames attribute for the matrix: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

name an optional character string indicating the name of the MxMatrix object

omxMnor Multivariate Normal Integration

Description

Given a covariance matrix, a means vector, and vectors of lower and upper bounds, returns the
multivariate normal integral across the space between bounds.

Usage

omxMnor(covariance, means, lbound, ubound)

Arguments

covariance the covariance matrix describing the multivariate normal distribution.

means a row vector containing means of the variables of the underlying distribution.

lbound a row vector containing the lower bounds of the integration in each variable.

ubound a row vector containing the upper bounds of the integration in each variable.

242 omxNameAnonymousParameters

Details

The order of columns in the ‘means’, ‘lbound’, and ‘ubound’ vectors are assumed to be the same as
that of the covariance matrix. That is, means[i] is considered to be the mean of the variable whose
variance is in covariance[i,i]. That variable will be integrated from lbound[i] to ubound[i] as part of
the integration.

The value of ubound[i] or lbound[i] may be set to Inf or -Inf if a boundary at positive or negative
infinity is desired.

For all i, ubound[i] must be strictly greater than lbound[i].

Examples

data(myFADataRaw)

covariance <- cov(myFADataRaw[,1:3])
means <- colMeans(myFADataRaw[,1:3])
lbound <- c(-Inf, 0, 1) # Integrate from -Infinity to 0 on first variable
ubound <- c(0, Inf, 2.5) # From 0 to +Infinity on second, and from 1 to 2.5 on third
omxMnor(covariance, means, lbound, ubound)
0.0005995

An alternative specification of the bounds follows
Integrate from -Infinity to 0 on first variable
v1bound = c(-Inf, 0)
From 0 to +Infinity on second
v2bound = c(0, Inf)
and from 1 to 2.5 on third
v3bound = c(1, 2.5)
bounds <- cbind(v1bound, v2bound, v3bound)
lbound <- bounds[1,]
ubound <- bounds[2,]
omxMnor(covariance, means, lbound, ubound)

omxNameAnonymousParameters

omxNameAnonymousParameters

Description

Assign new names to the unnamed parameters

Usage

omxNameAnonymousParameters(model, indep = FALSE)

omxNormalQuantiles 243

Arguments

model the MxModel

indep whether models are independent

Value

a list with components for the new MxModel with named parameters, and the new names.

omxNormalQuantiles omxNormalQuantiles

Description

Get quantiles from a normal distribution

Usage

omxNormalQuantiles(nBreaks, mean = 0, sd = 1)

Arguments

nBreaks the number of thresholds, or a vector of the number of thresholds

mean the mean of the underlying normal distribution

sd the standard deviation of the underlying normal distribution

Value

a vector of quantiles

Examples

omxNormalQuantiles(3)
omxNormalQuantiles(3, mean=7)
omxNormalQuantiles(2, mean=1, sd=3)

244 omxParallelCI

omxParallelCI omxParallelCI

Description

Create parallel models for parallel confidence intervals

Usage

omxParallelCI(model, run = TRUE)

Arguments

model an MxModel with confidence intervals in it

run whether to run the model or just return the parallelized interval models

Value

an MxModel object

Examples

require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor",

type="RAM",
manifestVars=manifests,
latentVars=latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
mxData(observed=cov(demoOneFactor)*499/500, type="cov",
numObs=500),

add confidence intervals for free params in A and S matrices
mxCI(c('A', 'S')))

factorRun <- mxRun(factorModel)
factorCI <- omxParallelCI(factorRun) # Run CIs in parallel

omxQuotes 245

omxQuotes omxQuotes

Description

Quote helper function, often for error messages.

Usage

omxQuotes(name)

Arguments

name a character vector

Details

This is a helper function for creating a nicely put together formatted string.

Value

a character string

Examples

omxQuotes(c("Oh", "blah", "dee", "Oh", "blah", "da"))
omxQuotes(c("A", "S", "F"))
omxQuotes("Hello World")

omxRAMtoML omxRAMtoML

Description

Convert a RAM model to an ML model

Usage

omxRAMtoML(model)

Arguments

model the MxModel

Details

This is a legacy function that was once used to convert RAM models to ML models in the old (1.0
release of OpenMx) objective function style.

246 omxRMSEA

Value

an ML model with an ML objective

omxRMSEA Get the RMSEA with confidence intervals from model

Description

This function calculates the Root Mean Square Error of the Approximation (RMSEA) for a model
and computes confidence intervals for that fit statistic.

Usage

omxRMSEA(model, lower=.025, upper=.975, null=.05, ...)

Arguments

model An MxModel object for which the RMSEA is desried

lower The lower confidence bound for the confidence interval

upper The upper confidence bound for the confidence interval

null Value of RMSEA used to test for close fit

... Further named arguments passed to summary

Details

To help users obtain fit statistics related to the RMSEA, this function confidence intervals and a test
for close fit. The user determines how close the fit is required to be by setting the null argument to
the value desired for comparison.

Value

A named vector with elements lower, est.rmsea, upper, null, and ‘Prob(x <= null)‘.

References

Browne, M. W. & Cudeck, R. (1992). Alternative Ways of Assessing Model Fit. Sociological
Methods and Research, 21, 230-258.

omxSapply 247

Examples

require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor",

type="RAM",
manifestVars=manifests,
latentVars=latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500))

factorRun <- mxRun(factorModel)
factorSat <- mxRefModels(factorRun, run=TRUE)
summary(factorRun, refModels=factorSat)
Gives RMSEA with 95% confidence interval

omxRMSEA(factorRun, .05, .95, refModels=factorSat)
Gives RMSEA with 90% confidence interval
and probability of 'close enough' fit

omxSapply On-Demand Parallel Sapply

Description

If the snowfall library is loaded, then this function calls sfSapply. Otherwise it invokes sapply.

Usage

omxSapply(x, fun, ..., simplify = TRUE, USE.NAMES = TRUE)

Arguments

x a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.

fun the function to be applied to each element of x.

... optional arguments to fun.

simplify logical; should the result be simplified to a vector or matrix if possible?

USE.NAMES logical; if TRUE and if x is a character, use x as names for the result unless it had
names already.

See Also

omxApply, omxLapply

248 omxSaturatedModel

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
omxSapply(x, quantile)

omxSaturatedModel Create Reference (Saturated and Independence) Models

Description

This function creates and optionally runs saturated and independence (null) models of a base model
or data set for use with mxSummary to obtain more fit indices.

Usage

mxRefModels(x, run=FALSE)

Arguments

x A MxModel object, data frame, or matrix.

run logical. If TRUE runs the models before returning; otherwise returns built mod-
els without running.

Details

For typical structural equation models the saturated model is the free-est possible model. All covari-
ances and, when possilbe, all means are estimated. In the case of ordinal data, the ordinal means
are fixed to zero and the thresholds are estimated. When the ordinal data are binary, those vari-
ances are also constrained to one. This is the free-est possible model, only constrained for model
identification. The saturated model is used to create the RMSEA, and Chi-squared fit indices.

The independence model, sometimes called the null model, is a model of each variable being com-
pletely independent of every other variable. As such, all the variances and, when possible, all means
are estimated. However, covariances are set to zero. Ordinal variables are handled the same for the
independence and saturated models. The independence model is used, along with the saturated
model, to create CFI and TLI fit indices.

The saturated and independence models could be used to create further fit indices. However,
OpenMx does not recommend using GFI, AGFI, NFI (aka Bentler-Bonett), or SRMR. The page
for mxSummary has information about why.

When the mxFitFunctionMultigroup fit function is used, mxRefModels creates the appropriate
multigroup saturated and independence models. Saturated and independence models are created
separately for each group. Each group has its own saturated and independence model. The multi-
group saturated model is a multigroup model where each group has its own saturated model, and
similarly for the independence model.

omxSelectRowsAndCols 249

One potentially important limitation of the mxRefModels function is for behavioral genetics models.
If variables ’x’, ’y’, and ’z’ are measured on twins 1 and 2 creating the modeled variables ’x1’, ’y1’,
’z1’, ’x2’, ’y2’, ’z2’, then this function may not create the intended saturated or independence mod-
els. In particular, the means of ’x1’ and ’x2’ are estimated separately. Similarly, the covariance of
’x1’ with ’y1’ and ’x2’ with ’y2’ are allowed be be distinct: cov(x1, y1)! = covx2, y2. Moreover,
the cross-twin covariances are estimated: e.g. cov(x1, y2)! = 0.

Another potential misuse of this function is for models with definition variables. If definition vari-
ables are used, the saturated and independence model may not be correct because they do not
account for the definition variables.

When an MxModel has been run, some effort is made to make the reference models for only the
variables used in the model. For covariance data, all variables are modeled by default. For raw data
when the model has been run, only the modeled variables are used in the reference models. This
matches the behavior of mxModel.

In general, it is best practice to give mxRefModels a model that has already been run.

For IFA models (mxExpectationBA81), the independence model preserves equality constraints
among item parameters from the original model.

mxRefModels() is not compatible with GREML expectation, as there is no sensible general defini-
tion for a saturated GREML-type model.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor",

type="RAM",
manifestVars=manifests,
latentVars=latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500))

summary(factorRun <- mxRun(factorModel))
factorSat <- mxRefModels(factorRun, run=TRUE)
summary(factorRun, refModels=factorSat)

omxSelectRowsAndCols Filter rows and columns from an mxMatrix

Description

This function filters rows and columns from a matrix using a single row or column R matrix as a
selector.

250 omxSelectRowsAndCols

Usage

omxSelectRowsAndCols(x, selector)
omxSelectRows(x, selector)
omxSelectCols(x, selector)

Arguments

x the matrix to be filtered

selector A single row or single column R matrix indicating which values should be fil-
tered from the mxMatrix.

Details

omxSelectRowsAndCols, omxSelectRows, and omxSelectCols returns the filtered entries in a target
matrix specified by a single row or single column selector matrix. Each entry in the selector matrix is
treated as a logical data indicating if the corresponding entry in the target matrix should be excluded
(0 or FALSE) or included (not 0 or TRUE). Typically the function is used to filter data from a target
matrix using an existence vector which specifies what data entries are missing. This can be seen in
the demo: RowObjectiveFIMLBivariateSaturated.

Value

Returns a new matrix with the filtered data.

References

The function is most often used when filtering data for missingness. This can be seen in the demo:
RowObjectiveFIMLBivariateSaturated. The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.
The omxSelect* functions share some similarity to the Extract function in the R programming lan-
guage.

Examples

loadings <- c(1, -0.625, 0.1953125, 1, -0.375, 0.0703125, 1, -0.375, 0.0703125)
loadings <- matrix(loadings, 3, 3, byrow= TRUE)
existenceList <- c(1, 0, 1)
existenceList <- matrix(existenceList, 1, 3, byrow= TRUE)
rowsAndCols <- omxSelectRowsAndCols(loadings, existenceList)
rows <- omxSelectRows(loadings, existenceList)
cols <- omxSelectCols(loadings, existenceList)

omxSetParameters 251

omxSetParameters Assign Model Parameters

Description

Modify the attributes of parameters in a model. This function cannot modify parameters that have
NA labels. Often you will want to call omxAssignFirstParameters after using this, to force the
starting values of equated parameters to the same value (otherwise the model cannot begin to be
evaluated)

Usage

omxSetParameters(model, labels, free = NULL, values = NULL,
newlabels = NULL, lbound = NULL, ubound = NULL, indep = FALSE,
strict = TRUE, name = NULL)

Arguments

model an MxModel object.

labels a character vector of target parameter names.

free a boolean vector of parameter free/fixed designations.

values a numeric vector of parameter values.

newlabels a character vector of new parameter names.

lbound a numeric vector of lower bound values.

ubound a numeric vector of upper bound values.

indep boolean. set parameters in independent submodels.

strict boolean. If TRUE then throw an error when a label does not appear in the model.

name character string. (optional) a new name for the model.

See Also

omxGetParameters, omxAssignFirstParameters

Examples

A <- mxMatrix('Full', 3, 3, labels = c('a','b', NA), free = TRUE, name = 'A')
model <- mxModel(model="testModel", A, name = 'model')

set value of cells labelled "a" and "b" to 1 and 2 respectively
model <- omxSetParameters(model, c('a', 'b'), values = c(1, 2))

set label of cell labelled "a" to "b" and vice versa
model <- omxSetParameters(model, c('a', 'b'), newlabels = c('b', 'a'))

252 ordinalTwinData

set label of cells labelled "a" to "b"
model <- omxSetParameters(model, c('a'), newlabels = 'b')

ensure initial values are the same for each instance of a labeled parameter
model <- omxAssignFirstParameters(model)

omxSymbolTable Internal OpenMx algebra operations

Description

This is an internal table used in the OpenMx backend.

ordinalTwinData Data for ordinal twin model

Description

Example data for ordinal twin-data modelling. Three variables measured in each twin.

Usage

data("ordinalTwinData")

Format

A data frame with 139 observations on the following 7 variables.

zyg a numeric vector

var1_twin1 a numeric vector

var2_twin1 a numeric vector

var3_twin1 a numeric vector

var1_twin2 a numeric vector

var2_twin2 a numeric vector

var3_twin2 a numeric vector

Examples

data(ordinalTwinData)
str(ordinalTwinData)

rvectorize 253

rvectorize Vectorize By Row

Description

This function returns the vectorization of an input matrix in a row by row traversal of the matrix.
The output is returned as a column vector.

Usage

rvectorize(x)

Arguments

x an input matrix.

See Also

cvectorize, vech, vechs

Examples

rvectorize(matrix(1:9, 3, 3))
rvectorize(matrix(1:12, 3, 4))

summary.MxModel Model Summary

Description

This function returns summary statistics of a model after it has been run

Usage

S3 method for class 'MxModel'
summary(object, ..., verbose=FALSE)

Arguments

object A MxModel object.

... Any number of named arguments (see below).

verbose Whether to include extra diagnostic information.

254 summary.MxModel

Details

mxSummary allows the user to set or override the following parameters of the model:

numObs Numeric. Specify the total number of observations for the model.

numStats Numeric. Specify the total number of observed statistics for the model.

refModels List of MxModel objects. Specify a saturated and independence likelihoods in single
argument for testing.

SaturatedLikelihood Numeric or MxModel object. Specify a saturated likelihood for testing.

SaturatedDoF Numeric. Specify the degrees of freedom of the saturated likelihood for testing.

IndependenceLikelihood Numeric or MxModel object. Specify an independence likelihood for
testing.

IndependenceDoF Numeric. Specify the degrees of freedom of the independence likelihood for
testing.

indep Logical. Set to FALSE to ignore independent submodels in summary.

verbose logical. Changes the printing style for summary (see Details)

The verbose argument changes the printing style for the summary of a model. When verbose=FALSE,
a relatively minimal amount of information is printed: the free parameters, the likelihood, and
a few fit indices. When more information is available, more is printed. For example, when the
model has a saturated likelihood, several additional fit indices are printed. On the other hand, when
verbose=TRUE, the compute plan, the data summary, and additional timing information are always
printed. Moreover, available fit indices are printed regarless of whether or not they are defined. The
undefined fit indices are printed as NA. Running a saturated model and including it with the call to
summary will define these fit indices and they will dislay meaningful values. It should be noted that
the verbose argument only changes the printing style, all of the same information is calculated and
exists in the output of summary. More information is displayed when verbose=TRUE, and less when
verbose=FALSE.

The Information Criteria (AIC, BIC) are reported in a table. The table shows different versions
of the information criteria. Each entry in the table is an AIC or BIC obtained using different penal-
ties. In particular, the entries of the table do not show the values of different penalties, but rather
different versions of AIC and BIC. For example the AIC is reported with both a Parameters Penalty
and a Degrees of Freedom Penalty. AIC generally takes the form Fit+ 2 ∗ k. With the Parameters
Penalty k is the number of free parameters: AIC.param = Fit + 2 ∗ param. With the Degrees
of Freedom Penalty, k is minus one times the model degrees of freedom. So, essentially the penalty
is subtracted instead of added: AIC.param = Fit− 2 ∗ df . The Degrees of Freedom penalty was
used in Classic Mx. BIC is defined similarly: Fit + k ∗ log(N) where k is either the number of
free parameters or minus one times the model degrees of freedom. The Sample-Size Adjusted BIC
is only defined for the parameters penalty: Fit+ k ∗ log((N + 2)/24). For raw data models, Fit is
the minus 2 log likelihood,−2LL. For covariance data, Fit is the Chi-squared statistic. The−2LL
and saturated likelihood values reported under covariance data are not necessarily meaningful on
their own, but their difference yields the Chi-squared value.

The refModels, SaturatedLikelihood, SaturatedDoF, IndependenceLikelihood, and IndependenceDoF
arguments can be used to obtain further fit statistics (RMSEA, CFI, TLI, Chi-Squared). For co-
variance data, saturated and independence models are fitted automatically so all fit indices are re-
ported. For raw data, these reference models are not estimated to save computational time. An easy

summary.MxModel 255

way to make reference models for most cases is provided by the mxRefModels function. When
the SaturatedLikelihood or IndependenceLikelihood arguments are used, the appropriate de-
grees of freedom are attempted to be calculated by OpenMx. However, depending on the model, it
may sometimes behoove the user to also explicity provide the corresponding SaturatedDoF and/or
IndependenceDoF. Again, for the vast majority of cases, the mxRefModels function handles these
situations effectively and convenietly.

The summary function can report Error codes as follows:

• 1: The final iterate satisfies the optimality conditions to the accuracy requested, but the se-
quence of iterates has not yet converged. NPSOL was terminated because no further improve-
ment could be made in the merit function (Mx status GREEN)

• 2: The linear constraints and bounds could not be satisfied. The problem has no feasible
solution.

• 3: The nonlinear constraints and bounds could not be satisfied. The problem may have no
feasible solution.

• 4: The major iteration limit was reached (Mx status BLUE).

• 5: The Hessian at the solution does not appear to be convex (Mx status RED).

• 6: The model does not satisfy the first-order optimality conditions to the required accuracy,
and no improved point for the merit function could be found during the final linesearch (Mx
status RED)

• 7: The function derivates returned by funcon or funobj appear to be incorrect.

• 9: An input parameter was invalid

When the information matrix is available, standard errors are reported. If the information matrix
was estimated using finite differences then an additional diagnostic column ’A’ is displayed. An
exclamation point in the ’A’ column indicates that the gradient appears to be asymmetric and the
standard error may not accurately reflect the variability of that parameter. As a precaution, it is
recommended that you compare the SEs with likelihood-based confidence intervals.

For many raw data models, OpenMx does not automatically report the absolute fit indices (Chi-
Squared, CFI, TLI, and RMSEA). They are available once you fit reference models. See the example
given in mxRefModels.

OpenMx does not recommend using some fit indices. These are GFI, AGFI, NFI, and SRMR. The
Goodness of Fit Index (GFI) and Adjusted Goodness of Fit Index (AGFI) are not recommended
because they are strongly influeced by sample size and have rather high Type I error rates (Sharma,
Mukherjee, Kumar, & Dillon, 2005). The Normed Fit Index (NFI) has no penalty for model com-
plexity. That is, adding more parameters to a model always improves the NFI, regardless of how
useful those parameters are. Because the Non-Normed Fit Index (NNFI), also known as the Tucker-
Lewis Index (TLI), does adjust for model complexity it is used instead. Lastly, the Standardized
Root Mean Square Residual (SRMR) is not reported because it (1) only applies to covariance mod-
els, having no direct extension to missing data, (2) has no penalty for model complexity, similar to
the NFI, and (3) is positively biased (Hu & Bentler, 1999).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

256 tr

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:
Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.

Sharma, S., Mukherjee, S., Kumar, A., & Dillon, W.R. (2005). A simulation study to investigate
the use of cutoff values for assessing model fit in covariance structure models. Journal of Business
Research, 58, 935-43.

Examples

library(OpenMx)
data(demoOneFactor) # load the demoOneFactor dataframe
manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable
model <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents, to=manifests, labels = paste("b", 1:5, sep = "")),
mxPath(from = manifests, arrows = 2, labels = paste("u", 1:5, sep = "")),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)

)
model <- mxRun(model) # Run the model, returning the result into model

Show summary of the fitted model
summary(model)

Compute the summary and store in the variable "statistics"
statistics <- summary(model)

Access components of the summary
statistics$parameters
statistics$SaturatedLikelihood

Specify a saturated likelihood for testing
summary(model, SaturatedLikelihood = -3000)

Add a CI and view it in the summary
model = mxRun(mxModel(model=model, mxCI("b5")), intervals = TRUE)
summary(model)

tr trace

Description

This function returns the trace of an n-by-n square matrix x, defined to be the sum of the elements
on the main diagonal (the diagonal from the upper left to the lower right).

twinData 257

Usage

tr(x)

Arguments

x an input matrix. Must be square

Details

The input matrix must be square.

See Also

vech, rvectorize, cvectorize

Examples

tr(matrix(1:9, 3, 3))
tr(matrix(1:12, 3, 4))

twinData Australian twin sample biometric data.

Description

Australian twin data with 3,808 observations on the 12 variables including body mass index (BMI)
assessed in both MZ and DZ twins.

Questionnaires were mailed to 5,967 pairs age 18 years and over. These data consist of completed
questionnaires returned by both members of 3,808 (64 percent) pairs. There are two cohort blocks
in the data: a younger group (zyg 1:5), and an older group (zyg 6:10)

It is a wide dataset, with two individuals per line. Families are identified by the variable “fam”.

Data include zygosity (zyg), along with heights in metres, weights in kg, and the derived variables
BMI in kg/m^2 (stored as “htwt1” and “htwt2”), as well as the log of this variable, stored here as
bm1 and bm2. The logged values are more closely normally distributed.

For convenience, zyg is broken out into separate “zygosity” and “cohort” factors. “zygosity” is
coded as a 5-level factor.

Usage

data(twinData)

258 twinData

Format

A data frame with 3808 observations on the following 12 variables.

fam The family ID

age Age in years (of both twins)

zyg Code for zygosity and cohort (see details)

part A numeric vector

wt1 Weight of twin 1 (kg)

wt2 Weight of twin 2 (kg)

ht1 Height of twin 1 (m)

ht2 Height of twin 2 (m)

htwt1 Raw BMI of twin 1 (kg/m^2)

htwt2 Raw BMI of twin 2 (kg/m^2)

bmi1 log(BMI) of twin 1

bmi2 log(BMI) of twin 2

cohort Either “younger” or “older”

zygosity Zygosity factor with levels: MZFF, MZMM, DZFF, DZMM, DZOS

age1 Age of Twin 1

age2 Age of Twin 2

Details

“zyg” codes twin-zygosity as follows: 1 == MZFF (i.e MZ females) 2 == MZMM (i.e MZ males)
3 == DZFF 4 == DZMM 5 == DZOS opposite sex pairs

Note: zyg 6:10 are for an older cohort in the sample. So: 6 == MZFF (i.e MZ females) 7 == MZMM
(i.e MZ males) 8 == DZFF 9 == DZMM 10 == DZOS opposite sex pairs

The “zygosity” and “cohort” variables take care of this for you (conventions differ).

References

Martin, N. G. & Jardine, R. (1986). Eysenck’s contribution to behavior genetics. In S. Modgil & C.
Modgil (Eds.), Hans Eysenck: Consensus and Controversy. Falmer Press: Lewes, Sussex.

Martin, N. G., Eaves, L. J., Heath, A. C., Jardine, R., Feindgold, L. M., & Eysenck, H. J. (1986).
Transmission of social attitudes. Proceedings of the National Academy of Science, 83, 4364-4368.

Examples

data(twinData)
str(twinData)
plot(wt1 ~ wt2, data = twinData)
selVars = c("bmi1", "bmi2")
mzData <- subset(twinData, zyg == 1, selVars)
dzData <- subset(twinData, zyg == 3, selVars)

twin_NA_dot 259

equivalently
mzData <- subset(twinData, zygosity == "MZFF", selVars)

Disregard sex, pick older cohort
mz <- subset(twinData, zygosity %in% c("MZFF","MZMM") & cohort == "older", selVars)

twin_NA_dot Twin data on weight and height

Description

Data set used in some of OpenMx’s examples.

Usage

data("twin_NA_dot")

Format

A data frame with 3808 observations on the following variables.

fam Family ID variable

age Age of the twin pair. Range: 17 to 88.

zyg Integer codes for zygosity and gender combinations

part

wt1 Weight in kilograms for twin 1

wt2 Weight in kilograms for twin 2

ht1 Height in meters for twin 1

ht2 Height in meters for twin 2

htwt1 Product of ht and wt for twin 1

htwt2 Product of ht and wt for twin 2

bmi1 Body Mass Index for twin 1

bmi2 Body Mass Index for twin 2

Details

Same as myTwinData but has . as the missing data value instead of NA.

Source

Timothy Bates

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

260 vec2diag

Examples

data(twin_NA_dot)
summary(twin_NA_dot)
Note that all variables are treated as factors because of the missing data coding.

vec2diag Create Diagonal Matrix From Vector

Description

Given an input row or column vector, vec2diag returns a diagonal matrix with the input argument
along the diagonal.

Usage

vec2diag(x)

Arguments

x a row or column vector.

Details

Similar to the function diag, except that the input argument is always treated as a vector of elements
to place along the diagonal.

See Also

diag2vec

Examples

vec2diag(matrix(1:4, 1, 4))
vec2diag(matrix(1:4, 4, 1))

vech 261

vech Half-vectorization

Description

This function returns the half-vectorization of an input matrix as a column vector.

Usage

vech(x)

Arguments

x an input matrix.

Details

The half-vectorization of an input matrix consists of the elements in the lower triangle of the matrix,
including the elements along the diagonal of the matrix, as a column vector. The column vector is
created by traversing the matrix in column-major order.

See Also

vech2full, vechs, rvectorize, cvectorize

Examples

vech(matrix(1:9, 3, 3))
vech(matrix(1:12, 3, 4))

vech2full Inverse Half-vectorization

Description

This function returns the symmetric matrix constructed from a half-vectorization.

Usage

vech2full(x)

Arguments

x an input single column or single row matrix.

262 vechs

Details

The half-vectorization of an input matrix consists of the elements in the lower triangle of the matrix,
including the elements along the diagonal of the matrix, as a column vector. The column vector is
created by traversing the matrix in column-major order. The inverse half-vectorization takes a
vector and reconstructs a symmetric matrix such that vech2full(vech(x)) is identical to x if x is
symmetric.

Note that very few vectors have the correct number of elements to construct a symmetric matrix.
For example, vectors with 1, 3, 6, 10, and 15 elements can be used to make a symmetric matrix, but
none of the other numbers between 1 and 15 can. An error is thrown if the number of elements in x
cannot be used to make a symmetric matrix.

See Also

vechs2full, vech, vechs, rvectorize, cvectorize

Examples

vech2full(1:10)

matrix(1:16, 4, 4)
vech(matrix(1:16, 4, 4))
vech2full(vech(matrix(1:16, 4, 4)))

vechs Strict Half-vectorization

Description

This function returns the strict half-vectorization of an input matrix as a column vector.

Usage

vechs(x)

Arguments

x an input matrix.

Details

The half-vectorization of an input matrix consists of the elements in the lower triangle of the matrix,
excluding the elements along the diagonal of the matrix, as a column vector. The column vector is
created by traversing the matrix in column-major order.

vechs2full 263

See Also

vech, rvectorize, cvectorize

Examples

vechs(matrix(1:9, 3, 3))
vechs(matrix(1:12, 3, 4))

vechs2full Inverse Strict Half-vectorization

Description

This function returns the symmetric matrix constructed from a strict half-vectorization.

Usage

vechs2full(x)

Arguments

x an input single column or single row matrix.

Details

The strict half-vectorization of an input matrix consists of the elements in the lower triangle of
the matrix, excluding the elements along the diagonal of the matrix, as a column vector. The
column vector is created by traversing the matrix in column-major order. The inverse strict half-
vectorization takes a vector and reconstructs a symmetric matrix such that vechs2full(vechs(x))
is equal to x with zero along the diagonal if x is symmetric.

Note that very few vectors have the correct number of elements to construct a symmetric matrix.
For example, vectors with 1, 3, 6, 10, and 15 elements can be used to make a symmetric matrix, but
none of the other numbers between 1 and 15 can. An error is thrown if the number of elements in x
cannot be used to make a symmetric matrix.

See Also

vech2full, vech, vechs, rvectorize, cvectorize

264 vechs2full

Examples

vechs2full(1:10)

matrix(1:16, 4, 4)
vechs(matrix(1:16, 4, 4))
vechs2full(vechs(matrix(1:16, 4, 4)))

Index

∗Topic classes
MxExpectationGREML-class, 108
MxFitFunctionGREML-class, 139
MxMatrix-class, 167
MxModel-class, 176

∗Topic datasets
Bollen, 10
demoOneFactor, 11
demoTwoFactor, 12
dzfData, 14
dzmData, 16
dzoData, 17
example1, 20
example2, 21
factorExample1, 22
factorScaleExample1, 23
factorScaleExample2, 24
HS.ability.data, 26
imxConstraintRelations, 29
imxDataTypes, 31
imxModelTypes, 44
imxReservedNames, 49
imxSeparatorChar, 50
imxVariableTypes, 54
jointdata, 58
latentMultipleRegExample1, 59
latentMultipleRegExample2, 60
LongitudinalOverdispersedCounts,

61
multiData1, 62
myAutoregressiveData, 209
myFADataRaw, 210
myGrowthKnownClassData, 210
myGrowthMixtureData, 211
myLongitudinalData, 212
myRegData, 213
myRegDataRaw, 214
myTwinData, 215
mzfData, 216

mzmData, 217
nuclear_twin_design_data, 219
numHess1, 220
numHess2, 221
omxSymbolTable, 252
ordinalTwinData, 252
twin_NA_dot, 259
twinData, 257

[,MxMatrix,ANY,ANY,ANY-method
(MxMatrix-class), 167

[,MxMatrix-method (MxMatrix-class), 167
[<-,MxMatrix,ANY,ANY,ANY-method

(MxMatrix-class), 167
[<-,MxMatrix-method (MxMatrix-class),

167
[[,MxFlatModel-method

(MxFlatModel-class), 151
[[,MxMatrix-method (MxMatrix-class), 167
[[,MxModel-method (MxModel-class), 176
[[<-,MxFlatModel-method

(MxFlatModel-class), 151
[[<-,MxLISRELModel-method

(MxLISRELModel-class), 159
[[<-,MxMatrix-method (MxMatrix-class),

167
[[<-,MxModel-method (MxModel-class), 176
[[<-,MxRAMModel-method

(MxRAMModel-class), 186
$,BaseCompute-method

(BaseCompute-class), 9
$,MxAlgebra-method (MxAlgebra-class), 67
$,MxBaseExpectation-method

(MxBaseExpectation-class), 72
$,MxBaseFitFunction-method

(MxBaseFitFunction-class), 72
$,MxConstraint-method

(MxConstraint-class), 95
$,MxData-method (MxData-class), 98
$,MxFlatModel-method

265

266 INDEX

(MxFlatModel-class), 151
$,MxInterval-method (MxInterval-class),

156
$,MxJoin-method (mxJoin), 156
$,MxMatrix-method (MxMatrix-class), 167
$,MxModel-method (MxModel-class), 176
$,MxPath-method (mxPath), 183
$,MxThreshold-method (mxThreshold), 202
$<-,BaseCompute-method

(BaseCompute-class), 9
$<-,MxAlgebra-method (MxAlgebra-class),

67
$<-,MxBaseExpectation-method

(MxBaseExpectation-class), 72
$<-,MxBaseFitFunction-method

(MxBaseFitFunction-class), 72
$<-,MxConstraint-method

(MxConstraint-class), 95
$<-,MxData-method (MxData-class), 98
$<-,MxFlatModel-method

(MxFlatModel-class), 151
$<-,MxInterval-method

(MxInterval-class), 156
$<-,MxJoin-method (mxJoin), 156
$<-,MxLISRELModel-method

(MxLISRELModel-class), 159
$<-,MxMatrix-method (MxMatrix-class),

167
$<-,MxModel-method (MxModel-class), 176
$<-,MxPath-method (mxPath), 183
$<-,MxRAMModel-method

(MxRAMModel-class), 186
$<-,MxThreshold-method (mxThreshold),

202
%&% (mxAlgebra), 63
%^% (mxAlgebra), 63

apply, 223
as.character, 179
as.list, 223, 237, 247

BaseCompute-class, 9
Bollen, 10

Cauchy, 205
Classes, 68, 74, 95, 174, 177
cut, 151
cvectorize, 11, 65, 253, 257, 261–263

data.frame, 98, 100, 102

demoOneFactor, 11
demoTwoFactor, 12
detectCores, 180
diag, 13, 66, 260
diag2vec, 13, 66, 260
DiagMatrix-class (MxMatrix-class), 167
dim,MxMatrix-method (MxMatrix-class),

167
dimnames, 115, 134
dimnames,MxAlgebra-method

(MxAlgebra-class), 67
dimnames,MxMatrix,ANY-method

(MxMatrix-class), 167
dimnames,MxMatrix-method

(MxMatrix-class), 167
dimnames<-,MxAlgebra,ANY-method

(MxAlgebra-class), 67
dimnames<-,MxAlgebra-method

(MxAlgebra-class), 67
dimnames<-,MxMatrix,ANY-method

(MxMatrix-class), 167
dimnames<-,MxMatrix-method

(MxMatrix-class), 167
dzfData, 14
dzmData, 16
dzoData, 17

eigen, 19
eigenval, 65
eigenval (eigenvec), 19
eigenvec, 19
example1, 20, 21
example2, 20, 21
expm, 22, 66
Extract, 78, 80, 115, 135, 141, 149

factor, 130
factorExample1, 22
factorScaleExample1, 23, 25
factorScaleExample2, 24
FullMatrix-class (MxMatrix-class), 167

genericFitDependencies,MxBaseFitFunction-method,
25

gradientIterations, 205
gradientStepSize, 205
GREML expectation, 249

here, 67, 71, 74, 79, 80, 98, 100, 102, 107,
109, 137, 139–141, 143, 146, 148,

INDEX 267

150, 156, 165, 168, 175, 179, 185,
203, 225

HS.ability.data, 26
HS.fake.data (HS.ability.data), 26

IdenMatrix-class (MxMatrix-class), 167
ieigenval (eigenvec), 19
ieigenvec (eigenvec), 19
imxCheckMatrices, 28
imxCheckVariables, 28
imxConDecMatrixSlots, 28
imxConDecMatrixSlots,MxMatrix-method

(imxConDecMatrixSlots), 28
imxConstraintRelations, 29
imxConvertIdentifier, 29
imxConvertLabel, 30
imxConvertSubstitution, 30
imxCreateMatrix, 31, 168
imxCreateMatrix,DiagMatrix-method

(imxCreateMatrix), 31
imxCreateMatrix,FullMatrix-method

(imxCreateMatrix), 31
imxCreateMatrix,IdenMatrix-method

(imxCreateMatrix), 31
imxCreateMatrix,LowerMatrix-method

(imxCreateMatrix), 31
imxCreateMatrix,MxMatrix-method

(imxCreateMatrix), 31
imxCreateMatrix,SdiagMatrix-method

(imxCreateMatrix), 31
imxCreateMatrix,StandMatrix-method

(imxCreateMatrix), 31
imxCreateMatrix,SymmMatrix-method

(imxCreateMatrix), 31
imxCreateMatrix,UnitMatrix-method

(imxCreateMatrix), 31
imxCreateMatrix,ZeroMatrix-method

(imxCreateMatrix), 31
imxDataTypes, 31
imxDefaultGetSlotDisplayNames, 32
imxDeparse, 32, 168
imxDeparse,IdenMatrix-method

(imxDeparse), 32
imxDeparse,matrix-method (imxDeparse),

32
imxDeparse,MxAlgebra-method

(imxDeparse), 32
imxDeparse,MxConstraint-method

(imxDeparse), 32

imxDeparse,MxData-method (imxDeparse),
32

imxDeparse,MxMatrix-method
(imxDeparse), 32

imxDeparse,UnitMatrix-method
(imxDeparse), 32

imxDeparse,ZeroMatrix-method
(imxDeparse), 32

imxDependentModels, 33
imxDetermineDefaultOptimizer, 33
imxDiff, 33
imxDmvnorm, 34
imxEvalByName, 34
imxExtractMethod, 35
imxExtractNames, 35
imxExtractReferences, 35
imxExtractSlot, 36
imxFlattenModel, 36
imxFreezeModel, 36
imxGenerateLabels, 37
imxGenerateNamespace, 37
imxGenericModelBuilder, 37
imxGenSwift, 38
imxGentleResize, 38
imxGetExpectationComponent

(mxGetExpected), 153
imxGetSlotDisplayNames, 39
imxHasNPSOL, 39
imxHasOpenMP, 40
imxIdentifier, 40
imxIndependentModels, 40
imxInitModel, 41, 178
imxInitModel,MxLISRELModel-method

(imxInitModel), 41
imxInitModel,MxModel-method

(imxInitModel), 41
imxInitModel,MxRAMModel-method

(imxInitModel), 41
imxIsDefinitionVariable, 41
imxIsPath, 41
imxLocateFunction, 42
imxLocateIndex, 42
imxLocateLabel, 43
imxLog, 43
imxLookupSymbolTable, 43
imxModelBuilder, 44, 178
imxModelBuilder,MxLISRELModel-method

(imxModelBuilder), 44

268 INDEX

imxModelBuilder,MxModel-method
(imxModelBuilder), 44

imxModelBuilder,MxRAMModel-method
(imxModelBuilder), 44

imxModelTypes, 44
imxMpiWrap, 45
imxOriginalMx, 45
imxPPML, 45
imxPPML.Test.Battery, 46
imxPPML.Test.Test, 47
imxPreprocessModel, 47
imxReplaceMethod, 48
imxReplaceModels, 48
imxReplaceSlot, 49
imxReservedNames, 49
imxReverseIdentifier, 50
imxSameType, 50
imxSeparatorChar, 50
imxSfClient, 51
imxSimpleRAMPredicate, 51
imxSparseInvert, 51
imxSquareMatrix, 52, 168
imxSquareMatrix,DiagMatrix-method

(imxSquareMatrix), 52
imxSquareMatrix,IdenMatrix-method

(imxSquareMatrix), 52
imxSquareMatrix,LowerMatrix-method

(imxSquareMatrix), 52
imxSquareMatrix,MxMatrix-method

(imxSquareMatrix), 52
imxSquareMatrix,SdiagMatrix-method

(imxSquareMatrix), 52
imxSquareMatrix,StandMatrix-method

(imxSquareMatrix), 52
imxSquareMatrix,SymmMatrix-method

(imxSquareMatrix), 52
imxSymmetricMatrix, 52, 168
imxSymmetricMatrix,LowerMatrix-method

(imxSymmetricMatrix), 52
imxSymmetricMatrix,MxMatrix-method

(imxSymmetricMatrix), 52
imxSymmetricMatrix,SdiagMatrix-method

(imxSymmetricMatrix), 52
imxSymmetricMatrix,StandMatrix-method

(imxSymmetricMatrix), 52
imxSymmetricMatrix,SymmMatrix-method

(imxSymmetricMatrix), 52
imxTypeName, 52, 178

imxTypeName,MxLISRELModel-method
(imxTypeName), 52

imxTypeName,MxModel-method
(imxTypeName), 52

imxTypeName,MxRAMModel-method
(imxTypeName), 52

imxUntitledName, 53
imxUntitledNumber, 53, 53
imxUntitledNumberReset, 53
imxUpdateModelValues, 54
imxVariableTypes, 54
imxVerifyMatrix, 55, 168
imxVerifyMatrix,DiagMatrix-method

(imxVerifyMatrix), 55
imxVerifyMatrix,FullMatrix-method

(imxVerifyMatrix), 55
imxVerifyMatrix,IdenMatrix-method

(imxVerifyMatrix), 55
imxVerifyMatrix,LowerMatrix-method

(imxVerifyMatrix), 55
imxVerifyMatrix,MxMatrix-method

(imxVerifyMatrix), 55
imxVerifyMatrix,SdiagMatrix-method

(imxVerifyMatrix), 55
imxVerifyMatrix,StandMatrix-method

(imxVerifyMatrix), 55
imxVerifyMatrix,SymmMatrix-method

(imxVerifyMatrix), 55
imxVerifyMatrix,UnitMatrix-method

(imxVerifyMatrix), 55
imxVerifyMatrix,ZeroMatrix-method

(imxVerifyMatrix), 55
imxVerifyModel, 55, 178
imxVerifyModel,MxLISRELModel-method

(imxVerifyModel), 55
imxVerifyModel,MxModel-method

(imxVerifyModel), 55
imxVerifyModel,MxRAMModel-method

(imxVerifyModel), 55
imxVerifyName, 55
imxVerifyReference, 56
imxWlsChiSquare, 56
imxWlsStandardErrors, 57

jointdata, 58

lapply, 237
latentMultipleRegExample1, 59, 60
latentMultipleRegExample2, 60

INDEX 269

length,MxMatrix-method
(MxMatrix-class), 167

lgamma1p (mxAlgebra), 63
logm, 61, 66
logp2z (mxAlgebra), 63
longData

(LongitudinalOverdispersedCounts),
61

LongitudinalOverdispersedCounts, 61
LowerMatrix-class (MxMatrix-class), 167

make.names, 163
make.unique, 163
matrix, 98, 100, 102
Mod, 19
multiData1, 62
MxAlgebra, 63, 64, 66, 67, 70, 74, 93, 94, 97,

99, 106, 108, 112, 115, 118, 120,
122, 125, 127, 128, 134, 136–139,
147, 148, 162, 168, 171, 172, 176,
178, 188, 194, 219

MxAlgebra (MxAlgebra-class), 67
mxAlgebra, 63, 67–69, 71, 97, 99, 104, 137,

143, 165, 167, 174
MxAlgebra-class, 67
MxAlgebraFormula

(MxAlgebraFormula-class), 68
MxAlgebraFormula-class, 68
mxAlgebraFromString, 69
mxAlgebraObjective, 69, 174
MxAlgebras, 78, 80, 177
mxAvailableOptimizers, 71
MxBaseExpectation-class, 72
MxBaseFitFunction-class, 72
MxBaseNamed (MxBaseNamed-class), 72
MxBaseNamed-class, 72
MxBaseObjectiveMetaData

(MxBaseObjectiveMetaData-class),
73

MxBaseObjectiveMetaData-class, 73
MxBounds, 70, 73, 74, 112, 115, 118, 122, 127,

134, 137, 162, 172, 188
MxBounds (MxBounds-class), 74
mxBounds, 73, 74, 165, 174
MxBounds-class, 74
MxCharOrList-class, 75
MxCharOrNumber-class, 75
mxCheckIdentification, 75, 143
MxCI, 77–79, 177

MxCI (MxCI-class), 79
mxCI, 77, 78–80, 156, 173–175, 178, 200
MxCI-class, 79
mxCompare, 80
MxCompute, 178
MxCompute (MxCompute-class), 83
MxCompute-class, 83
mxComputeConfidenceInterval, 79, 83
MxComputeConfidenceInterval-class

(mxComputeConfidenceInterval),
83

mxComputeDefault, 84
MxComputeDefault-class

(mxComputeDefault), 84
mxComputeEM, 9, 84
MxComputeEM-class (mxComputeEM), 84
mxComputeGradientDescent, 9, 86, 205, 206
MxComputeGradientDescent-class

(mxComputeGradientDescent), 86
mxComputeHessianQuality, 9, 87
MxComputeHessianQuality-class

(mxComputeHessianQuality), 87
mxComputeIterate, 9, 88
MxComputeIterate-class

(mxComputeIterate), 88
mxComputeNewtonRaphson, 9, 89
MxComputeNewtonRaphson-class

(mxComputeNewtonRaphson), 89
mxComputeNothing, 89
mxComputeNumericDeriv, 9, 90
MxComputeNumericDeriv-class

(mxComputeNumericDeriv), 90
mxComputeOnce, 64, 91
MxComputeOnce-class (mxComputeOnce), 91
mxComputeReportDeriv, 92
MxComputeReportDeriv-class

(mxComputeReportDeriv), 92
mxComputeSequence, 92, 138
MxComputeSequence-class

(mxComputeSequence), 92
mxComputeStandardError, 93
MxComputeStandardError-class

(mxComputeStandardError), 93
MxConstraint, 70, 93, 94, 112, 115, 118, 122,

127, 134, 137, 138, 162, 172, 176,
178, 188, 219

MxConstraint (MxConstraint-class), 95
mxConstraint, 68, 84, 93, 95, 165, 167, 173,

270 INDEX

174, 200
MxConstraint-class, 95
MxData, 96–98, 101, 102, 110, 112, 115, 117,

118, 120, 122, 125, 127, 128, 134,
160, 162, 165, 171, 174, 177, 178,
187, 188, 219

MxData (MxData-class), 98
mxData, 96, 98–100, 112, 115, 118, 122, 127,

134, 149, 162, 172–175, 188
MxData-class, 98
mxDataDynamic, 100
MxDataDynamic-class (mxDataDynamic), 100
MxDataFrameOrMatrix

(MxDataFrameOrMatrix-class),
100

MxDataFrameOrMatrix-class, 100
MxDataStatic (MxDataStatic-class), 101
MxDataStatic-class, 101
mxDataWLS, 97, 101, 149
MxDirectedGraph

(MxDirectedGraph-class), 103
MxDirectedGraph-class, 103
mxEval, 70, 103, 112, 118, 122, 128, 137, 162,

172, 188
mxEvalByName (mxEval), 103
MxExpectation, 178
MxExpectation (MxExpectation-class), 105
MxExpectation-class, 105
mxExpectationBA81, 72, 105, 249
MxExpectationBA81-class

(mxExpectationBA81), 105
MxExpectationGREML, 106, 107
MxExpectationGREML

(MxExpectationGREML-class), 108
mxExpectationGREML, 106, 108, 109, 139,

140, 155, 156
MxExpectationGREML-class, 108
mxExpectationLISREL, 72, 110, 151, 153, 236
MxExpectationLISREL-class

(mxExpectationLISREL), 110
mxExpectationNormal, 72, 114, 134, 141,

149, 151, 153, 171, 192
MxExpectationNormal-class

(mxExpectationNormal), 114
mxExpectationRAM, 72, 112, 117, 141, 149,

151, 153, 157, 187, 199, 200, 236
MxExpectationRAM-class

(mxExpectationRAM), 117

mxExpectationSSCT
(mxExpectationStateSpaceContinuousTime),
124

mxExpectationStateSpace, 72, 119, 125,
128, 151, 158

MxExpectationStateSpace-class
(mxExpectationStateSpace), 119

mxExpectationStateSpaceContinuousTime,
120, 123, 124, 151

mxFactor, 130, 151
mxFactorScores, 131
mxFIMLObjective, 133, 174
MxFitFunction, 178
MxFitFunction (MxFitFunction-class), 136
MxFitFunction-class, 136
mxFitFunctionAlgebra, 67, 70, 72, 97, 99,

136, 139, 141, 143, 146, 148, 150
MxFitFunctionAlgebra-class

(mxFitFunctionAlgebra), 136
MxFitFunctionGREML, 138, 139
MxFitFunctionGREML

(MxFitFunctionGREML-class), 139
mxFitFunctionGREML, 72, 137, 138, 140, 141,

143, 146, 148, 150
MxFitFunctionGREML-class, 139
mxFitFunctionML, 72, 96, 97, 99, 115, 120,

125, 134, 137, 139, 140, 143, 146,
148, 150, 169, 171, 187, 192

MxFitFunctionML-class
(mxFitFunctionML), 140

mxFitFunctionMultigroup, 72, 137, 139,
141, 142, 146, 148, 150, 248

MxFitFunctionMultigroup-class
(mxFitFunctionMultigroup), 142

mxFitFunctionR, 72, 137, 139, 141, 143, 145,
148, 150

MxFitFunctionR-class (mxFitFunctionR),
145

mxFitFunctionRow, 72, 137, 139, 141, 143,
146, 147, 150

MxFitFunctionRow-class
(mxFitFunctionRow), 147

mxFitFunctionWLS, 72, 97, 101, 102, 137,
139, 141, 143, 146, 148, 149

MxFitFunctionWLS-class
(mxFitFunctionWLS), 149

MxFlatModel-class, 151
mxGenerateData, 151

INDEX 271

mxGetExpected, 153, 240
mxGREMLDataHandler, 106, 154
MxInterval, 178
MxInterval (MxCI-class), 79
MxInterval-class, 156
mxJoin, 156
MxJoin-class (mxJoin), 156
mxKalmanScores, 132, 157
MxLISRELModel-class, 159
mxLISRELObjective, 159
MxListOrNull-class, 162
mxMakeNames, 163
MxMatrices, 78, 80, 177
MxMatrix, 64, 67, 68, 70, 73, 74, 79, 81, 93,

103, 106, 108, 110, 112, 115, 117,
118, 120, 122, 125, 127, 128, 134,
136–139, 160–165, 172, 174, 176,
178, 187, 188, 219

MxMatrix (MxMatrix-class), 167
mxMatrix, 64, 67, 68, 74, 79, 97, 99, 115, 134,

163, 167, 168, 173–175, 185, 200,
203

MxMatrix-class, 167
mxMI, 169
mxMLObjective, 171, 174
MxModel, 64, 70, 73, 74, 77, 78, 80, 93, 94, 96,

101, 103, 112, 115, 118, 122, 127,
134, 137, 162, 165, 167, 171–175,
177, 179, 188, 191, 195–197, 207,
208, 219

MxModel (MxModel-class), 176
mxModel, 76, 79, 82, 97, 99, 104, 165, 167,

173, 177, 179, 181, 184, 185, 190,
200, 202, 203, 249

MxModel-class, 176
MxNonNullData-class (MxData-class), 98
mxOption, 72, 175, 177, 178, 179, 191, 197,

200
MxOptionalChar-class, 182
MxOptionalCharOrNumber-class, 182
MxOptionalLogical-class, 182
MxOptionalMatrix-class, 182
MxOptionalNumeric-class, 183
MxPath, 97, 99, 177, 184
mxPath, 173–175, 177, 183, 200, 202, 203
MxPath-class (mxPath), 183
MxRAMGraph (MxRAMGraph-class), 186
MxRAMGraph-class, 186

MxRAMMetaData-class, 186
MxRAMModel-class, 186
mxRAMObjective, 162, 174, 187
mxRefModels, 143, 255
mxRefModels (omxSaturatedModel), 248
mxRename, 189
mxRestore, 190
mxRObjective, 192
mxRowObjective, 193
mxRun, 64, 70, 77, 80, 104, 112, 115, 118, 122,

127, 128, 134, 137, 161, 162, 164,
165, 167, 172, 174, 177, 178, 188,
195, 200, 204, 207

mxSave, 197
mxSetDefaultOptions, 198
mxSimplify2Array, 199
mxStandardizeRAMpaths, 199, 200
mxSummary, 78, 248
mxSummary (summary.MxModel), 253
MxThreshold, 202, 203
mxThreshold, 202
MxThreshold-class (mxThreshold), 202
mxTryHard, 204
mxTryHardctsem (mxTryHard), 204
mxTryHardOrdinal (mxTryHard), 204
mxTryHardOrig (mxTryHard), 204
mxTryHardWideSearch (mxTryHard), 204
mxTypes, 174, 207
mxVersion, 208
myAutoregressiveData, 209
myFADataRaw, 210
myGrowthKnownClassData, 210, 211
myGrowthMixtureData, 211, 211
myLongitudinalData, 212
myRegData, 213, 214
myRegDataRaw, 214
myTwinData, 215, 259
mzfData, 216
mzmData, 217

Named entities, 174, 177
named entities, 178
named entity, 67, 79, 95, 98, 167, 176, 178
Named-entities (Named-entity), 219
named-entities, 174
named-entities (Named-entity), 219
Named-entity, 219
named-entity (Named-entity), 219
names, 247

272 INDEX

names,MxFlatModel-method
(MxFlatModel-class), 151

names,MxMatrix-method (MxMatrix-class),
167

names,MxModel-method (MxModel-class),
176

ncol,MxMatrix-method (MxMatrix-class),
167

normal (Gaussian), 205
nrow,MxMatrix-method (MxMatrix-class),

167
nuclear_twin_design_data, 219
NULL, 98
numHess1, 220
numHess2, 221

omxAllInt, 66, 221
omxAnd, 66
omxAnd (omxLogical), 239
omxApply, 223, 238, 247
omxApproxEquals, 66
omxApproxEquals (omxLogical), 239
omxAssignFirstParameters, 224, 235, 238,

251
omxBrownie, 225
omxCbind (omxMatrixOperations), 240
omxCheckCloseEnough, 226, 228, 230, 232
omxCheckEquals, 226, 227, 228, 230–232
omxCheckError, 227, 231
omxCheckIdentical, 226, 227, 228, 230–232
omxCheckNamespace, 229
omxCheckSetEquals, 226–228, 229, 230–232
omxCheckTrue, 226–228, 230, 230, 231, 232
omxCheckWarning, 227, 231
omxCheckWithinPercentError, 226–228,

230, 231, 232
omxConstrainMLThresholds, 233
omxDetectCores, 233
omxExponential, 66
omxExponential (expm), 22
omxGetNPSOL, 234
omxGetParameters, 205, 224, 234, 238, 251
omxGetRAMDepth, 236
omxGraphviz, 237
omxGreaterThan, 66
omxGreaterThan (omxLogical), 239
omxLapply, 223, 237, 247
omxLessThan, 66
omxLessThan (omxLogical), 239

omxLocateParameters, 235, 238
omxLogical, 239
omxManifestModelByParameterJacobian,

240
omxMatrixOperations, 240
omxMnor, 66, 221, 222, 241
omxNameAnonymousParameters, 242
omxNormalQuantiles, 243
omxNot, 66
omxNot (omxLogical), 239
omxOr, 66
omxOr (omxLogical), 239
omxParallelCI, 244
omxQuotes, 245
omxRAMtoML, 245
omxRbind (omxMatrixOperations), 240
omxRMSEA, 246
omxSapply, 223, 238, 247
omxSaturatedModel, 248
omxSelectCols, 66, 148, 194
omxSelectCols (omxSelectRowsAndCols),

249
omxSelectRows, 66, 148, 194
omxSelectRows (omxSelectRowsAndCols),

249
omxSelectRowsAndCols, 66, 148, 194, 249
omxSetParameters, 205, 224, 235, 238, 251
omxSymbolTable, 252
omxTranspose (omxMatrixOperations), 240
OpenMx, 95
option, 164, 206
options, 82, 205
ordinalTwinData, 252

p2z (mxAlgebra), 63
print,BaseCompute-method

(BaseCompute-class), 9
print,MxAlgebra-method

(MxAlgebra-class), 67
print,MxAlgebraFormula-method

(MxAlgebraFormula-class), 68
print,MxConstraint-method

(mxConstraint), 93
print,MxDataDynamic-method

(mxDataDynamic), 100
print,MxDataStatic-method

(MxDataStatic-class), 101
print,MxExpectationBA81-method

(mxExpectationBA81), 105

INDEX 273

print,MxExpectationLISREL-method
(mxExpectationLISREL), 110

print,MxExpectationNormal-method
(mxExpectationNormal), 114

print,MxExpectationRAM-method
(mxExpectationRAM), 117

print,MxExpectationStateSpace-method
(mxExpectationStateSpace), 119

print,MxFitFunctionAlgebra-method
(mxFitFunctionAlgebra), 136

print,MxFitFunctionML-method
(mxFitFunctionML), 140

print,MxFitFunctionR-method
(mxFitFunctionR), 145

print,MxFitFunctionRow-method
(mxFitFunctionRow), 147

print,MxFitFunctionWLS-method
(mxFitFunctionWLS), 149

print,MxFlatModel-method
(MxFlatModel-class), 151

print,MxInterval-method
(MxInterval-class), 156

print,MxMatrix-method (MxMatrix-class),
167

print,MxModel-method (MxModel-class),
176

print,MxNonNullData-method
(MxData-class), 98

print,MxPath-method (mxPath), 183
print,MxThreshold-method (mxThreshold),

202

read.table, 191, 197
rvectorize, 11, 65, 253, 257, 261–263

sapply, 247
SdiagMatrix-class (MxMatrix-class), 167
sfApply, 223
sfLapply, 237
sfSapply, 247
show,BaseCompute-method

(BaseCompute-class), 9
show,MxAlgebra-method

(MxAlgebra-class), 67
show,MxAlgebraFormula-method

(MxAlgebraFormula-class), 68
show,MxConstraint-method

(mxConstraint), 93

show,MxDataDynamic-method
(mxDataDynamic), 100

show,MxDataStatic-method
(MxDataStatic-class), 101

show,MxExpectationBA81-method
(mxExpectationBA81), 105

show,MxExpectationLISREL-method
(mxExpectationLISREL), 110

show,MxExpectationNormal-method
(mxExpectationNormal), 114

show,MxExpectationRAM-method
(mxExpectationRAM), 117

show,MxExpectationStateSpace-method
(mxExpectationStateSpace), 119

show,MxFitFunctionAlgebra-method
(mxFitFunctionAlgebra), 136

show,MxFitFunctionML-method
(mxFitFunctionML), 140

show,MxFitFunctionR-method
(mxFitFunctionR), 145

show,MxFitFunctionRow-method
(mxFitFunctionRow), 147

show,MxFitFunctionWLS-method
(mxFitFunctionWLS), 149

show,MxFlatModel-method
(MxFlatModel-class), 151

show,MxInterval-method
(MxInterval-class), 156

show,MxMatrix-method (MxMatrix-class),
167

show,MxModel-method (MxModel-class), 176
show,MxNonNullData-method

(MxData-class), 98
show,MxPath-method (mxPath), 183
show,MxThreshold-method (mxThreshold),

202
StandMatrix-class (MxMatrix-class), 167
summary, 77, 115, 135, 141, 149
summary.MxModel, 253
SymmMatrix-class (MxMatrix-class), 167

tolerance, 205
tr, 256
twin_NA_dot, 259
twinData, 257

umxThresholdMatrix, 202
uniform (rectangular), 205
UnitMatrix-class (MxMatrix-class), 167

274 INDEX

vec2diag, 13, 14, 66, 260
vech, 11, 65, 253, 257, 261, 262, 263
vech2full, 65, 261, 261, 263
vechs, 11, 65, 253, 261, 262, 262, 263
vechs2full, 66, 262, 263

wideData
(LongitudinalOverdispersedCounts),
61

ZeroMatrix-class (MxMatrix-class), 167

	BaseCompute-class
	Bollen
	cvectorize
	demoOneFactor
	demoTwoFactor
	diag2vec
	dzfData
	dzmData
	dzoData
	eigenvec
	example1
	example2
	expm
	factorExample1
	factorScaleExample1
	factorScaleExample2
	genericFitDependencies,MxBaseFitFunction-method
	HS.ability.data
	imxCheckMatrices
	imxCheckVariables
	imxConDecMatrixSlots
	imxConstraintRelations
	imxConvertIdentifier
	imxConvertLabel
	imxConvertSubstitution
	imxCreateMatrix
	imxDataTypes
	imxDefaultGetSlotDisplayNames
	imxDeparse
	imxDependentModels
	imxDetermineDefaultOptimizer
	imxDiff
	imxDmvnorm
	imxEvalByName
	imxExtractMethod
	imxExtractNames
	imxExtractReferences
	imxExtractSlot
	imxFlattenModel
	imxFreezeModel
	imxGenerateLabels
	imxGenerateNamespace
	imxGenericModelBuilder
	imxGenSwift
	imxGentleResize
	imxGetSlotDisplayNames
	imxHasNPSOL
	imxHasOpenMP
	imxIdentifier
	imxIndependentModels
	imxInitModel
	imxIsDefinitionVariable
	imxIsPath
	imxLocateFunction
	imxLocateIndex
	imxLocateLabel
	imxLog
	imxLookupSymbolTable
	imxModelBuilder
	imxModelTypes
	imxMpiWrap
	imxOriginalMx
	imxPPML
	imxPPML.Test.Battery
	imxPPML.Test.Test
	imxPreprocessModel
	imxReplaceMethod
	imxReplaceModels
	imxReplaceSlot
	imxReservedNames
	imxReverseIdentifier
	imxSameType
	imxSeparatorChar
	imxSfClient
	imxSimpleRAMPredicate
	imxSparseInvert
	imxSquareMatrix
	imxSymmetricMatrix
	imxTypeName
	imxUntitledName
	imxUntitledNumber
	imxUntitledNumberReset
	imxUpdateModelValues
	imxVariableTypes
	imxVerifyMatrix
	imxVerifyModel
	imxVerifyName
	imxVerifyReference
	imxWlsChiSquare
	imxWlsStandardErrors
	jointdata
	latentMultipleRegExample1
	latentMultipleRegExample2
	logm
	LongitudinalOverdispersedCounts
	multiData1
	mxAlgebra
	MxAlgebra-class
	MxAlgebraFormula-class
	mxAlgebraFromString
	mxAlgebraObjective
	mxAvailableOptimizers
	MxBaseExpectation-class
	MxBaseFitFunction-class
	MxBaseNamed-class
	MxBaseObjectiveMetaData-class
	mxBounds
	MxBounds-class
	MxCharOrList-class
	MxCharOrNumber-class
	mxCheckIdentification
	mxCI
	MxCI-class
	mxCompare
	MxCompute-class
	mxComputeConfidenceInterval
	mxComputeDefault
	mxComputeEM
	mxComputeGradientDescent
	mxComputeHessianQuality
	mxComputeIterate
	mxComputeNewtonRaphson
	mxComputeNothing
	mxComputeNumericDeriv
	mxComputeOnce
	mxComputeReportDeriv
	mxComputeSequence
	mxComputeStandardError
	mxConstraint
	MxConstraint-class
	mxData
	MxData-class
	mxDataDynamic
	MxDataFrameOrMatrix-class
	MxDataStatic-class
	mxDataWLS
	MxDirectedGraph-class
	mxEval
	MxExpectation-class
	mxExpectationBA81
	mxExpectationGREML
	MxExpectationGREML-class
	mxExpectationLISREL
	mxExpectationNormal
	mxExpectationRAM
	mxExpectationStateSpace
	mxExpectationStateSpaceContinuousTime
	mxFactor
	mxFactorScores
	mxFIMLObjective
	MxFitFunction-class
	mxFitFunctionAlgebra
	mxFitFunctionGREML
	MxFitFunctionGREML-class
	mxFitFunctionML
	mxFitFunctionMultigroup
	mxFitFunctionR
	mxFitFunctionRow
	mxFitFunctionWLS
	MxFlatModel-class
	mxGenerateData
	mxGetExpected
	mxGREMLDataHandler
	MxInterval-class
	mxJoin
	mxKalmanScores
	MxLISRELModel-class
	mxLISRELObjective
	MxListOrNull-class
	mxMakeNames
	mxMatrix
	MxMatrix-class
	mxMI
	mxMLObjective
	mxModel
	MxModel-class
	mxOption
	MxOptionalChar-class
	MxOptionalCharOrNumber-class
	MxOptionalLogical-class
	MxOptionalMatrix-class
	MxOptionalNumeric-class
	mxPath
	MxRAMGraph-class
	MxRAMMetaData-class
	MxRAMModel-class
	mxRAMObjective
	mxRename
	mxRestore
	mxRObjective
	mxRowObjective
	mxRun
	mxSave
	mxSetDefaultOptions
	mxSimplify2Array
	mxStandardizeRAMpaths
	mxThreshold
	mxTryHard
	mxTypes
	mxVersion
	myAutoregressiveData
	myFADataRaw
	myGrowthKnownClassData
	myGrowthMixtureData
	myLongitudinalData
	myRegData
	myRegDataRaw
	myTwinData
	mzfData
	mzmData
	Named-entity
	nuclear_twin_design_data
	numHess1
	numHess2
	omxAllInt
	omxApply
	omxAssignFirstParameters
	omxBrownie
	omxCheckEquals
	omxCheckError
	omxCheckIdentical
	omxCheckNamespace
	omxCheckSetEquals
	omxCheckTrue
	omxCheckWarning
	omxCheckWithinPercentError
	omxConstrainMLThresholds
	omxDetectCores
	omxGetNPSOL
	omxGetParameters
	omxGetRAMDepth
	omxGraphviz
	omxLapply
	omxLocateParameters
	omxLogical
	omxManifestModelByParameterJacobian
	omxMatrixOperations
	omxMnor
	omxNameAnonymousParameters
	omxNormalQuantiles
	omxParallelCI
	omxQuotes
	omxRAMtoML
	omxRMSEA
	omxSapply
	omxSaturatedModel
	omxSelectRowsAndCols
	omxSetParameters
	omxSymbolTable
	ordinalTwinData
	rvectorize
	summary.MxModel
	tr
	twinData
	twin_NA_dot
	vec2diag
	vech
	vech2full
	vechs
	vechs2full
	Index

