
OpenMx Reference Manual
January 21, 2015

Date 2014-05-20

Title Multipurpose Software for Statistical Modeling

Author
Steven M. Boker, Michael C. Neale, Hermine H. Maes, Michael J. Wilde,Michael Spiegel, Tim-
othy R. Brick, Ryne Estabrook, Timothy C. Bates, Paras
Mehta, Timo von Oertzen, Ross J. Gore, Michael D. Hunter, Daniel C. Hackett, Ju-
lian Karch, Andreas M. Brandmaier, Joshua N. Pritikin, Mahsa Zahery, Robert M. Kirkpatrick

Maintainer OpenMx Development Team <openmx-developers@list.mail.virginia.edu>

URL http://openmx.psyc.virginia.edu

Description The OpenMx Project intends to rewrite and extend the popular
statistical package Mx to address the challenges facing a large range of
modern statistical problems such as: the difficulty of measuring behavioral
traits; the availability of technologies - such as such as magnetic
resonance imaging, continuous physiological monitoring and microarrays -
which generate extremely large amounts of data often with complex
time-dependent patterning; and increased sophistication in the statistical
models used to analyze the data.

License file LICENSE

LinkingTo RcppEigen

Depends methods,digest,MASS,parallel

Suggests snowfall,roxygen2 (>= 3.1),mvtnorm,rpf (>= 0.36),numDeriv

LazyLoad yes

LazyData yes

Collate '0ClassUnion.R' 'cache.R' 'MxBaseNamed.R' 'MxData.R' 'MxDataWLS.R' 'DefinitionVars.R'
'MxReservedNames.R' 'MxNamespace.R' 'MxSearchReplace.R' 'MxFlatSearchReplace.R'
'MxUntitled.R' 'MxAlgebraFunctions.R' 'MxExponential.R' 'MxMatrix.R' 'DiagMatrix.R'
'FullMatrix.R' 'IdenMatrix.R' 'LowerMatrix.R' 'SdiagMatrix.R' 'StandMatrix.R' 'SymmMatrix.R'
'UnitMatrix.R' 'ZeroMatrix.R' 'MxMatrixFunctions.R' 'MxAlgebra.R' 'MxCycleDetection.R'

1

http://openmx.psyc.virginia.edu

2 R topics documented:

'MxDependencies.R' 'MxAlgebraConvert.R' 'MxAlgebraTransform.R' 'MxSquareBracket.R'
'MxEval.R' 'MxRename.R' 'MxPath.R' 'MxObjectiveMetaData.R' 'MxRAMMetaData.R'
'MxExpectation.R' 'MxExpectationNormal.R' 'MxExpectationRAM.R'
'MxExpectationLISREL.R' 'MxFitFunction.R' 'MxFitFunctionAlgebra.R' 'MxFitFunctionML.R'
'MxFitFunctionMultigroup.R' 'MxFitFunctionRow.R' 'MxFitFunctionWLS.R'
'MxRAMObjective.R' 'MxLISRELObjective.R' 'MxFIMLObjective.R' 'MxMLObjective.R'
'MxRowObjective.R' 'MxAlgebraObjective.R' 'MxBounds.R' 'MxConstraint.R' 'MxInterval.R'
'MxTypes.R' 'MxCompute.R' 'MxModel.R' 'MxRAMModel.R' 'MxLISRELModel.R'
'MxModelDisplay.R' 'MxFlatModel.R' 'MxMultiModel.R' 'MxModelFunctions.R'
'MxModelParameters.R' 'MxUnitTesting.R' 'MxApply.R' 'MxRun.R' 'MxRunHelperFunctions.R'
'MxSummary.R' 'MxCompare.R' 'MxSwift.R' 'MxOptions.R' 'MxThreshold.R' 'OriginalMx.R'
'MxGraph.R' 'MxGraphviz.R' 'MxDeparse.R' 'MxCommunication.R' 'MxRestore.R'
'MxVersion.R' 'MxErrorPool.R' 'MxPPML.R' 'MxRAMtoML.R' 'MxDiff.R'
'MxErrorHandling.R' 'MxDetectCores.R' 'MxSaturatedModel.R' 'omxBrownie.R'
'MxFitFunctionR.R' 'MxRObjective.R' 'MxExpectationStateSpace.R' 'MxExpectationBA81.R'
'MxFitFunctionGREML.R' 'MxExpectationGREML.R' 'zzz.R'

Version 2.0.1-4157

R topics documented:
Bollen . 6
cvectorize . 7
diag2vec . 8
dzfData . 9
dzmData . 10
dzoData . 12
eigenvec . 13
genericFitDependencies,MxBaseFitFunction-method 14
HS.ability.data . 15
imxAddDependency . 17
imxCheckMatrices . 17
imxCheckVariables . 18
imxConDecMatrixSlots . 18
imxConstraintRelations . 18
imxConvertIdentifier . 19
imxConvertLabel . 19
imxConvertSubstitution . 20
imxCreateMatrix . 20
imxDataTypes . 21
imxDefaultGetSlotDisplayNames . 21
imxDeparse . 22
imxDependentModels . 22
imxDiff . 22
imxDmvnorm . 23
imxEvalByName . 23
imxExtractMethod . 24
imxExtractNames . 24

R topics documented: 3

imxExtractReferences . 24
imxExtractSlot . 25
imxFilterDefinitionVariables . 25
imxFlattenModel . 26
imxFreezeModel . 26
imxGenerateLabels . 26
imxGenerateNamespace . 27
imxGenericModelBuilder . 27
imxGenSwift . 28
imxGetSlotDisplayNames . 28
imxHasNPSOL . 29
imxIdentifier . 29
imxIndependentModels . 29
imxInitModel . 30
imxIsDefinitionVariable . 30
imxIsPath . 30
imxLocateFunction . 31
imxLocateIndex . 31
imxLocateLabel . 32
imxLog . 32
imxLookupSymbolTable . 32
imxModelBuilder . 33
imxModelTypes . 33
imxMpiWrap . 34
imxOriginalMx . 34
imxPPML . 34
imxPPML.Test.Battery . 35
imxPreprocessModel . 36
imxReplaceMethod . 36
imxReplaceModels . 36
imxReplaceSlot . 37
imxReservedNames . 37
imxReverseIdentifier . 38
imxSameType . 38
imxSeparatorChar . 38
imxSfClient . 39
imxSimpleRAMPredicate . 39
imxSparseInvert . 39
imxSquareMatrix . 40
imxSymmetricMatrix . 40
imxTypeName . 40
imxVerifyMatrix . 41
imxVerifyModel . 41
imxVerifyName . 41
imxVerifyReference . 42
logm . 42
mxAlgebra . 42
MxAlgebra-class . 46

4 R topics documented:

mxAlgebraObjective . 46
mxBounds . 48
MxBounds-class . 49
MxCharOrList-class . 50
MxCharOrNumber-class . 50
mxCheckIdentification . 50
mxCI . 52
MxCI-class . 55
mxCompare . 56
mxComputeConfidenceInterval . 58
mxComputeEM . 59
mxComputeGradientDescent . 60
mxComputeHessianQuality . 61
mxComputeIterate . 62
mxComputeNewtonRaphson . 62
mxComputeNothing . 63
mxComputeNumericDeriv . 63
mxComputeOnce . 64
mxComputeReportDeriv . 65
mxComputeSequence . 65
mxComputeStandardError . 66
mxConstraint . 66
MxConstraint-class . 68
mxData . 69
MxData-class . 71
mxDataDynamic . 73
mxErrorPool . 73
mxEval . 74
mxExpectationBA81 . 75
mxExpectationLISREL . 77
mxExpectationNormal . 82
mxExpectationRAM . 84
mxExpectationStateSpace . 87
mxFactor . 91
mxFIMLObjective . 92
mxFitFunctionAlgebra . 95
mxFitFunctionML . 97
mxFitFunctionMultigroup . 98
mxFitFunctionR . 99
mxFitFunctionRow . 101
MxFlatModel . 103
MxLISRELModel-class . 103
mxLISRELObjective . 103
MxListOrNull-class . 106
mxMakeNames . 107
mxMatrix . 107
MxMatrix-class . 111
mxMLObjective . 113

R topics documented: 5

mxModel . 115
MxModel-class . 118
mxOption . 120
MxOptionalChar-class . 123
MxOptionalCharOrNumber-class . 123
MxOptionalLogical-class . 123
MxOptionalMatrix-class . 124
MxOptionalNumeric-class . 124
mxPath . 124
MxRAMModel-class . 127
mxRAMObjective . 127
mxRename . 130
mxRestore . 131
mxRObjective . 132
mxRowObjective . 134
mxRun . 136
mxSetDefaultOptions . 138
mxSimplify2Array . 138
mxStandardizeRAMpaths . 139
mxThreshold . 141
mxTryHard . 144
mxTypes . 146
mxVersion . 146
myFADataRaw . 147
mzfData . 148
mzmData . 149
Named-entity . 151
numHess1 . 151
numHess2 . 152
omxAllInt . 152
omxApply . 154
omxAssignFirstParameters . 155
omxBrownie . 156
omxCheckCloseEnough . 157
omxCheckEquals . 158
omxCheckIdentical . 159
omxCheckSetEquals . 160
omxCheckTrue . 161
omxCheckWithinPercentError . 162
omxGetParameters . 163
omxGraphviz . 164
omxLapply . 165
omxLocateParameters . 166
omxLogical . 167
omxMatrixOperations . 168
omxMnor . 168
omxSapply . 169
omxSaturatedModel . 170

6 Bollen

omxSelectRowsAndCols . 172
omxSetParameters . 173
OpenMx . 174
ordinalTwinData . 175
rvectorize . 176
summary-MxModel . 177
tr . 179
twinData . 180
vec2diag . 182
vech . 182
vech2full . 183
vechs . 184
vechs2full . 185

Index 186

Bollen Bollen Data on Industrialization and Political Democracy

Description

Data set used in some of OpenMx’s examples, for instance WLS. The data were reported in Bollen
(1989, p. 428, Table 9.4) This set includes data from 75 developing countries each assessed on four
measures of democracy measured twice (1960 and 1965), and three measures of industrialization
measured once (1960).

Usage

data("Bollen")

Format

A data frame with 75 observations on the following 11 numeric variables.

y1 Freedom of the press, 1960

y2 Freedom of political opposition, 1960

y3 Fairness of elections, 1960

y4 Effectiveness of elected legislature, 1960

y5 Freedom of the press, 1965

y6 Freedom of political opposition, 1965

y7 Fairness of elections, 1965

y8 Effectiveness of elected legislature, 1965

x1 GNP per capita, 1960

x2 Energy consumption per capita, 1960

x3 Percentage of labor force in industry, 1960

cvectorize 7

Details

Variables y1-y4 and y5-y8 are typically used as indicators of the latent trait of “political democracy”
in 1960 and 1965 respectively. x1-x3 are used as indicators of industrialization (1960).

Source

The sem package (in turn, via pers. comm Bollen to Fox)

References

Bollen, K. A. (1979). Political democracy and the timing of development. American Sociological
Review, 44, 572-587.

Bollen, K. A. (1980). Issues in the comparative measurement of political democracy. American
Sociological Review, 45, 370-390.

Bollen, K. A. (1989). Structural equation models. New York: Wiley-Interscience.

Examples

data(Bollen)
str(Bollen)
plot(y1 ~ y2, data = Bollen)

cvectorize Vectorize By Column

Description

This function returns the vectorization of an input matrix in a column by column traversal of the
matrix. The output is returned as a column vector.

Usage

cvectorize(x)

Arguments

x an input matrix.

See Also

rvectorize, vech, vechs

Examples

cvectorize(matrix(1:9, 3, 3))
cvectorize(matrix(1:12, 3, 4))

8 diag2vec

diag2vec Extract Diagonal of a Matrix

Description

Given an input matrix, diag2vec returns a column vector of the elements along the diagonal.

Usage

diag2vec(x)

Arguments

x an input matrix.

Details

Similar to the function diag, except that the input argument is always treated as a matrix (i.e.,
it doesn’t have diag()’s functions of returning an Identity matrix from an nrow specification, nor
to return a matrix wrapped around a diagonal if provided with a vector). To get vector2matrix
functionality, call vec2diag.

See Also

vec2diag

Examples

diag2vec(matrix(1:9, nrow=3))
[,1]
[1,] 1
[2,] 5
[3,] 9

diag2vec(matrix(1:12, nrow=3, ncol=4))
[,1]
[1,] 1
[2,] 5
[3,] 9

dzfData 9

dzfData DZ female data

Description

Data for extended twin example ETC88.R

Usage

data("dzfData")

Format

A data frame with 2007 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

10 dzmData

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(dzfData)
str(dzfData)

dzmData DZ Male data

Description

Data for extended twin example ETC88.R

Usage

data("dzmData")

Format

A data frame with 1990 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

dzmData 11

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(dzmData)
str(dzmData)

12 dzoData

dzoData DZ opposite sex data

Description

Data for extended twin example ETC88.R

Usage

data("dzoData")

Format

A data frame with 3981 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

eigenvec 13

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(dzoData)
str(dzoData)

eigenvec Eigenvector/Eigenvalue Decomposition

Description

eigenval computes the real parts of the eigenvalues of a square matrix. eigenvec computes the
real parts of the eigenvectors of a square matrix. ieigenval computes the imaginary parts of the
eigenvalues of a square matrix. ieigenvec computes the imaginary parts of the eigenvectors of
a square matrix. eigenval and ieigenval return nx1 matrices containing the real or imaginary
parts of the eigenvalues, sorted in decreasing order of the modulus of the complex eigenvalue.
For eigenvalues without an imaginary part, this is equivalent to sorting in decreasing order of the
absolute value of the eigenvalue. (See Mod for more info.) eigenvec and ieigenvec return nxn
matrices, where each column corresponds to an eigenvector. These are sorted in decreasing order
of the modulus of their associated complex eigenvalue.

Usage

eigenval(x)
eigenvec(x)
ieigenval(x)
ieigenvec(x)

Arguments

x the square matrix whose eigenvalues/vectors are to be calculated.

14 genericFitDependencies,MxBaseFitFunction-method

Details

Eigenvectors returned by eigenvec and ieigenvec are normalized to unit length.

See Also

eigen

Examples

A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'A')
G <- mxMatrix(values = c(0, -1, 1, -1), nrow=2, ncol=2, name='G')

model <- mxModel(A, G, name = 'model')

mxEval(eigenvec(A), model)
mxEval(eigenvec(G), model)
mxEval(eigenval(A), model)
mxEval(eigenval(G), model)
mxEval(ieigenvec(A), model)
mxEval(ieigenvec(G), model)
mxEval(ieigenval(A), model)
mxEval(ieigenval(G), model)

genericFitDependencies,MxBaseFitFunction-method

Add dependencies

Description

If there is an expectation, then the fitfunction should always depend on it. Hence, subclasses that
implement this method must ignore the passed-in dependencies and use "dependencies <- call-
NextMethod()" instead.

Usage

S4 method for signature 'MxBaseFitFunction'
genericFitDependencies(.Object, flatModel,
dependencies)

Arguments

.Object

flatModel

dependencies accumulated dependency relationships

HS.ability.data 15

HS.ability.data Holzinger and Swineford (1939) Ability data in 301 children from two
schools

Description

This classic data set contains of intelligence-test scores from 301 children on 26 distinct tests. The
data are also available in the MBESS package.

The tests cover mental speed, memory, mathematical-ability, spatial, and verbal ability as listed
below.

Usage

data("HS.ability.data")

Format

A data frame with 301 observations on the following 2 variables.

id student ID number (int)

Gender Sex (Factor w/ 2 levels “Female”,“Male”

grade Grade in school (integer 7 or 8)

agey Age in years (integer)

agem Age in months (integer)

school School attended (Factor w/2 levels “Grant-White” and “Pasteur”)

addition A speed test (numeric)

code A speed test (numeric)

counting A speed test (numeric)

straight A speed test (numeric)

wordr A memory subtest

numberr A memory subtest

figurer A memory subtest

object A memory subtest

numberf A memory subtest

figurew A memory subtest

deduct A mathematical subtest

numeric A mathematical subtest

problemr A mathematical subtest

series A mathematical subtest

arithmet A mathematical subtest

visual A spatial subtest

16 HS.ability.data

cubes A spatial subtest

paper A spatial subtest

flags A spatial subtest

paperrev A spatial subtest

flagssub A spatial subtest

general A verbal subtest

paragrap A verbal subtest

sentence A verbal subtest

wordc A verbal subtest

wordm A verbal subtest

Details

The data are from children who differ in grade (seventh- and eighth-grade) and are nested in one
of two schools (Pasteur and Grant-White). You will see it in use elsewhere, both in R (lavaan,
MBESS), and in Joreskog (1969) reporting a cfa on the Grant-White school subject subset).

The last two tests are substitute versions for other tests. paperrev (a paper form board test) can
substitute for paper and flagssub for the lozenges test flags.

Source

Holzinger, K., and Swineford, F. (1939).

References

Holzinger, K., and Swineford, F. (1939). A study in factor analysis: The stability of a bifactor
solution. Supplementary Educational Monograph, no. 48. Chicago: University of Chicago Press.
Joreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis.
Psychometrika, 34, 183-202.

Examples

data(HS.ability.data)
str(HS.ability.data)
levels(HS.ability.data$school)
plot(flags ~ flagssub, data = HS.ability.data)

imxAddDependency 17

imxAddDependency Add a dependency

Description

The dependency tracking system ensures that algebra and fitfunctions are not recomputed if their
inputs have not changed. Dependency information is computed prior to handing the model off to
the optimizer to reduce overhead during optimization.

Usage

imxAddDependency(source, sink, dependencies)

Arguments

source a character vector of the names of the computation sources (inputs)

sink the name of the computation sink (output)

dependencies the dependency graph

Details

Each free parameter keeps track of all the objects that store that free parameter and the transitive
closure of all algebras and fit functions that depend on that free parameter. Similarly, each definition
variable keeps track of all the objects that store that free parameter and the transitive closure of all
the algebras and fit functions that depend on that free parameter. At each iteration of the optimiza-
tion, when the free parameter values are updated, all of the dependencies of that free parameter are
marked as dirty (see omxFitFunction.repopulateFun). After an algebra or fit function is com-
puted, omxMarkClean() is called to to indicate that the algebra or fit function is updated. Similarly,
when definition variables are populated in FIML, all of the dependencies of the definition vari-
ables are marked as dirty. Particularly for FIML, the fact that non-definition-variable dependencies
remain clean is a big performance gain.

imxCheckMatrices imxCheckMatrices

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCheckMatrices(model)

Arguments

model model

18 imxConstraintRelations

imxCheckVariables imxCheckVariables

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCheckVariables(flatModel, namespace)

Arguments

flatModel flatModel
namespace namespace

imxConDecMatrixSlots Condense/decondense slots of an MxMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConDecMatrixSlots(object)

Arguments

object of class MxMatrix

imxConstraintRelations

imxConstraintRelations

Description

A string vector of valid constraint binary relations.

Usage

imxConstraintRelations

Format

chr [1:3] "<" "==" ">"

imxConvertIdentifier 19

imxConvertIdentifier imxConvertIdentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertIdentifier(identifiers, modelname, namespace)

Arguments

identifiers identifiers

modelname modelname

namespace namespace

imxConvertLabel imxConvertLabel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertLabel(label, modelname, dataname, namespace)

Arguments

label label

modelname modelname

dataname dataname

namespace namespace

20 imxCreateMatrix

imxConvertSubstitution

imxConvertSubstitution

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertSubstitution(substitution, modelname, namespace)

Arguments

substitution substitution
modelname modelname
namespace namespace

imxCreateMatrix Create a matrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCreateMatrix(.Object, labels, values, free, lbound, ubound, nrow, ncol,
byrow, name, condenseSlots, persist, ...)

Arguments

.Object the matrix
labels labels
values values
free free
lbound lbound
ubound ubound
nrow nrow
ncol ncol
byrow byrow
name name
condenseSlots condenseSlots
persist persist
... Not used.

imxDataTypes 21

imxDataTypes Valid types of data that can be contained by MxData

Description

Valid types of data that can be contained by MxData

Usage

imxDataTypes

Format

chr [1:5] "raw" "cov" "cor" "sscp" "acov"

imxDefaultGetSlotDisplayNames

imxDefaultGetSlotDisplayNames

Description

Returns a list of display-friendly object slot names This is an internal function exported for those
people who know what they are doing.

Usage

imxDefaultGetSlotDisplayNames(x, pattern = ".*")

Arguments

x The object from which to get slot names

pattern Initial pattern to match (default of ’.*’ matches any)

22 imxDiff

imxDeparse Deparse for MxObjects

Description

Deparse for MxObjects

Usage

imxDeparse(object, indent = " ")

Arguments

object object
indent indent

imxDependentModels Are submodels dependence?

Description

Are submodels dependence?

Usage

imxDependentModels(model)

Arguments

model model

imxDiff Set difference on regular types or S4 objects

Description

Set difference on regular types or S4 objects

Usage

imxDiff(a, b, slots = c("setequal", "intersect"))

Arguments

a a
b b
slots slots

imxDmvnorm 23

imxDmvnorm A C implementation of dmvnorm

Description

This API is visible to permit testing. Please do not use.

Usage

imxDmvnorm(loc, mean, sigma)

Arguments

loc loc

mean mean

sigma sigma

imxEvalByName imxEvalByName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxEvalByName(name, model, compute = FALSE, show = FALSE)

Arguments

name name

model model

compute compute

show show

Details

This function should not be used in MxSummary. All summary information should be extracted
from runstate.

24 imxExtractReferences

imxExtractMethod imxExtractMethod

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxExtractMethod(model, index)

Arguments

model model

index index

imxExtractNames imxExtractNames

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxExtractNames(lst)

Arguments

lst lst

imxExtractReferences imxExtractReferences

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxExtractReferences(lst)

Arguments

lst lst

imxExtractSlot 25

imxExtractSlot imxExtractSlot

Description

Checks for and extracts a slot from the object This is an internal function exported for those people
who know what they are doing.

Usage

imxExtractSlot(x, name)

Arguments

x The object

name the name of the slot

imxFilterDefinitionVariables

imxFilterDefinitionVariables

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxFilterDefinitionVariables(defVars, dataName)

Arguments

defVars defVars

dataName dataName

26 imxGenerateLabels

imxFlattenModel Remove heirarchical structure from model

Description

Remove heirarchical structure from model

Usage

imxFlattenModel(model, namespace)

Arguments

model model

namespace namespace

imxFreezeModel Freeze model

Description

Remove free parameters and fit function from model.

Usage

imxFreezeModel(model)

Arguments

model model

imxGenerateLabels imxGenerateLabels

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenerateLabels(model)

Arguments

model model

imxGenerateNamespace 27

imxGenerateNamespace imxGenerateNamespace

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenerateNamespace(model)

Arguments

model model

imxGenericModelBuilder

imxGenericModelBuilder

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenericModelBuilder(model, lst, name, manifestVars, latentVars, submodels,
remove, independent)

Arguments

model model

lst lst

name name

manifestVars manifestVars

latentVars latentVars

submodels submodels

remove remove

independent independent

28 imxGetSlotDisplayNames

imxGenSwift imxGenSwift

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenSwift(tc, sites, sfile)

Arguments

tc tc

sites sites

sfile sfile

imxGetSlotDisplayNames

imxGetSlotDisplayNames

Description

Returns a list of display-friendly object slot names This is an internal function exported for those
people who know what they are doing.

Usage

imxGetSlotDisplayNames(object, pattern = ".*", slotList = slotNames(object),
showDots = FALSE, showEmpty = FALSE)

Arguments

object The object from which to get slot names

pattern Initial pattern to match (default of ’.*’ matches any)

slotList List of slots for which toget display names (default = slotNames(object), i.e.,
all)

showDots Include slots whose names start with ’.’ (default FALSE)

showEmpty Include slots with length-zero contents (default FALSE)

imxHasNPSOL 29

imxHasNPSOL imxHasNPSOL

Description

imxHasNPSOL

Usage

imxHasNPSOL()

Value

Returns TRUE if the NPSOL proprietary optimizer is compiled and linked with OpenMx. Other-
wise FALSE.

imxIdentifier imxIdentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIdentifier(namespace, name)

Arguments

namespace namespace
name name

imxIndependentModels Are submodels independent?

Description

Are submodels independent?

Usage

imxIndependentModels(model)

Arguments

model model

30 imxIsPath

imxInitModel imxInitModel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxInitModel(model)

Arguments

model model

imxIsDefinitionVariable

imxIsDefinitionVariable

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIsDefinitionVariable(name)

Arguments

name name

imxIsPath imxIsPath

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIsPath(value)

Arguments

value value

imxLocateFunction 31

imxLocateFunction imxLocateFunction

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocateFunction(function_name)

Arguments

function_name function_name

imxLocateIndex imxLocateIndex

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocateIndex(model, name, referant)

Arguments

model model

name name

referant referant

32 imxLookupSymbolTable

imxLocateLabel imxLocateLabel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocateLabel(label, model, parameter)

Arguments

label label
model model
parameter parameter

imxLog Test thread-safe output code

Description

This is the code that the backend uses to write diagnostic information to standard error. This func-
tion should not be called from R. We make it available only for testing.

Usage

imxLog(str)

Arguments

str the character string to output

imxLookupSymbolTable imxLookupSymbolTable

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLookupSymbolTable(name)

Arguments

name name

imxModelBuilder 33

imxModelBuilder imxModelBuilder

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxModelBuilder(model, lst, name, manifestVars, latentVars, submodels, remove,
independent)

Arguments

model model

lst lst

name name

manifestVars manifestVars

latentVars latentVars

submodels submodels

remove remove

independent independent

Details

TODO: It probably makes sense to split this into separate methods. For example, modelAddVari-
ables and modelRemoveVariables could be their own methods. This would reduce some cut&paste
duplication.

imxModelTypes imxModelTypes

Description

A list of supported model types

Usage

imxModelTypes

Format

list()

34 imxPPML

imxMpiWrap imxMpiWrap

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxMpiWrap(fun)

Arguments

fun fun

imxOriginalMx imxOriginalMx

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxOriginalMx(mx.filename, output.directory)

Arguments

mx.filename mx.filename
output.directory

output.directory

imxPPML imxPPML

Description

Potentially enable the PPML optimization for the given model.

Usage

imxPPML(model, flag = TRUE)

Arguments

model the MxModel to evaluate
flag whether to potentially enable PPML

imxPPML.Test.Battery 35

imxPPML.Test.Battery imxPPML.Test.Battery

Description

PPML can be applied to a number of special cases. This function will test the given model for all
of these special cases.

Usage

imxPPML.Test.Battery(model, verbose = FALSE, testMissingness = TRUE,
testPermutations = TRUE, testEstimates = TRUE, testFakeLatents = TRUE,
tolerances = c(0.001, 0.001, 0.001))

Arguments

model the model to test

verbose whether to print diagnostics

testMissingness

try with missingness

testPermutations

try with permutations

testEstimates examine estimates

testFakeLatents

try with fake latents

tolerances a vector of tolerances

Details

Requirements for model passed to this function: - Path-specified - Means vector must be present -
Covariance data (with data means vector) - (Recommended) All error variances should be specified
on the diagonal of the S matrix, and not as a latent with a loading only on to that manifest

Function will test across all permutations of: - Covariance vs Raw data - Means vector present vs
Means vector absent - Path versus Matrix specification - All orders of permutations of latents with
manifests

36 imxReplaceModels

imxPreprocessModel imxPreprocessModel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxPreprocessModel(model)

Arguments

model model

imxReplaceMethod imxReplaceMethod

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxReplaceMethod(x, name, value)

Arguments

x the thing
name name
value value

imxReplaceModels Replace parts of a model

Description

Replace parts of a model

Usage

imxReplaceModels(model, replacements)

Arguments

model model
replacements replacements

imxReplaceSlot 37

imxReplaceSlot imxReplaceSlot

Description

Checks for and replaces a slot from the object This is an internal function exported for those people
who know what they are doing.

Usage

imxReplaceSlot(x, name, value, check = TRUE)

Arguments

x object

name the name of the slot

value replacement value

check Check replacement value for validity (default TRUE)

imxReservedNames imxReservedNames

Description

Vector of reserved names

Usage

imxReservedNames

Format

chr [1:6] "data" "objective" "likelihood" "fitfunction" ...

38 imxSeparatorChar

imxReverseIdentifier imxReverseIdentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxReverseIdentifier(model, name)

Arguments

model model
name name

imxSameType imxSameType

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSameType(a, b)

Arguments

a a
b b

imxSeparatorChar imxSeparatorChar

Description

The character between the model name and the named entity inside the model.

Usage

imxSeparatorChar

Format

chr "."

imxSfClient 39

imxSfClient imxSfClient

Description

As of snowfall 1.84, the snowfall supervisor process stores an internal state information in a variable
named ".sfOption" that is located in the "snowfall" namespace. The snowfall client processes store
internal state information in a variable named ".sfOption" that is located in the global namespace.

Usage

imxSfClient()

Details

As long as the previous statement is true, then the current process is a snowfall client if-and-only-if
exists(".sfOption").

imxSimpleRAMPredicate imxSimpleRAMPredicate

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSimpleRAMPredicate(model)

Arguments

model model

imxSparseInvert Sparse symmetric matrix invert

Description

This API is visible to permit testing. Please do not use.

Usage

imxSparseInvert(mat)

Arguments

mat the matrix to invert

40 imxTypeName

imxSquareMatrix imxSquareMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSquareMatrix(.Object)

Arguments

.Object .Object

imxSymmetricMatrix imxSymmetricMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSymmetricMatrix(.Object)

Arguments

.Object .Object

imxTypeName imxTypeName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxTypeName(model)

Arguments

model model

imxVerifyMatrix 41

imxVerifyMatrix imxVerifyMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyMatrix(.Object)

Arguments

.Object .Object

imxVerifyModel imxVerifyModel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyModel(model)

Arguments

model model

imxVerifyName imxVerifyName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyName(name, stackNumber)

Arguments

name name

stackNumber stackNumber

42 mxAlgebra

imxVerifyReference imxVerifyReference

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyReference(reference, stackNumber)

Arguments

reference reference

stackNumber stackNumber

logm Matrix logarithm

Description

Matrix logarithm

Usage

logm(x, tol = .Machine$double.eps)

mxAlgebra Create MxAlgebra Object

Description

This function creates a new MxAlgebra object.

Usage

mxAlgebra(expression, name = NA, dimnames = NA, ..., fixed = FALSE)

mxAlgebra 43

Arguments

expression An R expression of OpenMx-supported matrix operators and matrix functions.

name An optional character string indicating the name of the object.

dimnames list. The dimnames attribute for the algebra: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

... Not used. Forces argument ‘fixed’ to be specified by name.

fixed If TRUE, this algebra will not be recomputed automatically when things it de-
pends on change. mxComputeOnce can be used to force it to recompute.

Details

The mxAlgebra function is used to create algebraic expressions that operate on one or more MxMa-
trix objects. To evaluate an MxAlgebra object, it must be placed in an MxModel object, along with
all referenced MxMatrix objects and the mxFitFunctionAlgebra function. The mxFitFunctionAlgebra
function must reference by name the MxAlgebra object to be evaluated.

The following operators and functions are supported in mxAlgebra:

Operators

solve() Inversion

t() Transposition

^ Elementwise powering

%^% Kronecker powering

+ Addition

- Subtraction

%*% Matrix Multiplication

* Elementwise product

/ Elementwise division

%x% Kronecker product

%&% Quadratic product

Functions

cov2cor Convert covariance matrix to correlation matrix

chol Cholesky Decomposition

cbind Horizontal adhesion

rbind Vertical adhesion

det Determinant

tr Trace

sum Sum

prod Product

44 mxAlgebra

max Maximum

min Min

abs Absolute value

sin Sine

sinh Hyperbolic sine

cos Cosine

cosh Hyperbolic cosine

tan Tangent

tanh Hyperbolic tangent

exp Exponent

log Natural Logarithm

sqrt Square root

p2z Standard-normal quantile

lgamma Log-gamma function

eigenval Eigenvalues of a square matrix. Usage: eigenval(x); eigenvec(x); ieigenval(x); ieigen-
vec(x)

rvectorize Vectorize by row

cvectorize Vectorize by column

vech Half-vectorization

vechs Strict half-vectorization

vech2full Inverse half-vectorization

vechs2full Inverse strict half-vectorization

vec2diag Create matrix from a diagonal vector (similar to diag)

diag2vec Extract diagonal from matrix (similar to diag)

omxExponential Matrix Exponential

omxMnor Multivariate Normal Integration

omxAllInt All cells Multivariate Normal Integration

omxNot Perform unary negation on a matrix

omxAnd Perform binary and on two matrices

omxOr Perform binary or on two matrices

omxGreaterThan Perform binary greater on two matrices

omxLessThan Perform binary less than on two matrices

omxApproxEquals Perform binary equals to (within a specified epsilon) on two matrices

Value

Returns a new MxAlgebra object.

mxAlgebra 45

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxAlgebra for the S4 class created by mxAlgebra. mxFitFunctionAlgebra for an objective function
which takes an MxAlgebra or MxMatrix object as the function to be minimized. MxMatrix and
mxMatrix for objects which may be entered in the expression argument and the function that
creates them. More information about the OpenMx package may be found here.

Examples

A <- mxMatrix("Full", nrow = 3, ncol = 3, values=2, name = "A")

Simple example: algebra B simply evaluates to the matrix A
B <- mxAlgebra(A, name = "B")

Compute A + B
C <- mxAlgebra(A + B, name = "C")

Compute sin(C)
D <- mxAlgebra(sin(C), name = "D")

Make a model and evaluate the mxAlgebra object 'D'
A <- mxMatrix("Full", nrow = 3, ncol = 3, values=2, name = "A")
model <- mxModel(model="AlgebraExample", A, B, C, D)
fit <- mxRun(model)
mxEval(D, fit)

Numbers in mxAlgebras are upgraded to 1x1 matrices
Example of Kronecker powering (%^%) and multiplication (%*%)
A <- mxMatrix(type="Full", nrow=3, ncol=3, value=c(1:9), name="A")
m1 <- mxModel(model="kron", A, mxAlgebra(A %^% 2, name="KroneckerPower"))
mxRun(m1)$KroneckerPower

Running kron
mxAlgebra 'KroneckerPower'
$formula: A %^% 2
$result:
[,1] [,2] [,3]
[1,] 1 16 49
[2,] 4 25 64
[3,] 9 36 81

46 mxAlgebraObjective

MxAlgebra-class MxAlgebra Class

Description

MxAlgebra is an S4 class. An MxAlgebra object is a named entity. New instances of this class can
be created using the function mxAlgebra.

Details

The MxAlgebra class has the following slots:

name - The name of the object
formula - The R expression to be evaluated

result - a matrix with the computation result

The ‘name’ slot is the name of the MxAlgebra object. Use of MxAlgebra objects in the mxConstraint
function or an objective function requires reference by name.

The ‘formula’ slot is an expression containing the expression to be evaluated. These objects are
operated on or related to one another using one or more operations detailed in the mxAlgebra help
file.

The ‘result’ slot is used to hold the results of computing the expression in the ‘formula’ slot. If the
containing model has not been executed, then the ‘result’ slot will hold a 0 x 0 matrix. Otherwise
the slot will store the computed value of the algebra using the final estimates of the free parameters.

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in
the mxAlgebra document for more information.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxAlgebra, mxMatrix, MxMatrix

mxAlgebraObjective DEPRECATED: Create MxAlgebraObjective Object

mxAlgebraObjective 47

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use MxFitFunctionAlgebra() instead. As a temporary workaround, MxAlgebraObjective
returns a list containing a NULL MxExpectation object and an MxFitFunctionAlgebra object.

All occurrences of

mxAlgebraObjective(algebra, numObs = NA, numStats = NA)

Should be changed to

mxFitFunctionAlgebra(algebra, numObs = NA, numStats = NA)

Arguments

algebra A character string indicating the name of an MxAlgebra or MxMatrix object to
use for optimization.

numObs (optional) An adjustment to the total number of observations in the model.

numStats (optional) An adjustment to the total number of observed statistics in the model.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxFitFunctionAlgebra
as shown in the example below.

Fit functions are functions for which free parameter values are chosen such that the value of the ob-
jective function is minimized. While the other fit functions in OpenMx require an expectation func-
tion for the model, the mxAlgebraObjective function uses the referenced MxAlgebra or MxMatrix
object as the function to be minimized.

If a model’s primary objective function is a mxAlgebraObjective objective function, then the ref-
erenced algebra in the objective function must return a 1 x 1 matrix (when using OpenMx’s default
optimizer). There is no restriction on the dimensions of an objective function that is not the primary,
or ‘topmost’, objective function.

To evaluate an algebra objective function, place the following objects in a MxModel object: a
MxAlgebraObjective, MxAlgebra and MxMatrix entities referenced by the MxAlgebraObjective,
and optional MxBounds and MxConstraint entities. This model may then be evaluated using the
mxRun function. The results of the optimization may be obtained using the mxEval function on the
name of the MxAlgebra, after the model has been run.

Value

Returns a list containing a NULL MxExpectation object and an MxFitFunctionAlgebra object.
MxFitFunctionAlgebra objects should be included with models with referenced MxAlgebra and
MxMatrix objects.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

48 mxBounds

See Also

mxAlgebra to create an algebra suitable as a reference function to be minimized. More information
about the OpenMx package may be found here.

Examples

Create and fit a very simple model that adds two numbers using mxFitFunctionAlgebra

library(OpenMx)

Create a matrix 'A' with no free parameters
A <- mxMatrix('Full', nrow = 1, ncol = 1, values = 1, name = 'A')

Create an algebra 'B', which defines the expression A + A
B <- mxAlgebra(A + A, name = 'B')

Define the objective function for algebra 'B'
objective <- mxFitFunctionAlgebra('B')

Place the algebra, its associated matrix and
its objective function in a model
tmpModel <- mxModel(model="Addition", A, B, objective)

Evalulate the algebra
tmpModelOut <- mxRun(tmpModel)

View the results
tmpModelOut$output$minimum

mxBounds Create MxBounds Object

Description

This function creates a new MxBounds object.

Usage

mxBounds(parameters, min = NA, max = NA)

Arguments

parameters A character vector indicating the names of the parameters on which to apply
bounds.

min A numeric value for the lower bound. NA means use default value.

max A numeric value for the upper bound. NA means use default value.

MxBounds-class 49

Details

Creates a set of boundaries or limits for a parameter or set of parameters. Parameters may be any
free parameter or parameters from an MxMatrix object. Parameters may be referenced either by
name or by referring to their position in the ’spec’ matrix of an MxMatrix object.

Minima and maxima may be specified as scalar numeric values.

Value

Returns a new MxBounds object. If used as an argument in an MxModel object, the parameters
referenced in the ’parameters’ argument must also be included prior to optimization.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxBounds for the S4 class created by mxBounds. MxMatrix and mxMatrix for free parameter
specification. More information about the OpenMx package may be found here.

Examples

#Create lower and upper bounds for parameters 'A' and 'B'
bounds <- mxBounds(c('A', 'B'), 3, 5)

#Create a lower bound of zero for a set of variance parameters
varianceBounds <- mxBounds(c('Var1', 'Var2', 'Var3'), 0)

MxBounds-class MxBounds Class

Description

MxBounds is an S4 class. New instances of this class can be created using the function mxBounds.

Details

The MxBounds class has the following slots:

min - The lower bound
max - The upper bound

parameters - The vector of parameter names

The ’min’ and ’max’ slots hold scalar numeric values for the lower and upper bounds on the list of
parameters, respectively.

50 mxCheckIdentification

Parameters may be any free parameter or parameters from an MxMatrix object. Parameters may be
referenced either by name or by referring to their position in the ’spec’ matrix of an MxMatrix ob-
ject. To affect an estimation or optimization, an MxBounds object must be included in an MxModel
object with all referenced MxAlgebra and MxMatrix objects.

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in
the mxBounds document for more information.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxBounds for the function that creates MxBounds objects. MxMatrix and mxMatrix for free pa-
rameter specification. More information about the OpenMx package may be found here.

MxCharOrList-class A character, list or NULL

Description

A character, list or NULL

MxCharOrNumber-class A character or integer

Description

A character or integer

mxCheckIdentification Check that a model is locally identified

Description

Use the dimension of the null space of the Jacobian to determine whether or not a model is identified
local to its current parameter values. The output is a list of the the identification status, the Jacobian,
and which parameters are not identified.

Usage

mxCheckIdentification(model, details=TRUE)

mxCheckIdentification 51

Arguments

model A MxModel object or list of MxModel objects.

details A MxModel object or list of MxModel objects.

Details

The mxCheckIdentification function is used to check that a model is identified. That is, the function
will tell you if the model has a unique solution in parameter space. The function is most useful when
applied to either (a) a model that has been run and had some NA standard errors, or (b) a model that
has not been run but has reasonable starting values. In the former situation, mxCheckIdentification
is used as a diagnostic after a problem was indicated. In the latter situation, mxCheckIdentification
is used as a sanity check.

The method uses the Jacobian of the model expected means and the unique elements of the expected
covariance matrix with respect to the free parameters. It is the first derivative of the mapping
between the free parameters and the sufficient statistics for the Normal distribution. The method
does not depend on data, but does depend on the current values of the free parameters. Thus, it
only provides local identification, not global identification. Because the method does not depend
on data, the model still could be empirically unidentified due to missing data.

The Jacobian is evaluated numerically and generally takes a few seconds, but much less than a
minute.

Value

A named list with components

status logical. TRUE if the model is locally identified; otherwise FALSE.

jacobian matrix. The numerically evaluated Jacobian.

non_identified_parameters vector. The free parameter names that are not identified

References

Bekker, P.A., Merckens, A., Wansbeek, T.J. (1994). Identification, Equivalent Models and Com-
puter Algebra. Academic Press: Orlando, FL.

Bollen, K. A. & Bauldry, S. (2010). Model Identification and Computer Algebra. Sociological
Methods & Research, 39, p. 127-156.

See Also

mxModel

Examples

require(OpenMx)

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G1", "G2")

52 mxCI

model2 <- mxModel(model="Two Factor", type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from = latents[1], to=manifests[1:3]),
mxPath(from = latents[2], to=manifests[4:5]),
mxPath(from = manifests, arrows = 2, lbound=1e-6),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs=500)

)
fit2 <- mxRun(model2)

id2 <- mxCheckIdentification(fit2)
id2$status

model2n <- mxModel(model2, name="Non Identified Two Factor",
mxPath(from=latents[2], arrows=2, free=TRUE, values=1)

)

mid2 <- mxCheckIdentification(model2n)

fit2n <- mxRun(model2n)

id2n <- mxCheckIdentification(fit2n)

mxCI Create mxCI Object

Description

This function creates a new MxCI object, which are used to estimate likelihood-based confidence
intervals.

Usage

mxCI(reference, interval = 0.95, type=c("both", "lower", "upper"))

Arguments

reference A character vector of free parameters, mxMatrices, mxMatrix elements and mx-
Algebras on which confidence intervals are to be estimated, listed by name.

interval A scalar numeric value indicating the confidence interval to be estimated. Must
be between 0 and 1. Defaults to 0.95.

type A character string indicating whether the upper, lower or both confidence limits
are returned. Defaults to "both".

mxCI 53

Details

The mxCI function creates MxCI objects, which can be used as arguments in MxModel objects.
When models containing MxCI objects are optimized using mxRun with the ‘intervals’ argument
set to TRUE, likelihood-based confidence intervals are returned. The likelihood-based confidence
intervals calculated by MxCI objects are symmetric with respect to the change in likelihood in
either direction, and are not necessarily symmetric around the parameter estimate. Estimation of
confidence intervals requires both that an MxCI object be included in the model and that the ‘inter-
vals’ argument of the mxRun function is set to TRUE. When estimated, confidence intervals can be
accessed in the model output at $output$confidenceIntervals or by using summary on a fitted
MxModel object.

A typical use case is when a parameter estimate is obtained that is at or near a lower bound. In this
case, there is no point in computing the lower part of the CI. Only the upper bound is needed. In all
cases, a two-sided hypothesis test is assumed. Therefore, the upper bound will exclude 2.5% (for
interval=0.95) even though only one bound is requested. To obtain a one-sided CI for a one-sided
hypothesis test, interval=0.90 will obtain a 95% confidence interval.

The likelihood-based confidence intervals returned using MxCI are obtained by increasing or de-
creasing the value of each parameter until the -2 log likelihood of the model increases by an amount
corresponding to the requested interval. The confidence limit specified by the ‘interval’ argument is
transformed into a corresponding difference in the model -2 log likelihood based on the likelihood
ratio test. Thus, a requested confidence interval for a parameter will first determine the correspond-
ing quantile from the chi-squared distribution with one degree of freedom (a value of 3.841459
when a 95 percent confidence interval is requested). That quantile will be populated into either the
‘lowerdelta’ slot, the ‘upperdelta’ slot, or both in the output MxCI object.

Estimation of likelihood-based confidence intervals begins after optimization has been completed,
with each parameter moved in the direction(s) specified in the ‘type’ argument until the specified
increase in -2 log likelihood is reached. All other free parameters are left free for this stage of
optimization. This process repeats until all confidence intervals have been calculated. The calcu-
lation of likelihood-based confidence intervals can be computationally intensive, and may add a
significant amount of time to model estimation when many confidence intervals are requested.

Multiple parameters, MxMatrices and MxAlgebras may be listed in the ‘reference’ argument. In-
dividual elements of MxMatrices and MxAlgebras may be listed as well, using the syntax “ma-
trix[row,col]” (see Extract for more information). Only scalar numeric values for the ‘interval’
argument are supported. Users requesting different confidence ranges for different parameters must
use separate mxCI statements. MxModel objects can hold multiple MxCI objects, but only one
confidence interval may be requested per named-entity.

Confidence interval estimation may result in model non-convergence at the confidence limit. Sep-
arate optimizer messages may be passed for each confidence limit. This has no impact on the
parameter estimates themselves, but may indicate a problem with the referenced confidence limit.
Model non-convergence for a particular confidence limit may indicate parameter interdependence
or the influence of a parameter boundary.

These error messages and their meanings are listed in the help for mxSummary

The validity of a confidence limit can be checked by running a model with the appropriate parameter
fixed at the confidence limit in question. If the confidence limit is valid, the -2 log likelihoods of
these two models should differ by the specified chi-squared criterion (as set using the ‘lowerdelta’
or ‘upperdelta’ slots in the MxCI object (you can choose which of these to set via the type parameter
of mxCI).

54 mxCI

Value

Returns a new MxCI object. If used as an argument in an MxModel object, the parameters, MxMa-
trices and MxAlgebras listed in the ’reference’ argument must also be included prior to optimization.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation. Addi-
tional support for mxCI() can be found on the OpenMx wiki at http://openmx.psyc.virginia.edu/wiki.

See Also

MxCI for the S4 class created by mxCI. MxMatrix and mxMatrix for free parameter specification.
More information about the OpenMx package may be found here.

Examples

library(OpenMx)

generate data
covariance <- matrix(c(1.0, 0.5, 0.5, 1.0),

nrow=2,
dimnames=list(c("a", "b"), c("a", "b")))

data <- mxData(covariance, "cov", numObs=100)

create an expected covariance matrix
expect <- mxMatrix("Symm", 2, 2,

free=TRUE,
values=c(1, .5, 1),
labels=c("var1", "cov12", "var2"),
name="expectedCov")

request 95 percent confidence intervals
ci <- mxCI(c("var1", "cov12", "var2"))

specify the model
model <- mxModel(model="Confidence Interval Example",

data, expect, ci,
mxMLObjective("expectedCov", dimnames=c("a", "b")))

run the model
results <- mxRun(model, intervals=TRUE)

view confidence intervals
print(summary(results)$CI)

view all results
summary(results)

MxCI-class 55

MxCI-class MxCI Class

Description

MxCI is an S4 class. An MxCI object is a named entity. New instances of this class can be created
using the function mxCI. MxCI objects may be used as arguments in the mxModel function.

Details

The MxCI class has the following slots:

reference - The name of the object
lowerdelta - Either a matrix or a data frame
upperdelta - A vector for means, or NA if missing

The reference slot contains a character vector of named free parameters, MxMatrices and MxAlge-
bras on which confidence intervals are desired. Individual elements of MxMatrices and MxAlgebras
may be listed as well, using the syntax “matrix[row,col]” (see Extract for more information).

The lowerdelta and upperdelta slots give the changes in likelihoods used to define the confidence
interval. The upper bound of the likelihood-based confidence interval is estimated by increasing the
parameter estimate, leaving all other parameters free, until the model -2 log likelihood increased
by ‘upperdelta’. The lower bound of the confidence interval is estimated by decreasing the pa-
rameter estimate, leaving all other parameters free, until the model -2 log likelihood increased by
‘lowerdata’.

Likelihood-based confidence intervals may be specified by including one or more MxCI objects
in an MxModel object. Estimation of confidence intervals requires model optimization using the
mxRun function with the ‘intervals’ argument set to TRUE. The calculation of likelihood-based
confidence intervals can be computationally intensive, and may add a significant amount of time to
model estimation when many confidence intervals are requested.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxCI for creating MxCI objects. More information about the OpenMx package may be found here.

56 mxCompare

mxCompare Assign Model Parameters

Description

Compare the fit of a model or set of models to a reference model or set of reference models. The
output is a table with one row per model comparison.

Usage

mxCompare(base, comparison, ..., all = FALSE)

Arguments

base A MxModel object or list of MxModel objects.

comparison A MxModel object or list of MxModel objects.

... Not used. Forces remaining arguments to be specified by name.

all A boolean value on whether to compare all bases with all comparisons. Defaults
to FALSE.

Details

The mxCompare function is used to compare the fit of one or more MxMatrix objects with output
to one or more comparison models. Fit statistics for the comparison model or models are subtracted
from the fit statistics for the base model or models. All models included in the ‘base’ argument are
also listed without comparison (compared to a <NA> model) to present their raw fit statistics.

Model comparisons are made by subtracting the fit of the comparison model from the fit of a base
model. To make sure that the differences between models are positive and yield p-values for like-
lihood ratio tests, the model or models listed in the ‘base’ argument should be more saturated (i.e.,
more estimated parameters and fewer degrees of freedom) than models listed in the ‘comparison’
argument. If a comparison is made where the comparison model has a higher minus 2 log likelihood
(-2LL) than the base model, then the difference in their -2LLs will be negative. P-values for likeli-
hood ratio tests will not be reported when either the -2LL or degrees of freedom for the comparison
are negative.

When multiple models are included in both the ‘base’ and ‘comparison’ arguments, then compar-
isons are made between the two lists of models based on the value of the ‘all’ argument. If ‘all’
is set to FALSE (default), then the first model in the ‘base’ list is compared to the first model in
the ‘comparison’ list, second with second, and so on. If there are an unequal number of ‘base’ and
‘comparison’ models, then the shorter list of models is repeated to match the length of the longer
list. For example, comparing base models ‘B1’ and ‘B2’ with comparison models ‘C1’, ‘C2’ and
‘C3’ will yield three comparisons: ‘B1’ with ‘C1’, ‘B2’ with ‘C2’, and ‘B1’ with ‘C3’. Each of
those comparisons are prefaced by a comparison between the base model and a missing comparison
model to present the fit of the base model.

If ‘all’ is set to TRUE, all possible comparisons between base and comparison models are made,
and one entry is made for each base model. All comparisons involving the first model in ‘base’ are

mxCompare 57

made first, followed by all comparisons with the second ‘base’ model, and so on. When there are
multiple models in either the ‘base’ or ‘comparison’ arguments but not both, then the ‘all’ argument
does not affect the set of comparisons made.

The following columns appear in the output:

base Name of the base model.

comparison Name of the comparison model. Is <NA> for the first

ep Estimated parameters of the comparison model.

minus2LL Minus 2*log-likelihood of the comparison model. If the comparison model is <NA>,
then the minus 2*log-likelihood of the base model is given.

df Degrees in freedom of the comparison model. If the comparison model is <NA>, then the
degrees of freedom of the base model is given.

AIC Akaike’s Information Criterion for the comparison model. If the comparison model is <NA>,
then the AIC of the base model is given.

diffLL Difference in minus 2*log-likelihoods of the base and comparison models. Will be positive
when base model -2LL is higher than comparison model -2LL.

diffdf Difference in degrees of freedoms of the base and comparison models. Will be positive
when base model DF is lower than comparison model DF (base model estimated parameters
is higher than comparison model estimated parameters)

p P-value for likelihood ratio test based on diffLL and diffdf values.

The mxCompare function will give a p-value for any comparison in which both ‘diffLL’ and ‘diffdf’
are non-negative. However, this p-value is based on the assumptions of the likelihood ratio test,
specifically that the two models being compared are nested. The likelihood ratio test and associated
p-values are not valid when the comparison model is not nested in the referenced base model.

Use options(’digits’ = N) to set the minimum number of significant digits to be printed in values.
The mxCompare function does not directly accept a digits argument, and depends on the value of
the ’digits’ option.

See Also

mxModel; options (use options(’mxOptions’) to see all the OpenMx-specific options)

Examples

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G1")
model1 <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents, to=manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)

)

58 mxComputeConfidenceInterval

fit1 <- mxRun(model1)

latents <- c("G1", "G2")
model2 <- mxModel(model="Two Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents[1], to=manifests[1:3]),
mxPath(from = latents[2], to=manifests[4:5]),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs=500)

)
fit2 <- mxRun(model2)

mxCompare(fit1, fit2)

vary precision of the output
oldPrecision = as.numeric(options('digits'))
options('digits' = 1)
mxCompare(fit1, fit2)
options('digits' = oldPrecision)

mxComputeConfidenceInterval

Find likelihood-based confidence intervals

Description

Add some description TODO

Usage

mxComputeConfidenceInterval(freeSet = NA_character_, ..., engine = NULL,
fitfunction = "fitfunction", verbose = 0L, tolerance = NA_real_)

Arguments

freeSet names of matrices containing free variables

... Not used. Forces remaining arguments to be specified by name.

engine specific NPSOL or CSOLNP

fitfunction name of the fitfunction (defaults to ’fitfunction’)

verbose level of debugging output

tolerance how close to the optimum is close enough (also known as the optimality toler-
ance)

mxComputeEM 59

mxComputeEM Fit a model using DLR’s (1977) Expectation-Maximization (EM) al-
gorithm

Description

The EM algorithm constitutes the following steps: Start with an initial parameter vector. Predict the
missing data to form a completed data model. Optimize the completed data model to obtain a new
parameter vector. Repeat these steps until convergence criteria are met.

Usage

mxComputeEM(expectation, predict, mstep, observedFit = "fitfunction", ...,
maxIter = 500L, tolerance = 1e-09, verbose = 0L,
freeSet = NA_character_, accel = "varadhan2008",
information = NA_character_, infoArgs = list())

Arguments

expectation a vector of expectation names

predict what to predict from the observed data (available options depend on the expec-
tation)

mstep a compute plan to optimize the completed data model

observedFit the name of the observed data fit function (defaults to "fitfunction")

... Not used. Forces remaining arguments to be specified by name.

maxIter maximum number of iterations

tolerance optimization is considered converged when the maximum relative change in fit
is less than tolerance

verbose level of diagnostic output

freeSet names of matrices containing free variables

accel name of acceleration method ("varadhan2008" or "ramsay1975")

information name of information matrix approximation method

infoArgs arguments to control the information matrix method

Details

This compute plan does not work with any and all expectations. It requires a special kind of expec-
tation that can predict its missing data to create a completed data model.

The EM algorithm does not produce a parameter covariance matrixn for standard errors. S-EM, an
implementation of Meng & Rubin (1991), is included.

60 mxComputeGradientDescent

References

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1-38.

Meng, X.-L. & Rubin, D. B. (1991). Using EM to obtain asymptotic variance-covariance matrices:
The SEM algorithm. Journal of the American Statistical Association, 86 (416), 899-909.

Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40
(3), 337-360.

Varadhan, R. & Roland, C. (2008). Simple and globally convergent methods for accelerating the
convergence of any EM algorithm. Scandinavian Journal of Statistics, 35, 335-353.

mxComputeGradientDescent

Optimize parameters using a gradient descent optimizer

Description

This optimizer does not require analytic derivatives of the fit function. The open-source version of
OpenMx only offers 1 choice, CSOLNP (based on Ye, 1988). The proprietary version of OpenMx
offers the choice of two optimizers, CSOLNP and NPSOL.

Usage

mxComputeGradientDescent(freeSet = NA_character_, ..., engine = NULL,
fitfunction = "fitfunction", verbose = 0L, tolerance = NA_real_,
useGradient = NULL, warmStart = NULL, nudgeZeroStarts = TRUE)

Arguments

freeSet names of matrices containing free variables

... Not used. Forces remaining arguments to be specified by name.

engine specific NPSOL or CSOLNP

fitfunction name of the fitfunction (defaults to ’fitfunction’)

verbose level of debugging output

tolerance how close to the optimum is close enough (also known as the optimality toler-
ance)

useGradient whether to use the analytic gradient (if available)

warmStart a Cholesky factored Hessian to use as the NPSOL Hessian starting value
nudgeZeroStarts

whether to nudge any zero starting values prior to optimization (default TRUE)

References

Ye, Y. (1988). Interior algorithms for linear, quadratic, and linearly constrained convex program-
ming. (Unpublished doctoral dissertation.) Stanford University, CA.

mxComputeHessianQuality 61

Examples

data(demoOneFactor)
factorModel <- mxModel(name ="One Factor",

mxMatrix(type="Full", nrow=5, ncol=1, free=FALSE, values=0.2, name="A"),
mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U"),
mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),

mxExpectationNormal(covariance="R", dimnames=names(demoOneFactor)),
mxFitFunctionML(),

mxData(observed=cov(demoOneFactor), type="cov", numObs=500),
mxComputeSequence(steps=list(
mxComputeGradientDescent(),
mxComputeNumericDeriv(),
mxComputeStandardError(),
mxComputeHessianQuality()
)))

factorModelFit <- mxRun(factorModel)
factorModelFit$output$conditionNumber # 29.5

mxComputeHessianQuality

Compute the quality of the Hessian

Description

Tests whether the Hessian is positive definite (model$output$infoDefinite) and, if so, computes the
condition number (model$output$conditionNumber). See Luenberger & Ye (2008) Second Order
Test (p. 190) and Condition Number (p. 239).

Usage

mxComputeHessianQuality(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

References

Luenberger, D. G. & Ye, Y. (2008). Linear and nonlinear programming. Springer.

62 mxComputeNewtonRaphson

mxComputeIterate Repeatedly invoke a series of compute objects until change is less than
tolerance

Description

One step (typically the last) must compute the fit or maxAbsChange.

Usage

mxComputeIterate(steps, ..., maxIter = 500L, tolerance = 1e-09,
verbose = 0L, freeSet = NA_character_)

Arguments

steps a list of compute objects
... Not used. Forces remaining arguments to be specified by name.
maxIter the maximum number of iterations
tolerance iterates until maximum relative change is less than tolerance
verbose level of debugging output
freeSet Names of matrices containing free variables.

mxComputeNewtonRaphson

Optimize parameters using the Newton-Raphson algorithm

Description

This optimizer requires analytic 1st and 2nd derivatives of the fit function. Comprehensive diagnos-
tics are available by increasing the verbose level.

Usage

mxComputeNewtonRaphson(freeSet = NA_character_, ...,
fitfunction = "fitfunction", maxIter = 100L, tolerance = 1e-12,
verbose = 0L)

Arguments

freeSet names of matrices containing free variables
... Not used. Forces remaining arguments to be specified by name.
fitfunction name of the fitfunction (defaults to ’fitfunction’)
maxIter maximum number of iterations
tolerance optimization is considered converged when the maximum relative change in fit

is less than tolerance
verbose level of debugging output

mxComputeNothing 63

References

Luenberger, D. G. & Ye, Y. (2008). Linear and nonlinear programming. Springer.

mxComputeNothing Compute nothing

Description

Note that this compute plan actually does nothing whereas mxComputeOnce("expectation", "nothing")
may remove the prediction of an expectation.

Usage

mxComputeNothing()

mxComputeNumericDeriv Numerically estimate Hessian using Richardson extrapolation

Description

For N free parameters, Richardson extrapolation requires (iterations * (N^2 + N)) function evalua-
tions.

Usage

mxComputeNumericDeriv(freeSet = NA_character_, ...,
fitfunction = "fitfunction", parallel = TRUE, stepSize = 1e-04,
iterations = 4L, verbose = 0L)

Arguments

freeSet names of matrices containing free variables

... Not used. Forces remaining arguments to be specified by name.

fitfunction name of the fitfunction (defaults to ’fitfunction’)

parallel whether to evaluate the fitfunction in parallel (defaults to TRUE)

stepSize starting set size (defaults to 0.0001)

iterations number of Richardson extrapolation iterations (defaults to 4L)

verbose Level of debugging output.

Details

The implementation is closely based on the numDeriv R package.

64 mxComputeOnce

Examples

library(OpenMx)
data(demoOneFactor)
factorModel <- mxModel(name ="One Factor",
mxMatrix(type = "Full", nrow = 5, ncol = 1, free = FALSE, values = .2, name = "A"),
mxMatrix(type = "Symm", nrow = 1, ncol = 1, free = FALSE, values = 1 , name = "L"),
mxMatrix(type = "Diag", nrow = 5, ncol = 5, free = TRUE , values = 1 , name = "U"),
mxAlgebra(A %*% L %*% t(A) + U, name = "R"),
mxExpectationNormal(covariance = "R", dimnames = names(demoOneFactor)),
mxFitFunctionML(),
mxData(cov(demoOneFactor), type = "cov", numObs = 500),
mxComputeSequence(
list(mxComputeNumericDeriv(), mxComputeReportDeriv())
)
)
factorModelFit <- mxRun(factorModel)
factorModelFit$output$hessian

mxComputeOnce Compute something once

Description

Some models are optimized for a sparse Hessian. Therefore, it can be much more efficient to
compute the inverse Hessian in comparison to computing the Hessian and then inverting it.

Usage

mxComputeOnce(from, what = "nothing", how = NULL, ...,
freeSet = NA_character_, verbose = 0L, .is.bestfit = FALSE)

Arguments

from the object to perform the computation (a vector of expectation or fit function
names)

what what to compute (default is "nothing")

how to compute it (optional)

... Not used. Forces remaining arguments to be specified by name.

freeSet names of matrices containing free variables

verbose the level of debugging output

.is.bestfit do not use; for backward compatibility

mxComputeReportDeriv 65

Details

The information matrix is only valid when parameters are at the maximum likelihood estimate. The
information matrix is returned in model$output$hessian. You cannot request both the information
matrix and the Hessian. The information matrix is invarient to the sign of the log likelihood scale
whereas the Hessian is not. Use the how parameter to specify which approximation to use (one of
"default", "hessian", "sandwich", "bread", and "meat").

Examples

data(demoOneFactor)
factorModel <- mxModel(name ="One Factor",

mxMatrix(type="Full", nrow=5, ncol=1, free=TRUE, values=0.2, name="A"),
mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U"),
mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),
mxFitFunctionML(),mxExpectationNormal(covariance="R", dimnames=names(demoOneFactor)),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500),
mxComputeOnce('fitfunction', 'fit'))

factorModelFit <- mxRun(factorModel)
factorModelFit$output$fit # 972.15

mxComputeReportDeriv Report derivatives

Description

Copy the internal gradient and Hessian back to R.

Usage

mxComputeReportDeriv(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

mxComputeSequence Invoke a series of compute objects in sequence

Description

Invoke a series of compute objects in sequence

Usage

mxComputeSequence(steps = list(), ..., freeSet = NA_character_,
independent = FALSE)

66 mxConstraint

Arguments

steps a list of compute objects

... Not used; forces argument ’freeSet’ to be specified by name.

freeSet Names of matrices containing free parameters.

independent Whether the steps could be executed out-of-order.

mxComputeStandardError

Compute standard errors given the Hessian or inverse Hessian

Description

Compute standard errors given the Hessian or inverse Hessian

Usage

mxComputeStandardError(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

mxConstraint Create MxConstraint Object

Description

This function creates a new MxConstraint object.

Usage

mxConstraint(expression, name = NA, ...)

Arguments

expression An R expression of matrix operators and matrix functions.

name An optional character string indicating the name of the object.

... Not used. Helps OpenMx catch bad input to argument ’expression’.

mxConstraint 67

Details

The mxConstraint function defines relationships between two MxAlgebra or MxMatrix objects.
They are used to affect the estimation of free parameters in the referenced objects. The constraint
relation is written identically to how a MxAlgebra expression would be written. The outermost
operator in this relation must be either ‘<’, ‘==’ or ‘>’. To affect an estimation or optimization, an
MxConstraint object must be included in an MxModel object with all referenced MxAlgebra and
MxMatrix objects.

Usage Note: Use of mxConstraint should be avoided where it is possible to achieve the constraint
by equating free parameters by label or position in an MxMatrix or MxAlgebra object. Including
mxConstraints in an mxModel will disable standard errors and the calculation of the final Hessian,
and thus should be avoided when standard errors are of importance. Constraints also add computa-
tional overhead. If one labels two parameters the same, the optimizer has one fewer parameter to
optimize. However, if one uses mxConstraint to do the same thing, both parameters remain esti-
mated and a Lagrangian multiplier is added to maintain the constraint. This constraint also has to
have its gradients computed and the order of the Hessian grows as well. So while both approaches
should work, the mxConstraint() will take longer to do so.

Alernatives to mxConstraints include using labels, lbound or ubound arguments or algebras. Free
parameters in the same MxModel may be constrained to equality by giving them the same name in
their respective ’labels’ matrices. Similarly, parameters may be fixed to an individual element in a
MxModel object or the result of an MxAlgebra object through labeling. For example, assigning a
label of “name[1,1]“ fixes the value of a parameter at the value in first row and first column of the
matrix or algebra “name“. The mxConstraint function should be used to enforce inequalities that
cannot be conveyed using other methods.

Value

Returns an MxConstraint object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxConstraint for the S4 class created by mxConstraint.

Examples

library(OpenMx)

#Create a constraint between MxMatrices 'A' and 'B'
constraint <- mxConstraint(A > B, name = 'AdominatesB')

Constrain matrix 'K' to be equal to matrix 'limit'

model <- mxModel(model="con_test",
mxMatrix(type="Full", nrow=2, ncol=2, free=TRUE, name="K"),
mxMatrix(type="Full", nrow=2, ncol=2, free=FALSE, name="limit", values=1:4),

68 MxConstraint-class

mxConstraint(K == limit, name = "Klimit_equality"),
mxAlgebra(min(K), name="minK"),
mxFitFunctionAlgebra("minK")

)

fit <- mxRun(model)
fit$matrices$K$values

[,1] [,2]
[1,] 1 3
[2,] 2 4

Constrain both free parameters of a matrix to equality using labels (both are set to "eq")
equal <- mxMatrix("Full", 2, 1, free=TRUE, values=1, labels="eq", name="D")

Constrain a matrix element in to be equal to the result of an algebra
start <- mxMatrix("Full", 1, 1, free=TRUE, values=1, labels="param", name="F")
alg <- mxAlgebra(log(start), name="logP")

Force the fixed parameter in matrix G to be the result of the algebra
end <- mxMatrix("Full", 1, 1, free=FALSE, values=1, labels="logP[1,1]", name="G")

MxConstraint-class MxConstraint Class

Description

MxConstraint is an S4 class. An MxConstraint object is a named entity. New instances of this class
can be created using the function mxConstraint.

Details

The MxConstraint class has the following slots:

name - The name of the object
formula - The R expression to be evaluated

The ‘name’ slot is the name of the MxConstraint object. Use of MxConstraint objects in other
functions in the OpenMx library may require reference by name.

The ‘formula’ slot is an expression containing the expression to be evaluated. These objects are
operated on or related to one another using one or more operations detailed in the mxConstraint
help file.

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in
the mxConstraint document for more information.

mxData 69

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxConstraint for the function that creates MxConstraint objects.

mxData Create MxData Object

Description

This function creates a new MxData object.

Usage

mxData(observed, type, means = NA, numObs = NA, acov=NA, thresholds=NA, ..., sort=TRUE)

Arguments

observed A matrix or data.frame which provides data to the MxData object.

type A character string defining the type of data in the ‘observed’ argument. Must be
one of “raw”, “cov”, or “cor”.

means An optional vector of means for use when ‘type’ is “cov”, or “cor”.

numObs The number of observations in the data supplied in the ‘observed’ argument.
Required unless ‘type’ equals “raw”.

acov Asymptotic covariance matrix of observed, means, and thresholds. Used for
weighted least squares at weight matrix.

thresholds Observed thresholds. Used for weighted least squares with ordinal data.

... Not used. Forces remaining arguments to be specified by name.

sort Whether to sort raw data prior to use (default TRUE)

Details

The mxData function creates MxData objects, which can be used as arguments in MxModel objects.
The ‘observed’ argument may take either a data frame or a matrix, which is then described with
the ‘type’ argument. Data types describe compatibility and usage with expectation functions in
MxModel objects. Four different data types are supported (a fifth, sscp, is not yet implemented):

raw The contents of the ‘observed’ argument are treated as raw data. Missing values are permitted
and must be designated as the system missing value. The ‘means’ and ‘numObs’ arguments
cannot be specified, as the ‘means’ argument is not relevant and the ‘numObs’ argument is
automatically populated with the number of rows in the data. Data of this type may use fit
functions such as mxFitFunctionML function in MxModel objects, which will automatically
use covariance estimation under full-information maximum likelihood for this data type.

70 mxData

cov The contents of the ‘observed’ argument are treated as a covariance matrix. The ‘means’ ar-
gument is not required, but may be included for estimations involving means. The ‘numObs’
argument is required, which should reflect the number of observations or rows in the data
described by the covariance matrix. Data of this type may use the fit functions such as mxFit-
FunctionML, depending on the specified model.

cor The contents of the ‘observed’ argument are treated as a correlation matrix. The ‘means’ ar-
gument is not required, but may be included for estimations involving means. The ‘numObs’
argument is required, which should reflect the number of observations or rows in the data
described by the covariance matrix. Data of this type may use the fit functions such as mxFit-
FunctionML functions, depending on the specified model.

acov The contents of the ‘observed’ argument are treated as the polychoric correlation matrix of the
ordinal variables. The ‘means’ argument is not required, but may be included for estimations
involving means. The ‘thresholds’ argument is not required, but may be included for estima-
tions involving thresholds and ordinal variables. The ‘numObs’ argument is required, which
should reflect the number of observations or rows in the data described by the polychoric
correlation matrix. Data of this type may use the fit functions such as mxFitFunctionWLS
functions, depending on the specified model.

MxData objects may not be included in MxAlgebra objects or use the mxFitFunctionAlgebra func-
tion. If these capabilities are desired, data should be appropriately input or transformed using the
mxMatrix and mxAlgebra functions.

While column names are stored in the ‘observed’ slot of MxData objects, these names are not
recognized as variable names in MxPath objects. Variable names must be specified using the ‘man-
ifestVars’ argument of the mxModel function prior to use in MxPath objects.

The mxData function does not currently place restrictions on the size, shape, or symmetry of matri-
ces input into the ‘observed’ argument. While it is possible to specify MxData objects as covariance
or correlation matrices that do not have the properties commonly associated with these matrices,
failure to correctly specify these matrices will likely lead to problems in model estimation.

OpenMx uses the names of variables to map them onto the expectation functions and other elements
associated with your model. For data.frames, ensure you have set the names(). For matrices set
names using, for instance, row.names=c(“your”, “columns”). Covariance and correlation matrices
need to have both the row and column names set and these must be identical, for instance by using
dimnames=list(varNames, varNames).

Value

Returns a new MxData object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxData for the S4 class created by mxData. matrix and data.frame for objects which may be
entered as arguments in the ‘observed’ slot. More information about the OpenMx package may be
found here.

MxData-class 71

Examples

library(OpenMx)

#Create a covariance matrix
covMatrix <- matrix(c(0.77642931, 0.39590663,

0.39590663, 0.49115615),
nrow = 2, ncol = 2, byrow = TRUE)

covNames <- c("x", "y")
dimnames(covMatrix) <- list(covNames, covNames)

#Create an MxData object including that covariance matrix
testData <- mxData(observed=covMatrix, type="cov", numObs = 100)

testModel <- mxModel(model="testModel",
mxMatrix(type="Symm", nrow=2, ncol=2, values=c(.2,.1,.2),

free=TRUE, name="expCov", dimnames=list(covNames, covNames)),
mxExpectationNormal(covariance="expCov", dimnames=covNames),
mxFitFunctionML(),
testData)

outModel <- mxRun(testModel)

summary(outModel)

MxData-class MxData Class

Description

MxData is an S4 class. An MxData object is a named entity. New instances of this class can be
created using the function mxData. MxData is an S4 class union. An MxData object is either NULL
or a MxNonNullData object.

Details

The MxNonNullData class has the following slots:

name - The name of the object
observed - Either a matrix or a data frame

vector - A vector for means, or NA if missing
type - Either ’raw’, ’cov’, or ’cor’

numObs - The number of oberservations

72 MxData-class

The ’name’ slot is the name of the MxData object.

The ‘observed’ slot is used to contain data, either as a matrix or as a data frame. Use of the data in
this slot by other functions depends on the value of the ’type’ slot. When ’type’ is equal to ’cov’ or
’cor’, the data input into the ’matrix’ slot should be a symmetric matrix or data frame.

The ’vector’ slot is used to contain a vector of numeric values, which is used as a vector of means
for MxData objects with ’type’ equal to ’cov’ or ’cor’. This slot may be used in estimation using
the mxFitFunctionML function.

The ’type’ slot may take one of four supported values:

raw The contents of the ‘observed’ slot are treated as raw data. Missing values are permitted and
must be designated as the system missing value. The ’vector’ and ’numObs’ slots cannot be
specified, as the ’vector’ argument is not relevant and the ’numObs’ argument is automati-
cally populated with the number of rows in the data. Data of this type may use the mxFit-
FunctionML function as its fit function in MxModel objects, which can deal with covariance
estimation under full-information maximum likelihood.

cov The contents of the ‘observed’ slot are treated as a covariance matrix. The ’vector’ argument
is not required, but may be included for estimations involving means. The ’numObs’ slot is
required. Data of this type may use fit functions such as the mxFitFunctionML, depending on
the specified model.

cor The contents of the ‘observed’ slot are treated as a correlation matrix. The ’vector’ argument
is not required, but may be included for estimations involving means. The ’numObs’ slot is
required. Data of this type may use fit functions such as the mxFitFunctionML, depending on
the specified model.

The ’numObs’ slot describes the number of observations in the data. If ’type’ equals ’raw’, then
’numObs’ is automatically populated as the number of rows in the matrix or data frame in the
‘observed’ slot. If ’type’ equals ’cov’ or ’cor’, then this slot must be input using the ’numObs’
argument in the mxData function when the MxData argument is created.

MxData objects may not be included in MxAlgebra objects or use the mxFitFunctionAlgebra func-
tion. If these capabilities are desired, data should be appropriately input or transformed using the
mxMatrix and mxAlgebra functions.

While column names are stored in the ‘observed’ slot of MxData objects, these names are not
recognized as variable names in MxPath objects. Variable names must be specified using the ’man-
ifestVars’ argument of the mxModel function prior to use in MxPath objects.

The mxData function does not currently place restrictions on the size, shape, or symmetry of matri-
ces input into the ‘observed’ argument. While it is possible to specify MxData objects as covariance
or correlation matrices that do not have the properties commonly associated with these matrices,
failure to correctly specify these matrices will likely lead to problems in model estimation.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxData for creating MxData objects, matrix and data.frame for objects which may be entered as
arguments in the ’matrix’ slot. More information about the OpenMx package may be found here.

mxDataDynamic 73

mxDataDynamic Create dynamic data

Description

Create dynamic data

Usage

mxDataDynamic(type, ..., expectation, verbose = 0L)

Arguments

type type of data

... Not used. Forces remaining arguments to be specified by name.

expectation the name of the expectation to provide the data

verbose Increase runtime debugging output

mxErrorPool Query the Error Pool

Description

Retrieve models from the pool that did not complete successfully.

Usage

mxErrorPool(modelnames = NA, reset = FALSE)

Arguments

modelnames Either NA or a character vector of model names.

reset Either TRUE or FALSE.

Details

If ‘modelnames’ is NA, then the list of all error models will be returned. Otherwise a subset of
models will be returned, basedon the model names passed in as a argument. If ‘reset’ is TRUE, then
the error pool is reset to the empty list.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

74 mxEval

mxEval Evaluate Values in MxModel

Description

This function can be used to evaluate an arbitrary R expression that includes named entities from a
MxModel object, or labels from a MxMatrix object.

Usage

mxEval(expression, model, compute = FALSE, show = FALSE, defvar.row = 1,
cache = new.env(parent = emptyenv()), cacheBack = FALSE)

mxEvalByName(name, model, compute = FALSE, show = FALSE)

Arguments

expression An arbitrary R expression.

model The model in which to evaluate the expression.

compute If TRUE then compute the value of algebra expressions.

show If TRUE then print the translated expression.

defvar.row The row number for definition variables when compute=TRUE.

cache An R environment of matrix values used to speedup computation.

cacheBack If TRUE then return the list pair (value, cache).

name The character name of an object to evaluate.

Details

The argument ‘expression’ is an arbitrary R expression. Any named entities that are used within the
R expression are translated into their current value from the model. Any labels from the matrices
within the model are translated into their current value from the model. Finally the expression is
evaluated and the result is returned. To enable debugging, the ‘show’ argument has been provided.
The most common mistake when using this function is to include named entities in the model that
are identical to R function names. For example, if a model contains a named entity named ‘c’, then
the following mxEval call will return an error: mxEval(c(A, B, C), model).

The mxEvalByName function is a wrapper around mxEval that takes a character instead of an R
expression.

If ‘compute’ is FALSE, then MxAlgebra expressions return their current values as they have been
computed by the optimization call (using mxRun). If the ‘compute’ argument is TRUE, then Mx-
Algebra expressions will be calculated in R. Any references to an objective function that has not yet
been calculated will return a 1 x 1 matrix with a value of NA.

The ‘cache’ is used to speedup calculation by storing previously computing values. The cache is a
list of matrices, such that names(cache) must all be of the form “modelname.entityname”. Setting
‘cacheBack’ to TRUE will return the pair list(value, cache) where value is the result of the mxEval()
computation and cache is the updated cache.

mxExpectationBA81 75

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxAlgebra to create algebraic expressions inside your model and mxModel for the model object
mxEval looks inside when evaluating.

Examples

library(OpenMx)

Set up a 1x1 matrix
matrixA <- mxMatrix("Full", nrow = 1, ncol = 1, values = 1, name = "A")

Set up an algebra
algebraB <- mxAlgebra(A + A, name = "B")

Put them both in a model
testModel <- mxModel(model="testModel", matrixA, algebraB)

Even though the model has not been run, we can evaluate the algebra
given the starting values in matrixA.
mxEval(B, testModel, compute=TRUE)

If we just print the algebra, we can see it has not been evaluated
testModel$B

mxExpectationBA81 Create a Bock & Aitkin (1981) expectation

Description

When a two-tier covariance matrix is recognized, this expectation automatically enables analytic
dimension reduction (Cai, 2010).

Usage

mxExpectationBA81(ItemSpec, item = "item", ..., qpoints = 49L, qwidth = 6,
mean = "mean", cov = "cov", verbose = 0L, weightColumn = NA_integer_,
EstepItem = NULL, debugInternal = FALSE)

76 mxExpectationBA81

Arguments

ItemSpec a single item model (to replicate) or a list of item models in the same order as
the column of ItemParam

item the name of the mxMatrix holding item parameters with one column for each
item model with parameters starting at row 1 and extra rows filled with NA

... Not used. Forces remaining arguments to be specified by name.

qpoints number of points to use for equal interval quadrature integration (default 49L)

qwidth the width of the quadrature as a positive Z score (default 6.0)

mean the name of the mxMatrix holding the mean vector

cov the name of the mxMatrix holding the covariance matrix

verbose the level of runtime diagnostics (default 0L)

weightColumn the name of the column in the data containing the row weights (default NA)

EstepItem a simple matrix of item parameters for the E-step. This option is mainly of use
for debugging derivatives.

debugInternal when enabled, some of the internal tables are returned in $debug. This is mainly
of use to developers.

Details

The standard Normal distribution of the quadrature acts like a prior distribution for difficulty. It is
not necessary to impose any additional Bayesian prior on difficulty estimates (Baker & Kim, 2004,
p. 196).

References

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters:
Application of an EM algorithm. Psychometrika, 46, 443-459.

Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychome-
trika, 75, 581-612.

Seong, T. J. (1990). Sensitivity of marginal maximum likelihood estimation of item and ability
parameters to the characteristics of the prior ability distributions. Applied Psychological Measure-
ment, 14(3), 299-311.

See Also

RPF

http://cran.r-project.org/web/packages/rpf/index.html

mxExpectationLISREL 77

mxExpectationLISREL Create MxExpectationLISREL Object

Description

This function creates a new MxExpectationLISREL object.

Usage

mxExpectationLISREL(LX=NA, LY=NA, BE=NA, GA=NA, PH=NA, PS=NA, TD=NA, TE=NA, TH=NA,
TX = NA, TY = NA, KA = NA, AL = NA,
dimnames = NA, thresholds = NA, threshnames = dimnames)

Arguments

LX An optional character string indicating the name of the ’LX’ matrix.

LY An optional character string indicating the name of the ’LY’ matrix.

BE An optional character string indicating the name of the ’BE’ matrix.

GA An optional character string indicating the name of the ’GA’ matrix.

PH An optional character string indicating the name of the ’PH’ matrix.

PS An optional character string indicating the name of the ’PS’ matrix.

TD An optional character string indicating the name of the ’TD’ matrix.

TE An optional character string indicating the name of the ’TE’ matrix.

TH An optional character string indicating the name of the ’TH’ matrix.

TX An optional character string indicating the name of the ’TX’ matrix.

TY An optional character string indicating the name of the ’TY’ matrix.

KA An optional character string indicating the name of the ’KA’ matrix.

AL An optional character string indicating the name of the ’AL’ matrix.

dimnames An optional character vector that is currently ignored

thresholds An optional character string indicating the name of the thresholds matrix.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

Expectation functions define the way that model expectations are calculated. The mxExpectation-
LISREL calculates the expected covariance and means of a given MxData object given a LISREL
model. This model is defined by LInear Structual RELations (LISREL; Jöreskog & Sörbom, 1982,
1996). Arguments ’LX’ through ’AL’ must refer to MxMatrix objects with the associated properties
of their respective matrices in the LISREL modeling approach.

The full LISREL specification has 13 matrices and is sometimes called the extended LISREL model.
It is defined by the following equations.

78 mxExpectationLISREL

η = α+Bη + Γξ + ζ

y = τy + Λyη + ε

x = τx + Λxξ + δ

The table below is provided as a quick reference to the numerous matrices in LISREL models.
Note that NX is the number of manifest exogenous (independent) variables, the number of Xs. NY
is the number of manifest endogenous (dependent) variables, the number of Ys. NK is the number
of latent exogenous variables, the number of Ksis or Xis. NE is the number of latent endogenous
variables, the number of etas.

Matrix Word Abbreviation Dimensions Expression Description
Λx Lambda x LX NX x NK Exogenous Factor Loading Matrix
Λy Lambda y LY NY x NE Endogenous Factor Loading Matrix
B Beta BE NE x NE Regressions of Latent Endogenous Variables Predicting Endogenous Variables
Γ Gamma GA NE x NK Regressions of Latent Exogenous Variables Predicting Endogenous Variables
Φ Phi PH NK x NK cov(ξ) Covariance Matrix of Latent Exogenous Variables
Ψ Psi PS NE x NE cov(ζ) Residual Covariance Matrix of Latent Endogenous Variables
Θδ Theta delta TD NX x NX cov(δ) Residual Covariance Matrix of Manifest Exogenous Variables
Θε Theta epsilon TE NY x NY cov(ε) Residual Covariance Matrix of Manifest Endogenous Variables
Θδε Theta delta epsilson TH NX x NY cov(δ, ε) Residual Covariance Matrix of Manifest Exogenous with Endogenous Variables
τx tau x TX NX x 1 Residual Means of Manifest Exogenous Variables
τy tau y TY NY x 1 Residual Means of Manifest Endogenous Variables
κ kappa KA NK x 1 mean(ξ) Means of Latent Exogenous Variables
α alpha AL NE x 1 Residual Means of Latent Endogenous Variables

From the extended LISREL model, several submodels can be defined. Subtypes of the LISREL
model are defined by setting some of the arguments of the LISREL expectation function to NA.
Note that because the default values of each LISREL matrix is NA, setting a matrix to NA can be
accomplished by simply not giving it any other value.

The first submodel is the LISREL model without means.

η = Bη + Γξ + ζ

y = Λyη + ε

x = Λxξ + δ

The LISREL model without means requires 9 matrices: LX, LY, BE, GA, PH, PS, TD, TE, and TH.
Hence this LISREL model has TX, TY, KA, and AL as NA. This can be accomplished be leaving
these matrices at their default values.

The TX, TY, KA, and AL matrices must be specified if either the mxData type is “cov” or “cor”
and a means vector is provided, or if the mxData type is “raw”. Otherwise the TX, TY, KA, and AL
matrices are ignored and the model without means is estimated.

A second submodel involves only endogenous variables.

mxExpectationLISREL 79

η = Bη + ζ

y = Λyη + ε

The endogenous-only LISREL model requires 4 matrices: LY, BE, PS, and TE. The LX, GA, PH,
TD, and TH must be NA in this case. However, means can also be specified, allowing TY and AL
if the data are raw or if observed means are provided.

Another submodel involves only exogenous variables.

x = Λxξ + δ

The exogenous-model model requires 3 matrices: LX, PH, and TD. The LY, BE, GA, PS, TE, and
TH matrices must be NA. However, means can also be specified, allowing TX and KA if the data
are raw or if observed means are provided.

The model that is run depends on the matrices that are not NA. If all 9 matrices are not NA, then the
full model is run. If only the 4 endogenous matrices are not NA, then the endogenous-only model
is run. If only the 3 exogenous matrices are not NA, then the exogenous-only model is run. If some
endogenous and exogenous matrices are not NA, but not all of them, then appropriate errors are
thrown. Means are included in the model whenever their matrices are provided.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxExpectationLISREL will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

Like the mxExpectationRAM, the mxExpectationLISREL evaluates with respect to an MxData
object. The MxData object need not be referenced in the mxExpectationLISREL function, but must
be included in the MxModel object. mxExpectationLISREL requires that the ’type’ argument in the
associated MxData object be equal to ’cov’, ’cor’, or ’raw’.

To evaluate, place mxExpectationLISREL objects, the mxData object for which the expected co-
variance approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and
MxConstraint objects in an MxModel object. This model may then be evaluated using the mxRun
function. The results of the optimization can be found in the ’output’ slot of the resulting model,
and may be obtained using the mxEval function.

Value

Returns a new MxExpectationLISREL object. One and only one MxExpectationLISREL object
can be included with models using one and only one fit function object (e.g., MxFitFunctionML)
and with referenced MxAlgebra, MxData and MxMatrix objects.

References

Jöreskog, K. G. & Sörbom, D. (1996). LISREL 8: User’s Reference Guide. Lincolnwood, IL:
Scientific Software International.

Jöreskog, K. G. & Sörbom, D. (1982). Recent developments in structural equation modeling. Jour-
nal of Marketing Research, 19, 404-416.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

80 mxExpectationLISREL

Examples

Create and fit a model using mxExpectationLISREL, and mxFitFunctionML

library(OpenMx)

covData <- matrix(c(0.9223099, 0.1862938, 0.4374359, 0.8959973, 0.9928430, 0.5320662,
0.1862938, 0.2889364, 0.3927790, 0.3321639, 0.3371594, 0.4476898,
0.4374359, 0.3927790, 1.0069552, 0.6918755, 0.7482155, 0.9013952,
0.8959973, 0.3321639, 0.6918755, 1.8059956, 1.6142005, 0.8040448,
0.9928430, 0.3371594, 0.7482155, 1.6142005, 1.9223567, 0.8777786,
0.5320662, 0.4476898, 0.9013952, 0.8040448, 0.8777786, 1.3997558

), nrow=6, ncol=6, byrow=TRUE,
dimnames=list(paste("v",as.character(1:6),sep=""),paste("v",as.character(1:6),sep="")))

Create LISREL matrices

mLX <- mxMatrix("Full", values=c(.5, .6, .8, rep(0, 6), .4, .7, .5),
name="LX", nrow=6, ncol=2, free=c(TRUE,TRUE,TRUE,rep(FALSE, 6),TRUE,TRUE,TRUE),
dimnames=list(paste("v",as.character(1:6),sep=""),c("x1","x2")))

mTD <- mxMatrix("Diag", values=c(rep(.2, 6)),
name="TD", nrow=6, ncol=6, free=TRUE,

dimnames=list(paste("v",as.character(1:6),sep=""),paste("v",as.character(1:6),sep="")))
mPH <- mxMatrix("Symm", values=c(1, .3, 1),

name="PH", nrow=2, ncol=2, free=c(FALSE, TRUE, FALSE),
dimnames=list(c("x1","x2"),c("x1","x2")))

Create a LISREL objective with LX, TD, and PH matrix names

expFunction <- mxExpectationLISREL(LX="LX", TD="TD", PH="PH")

Create fit function and data

tmpData <- mxData(observed=covData, type="cov", numObs=100)
fitFunction <- mxFitFunctionML()

Create the model, fit it, and print a summary.

tmpModel <- mxModel(model="exampleModel", mLX, mTD, mPH, expFunction, fitFunction, tmpData)
tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

#--------------------------------------
Fit factor model with means

require(OpenMx)

data(demoOneFactor)
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)

mxExpectationLISREL 81

factorMeans <- mxMatrix("Zero", 1, 1, name="Kappa", dimnames=list("F1", NA))
xIntercepts <- mxMatrix("Zero", nvar, 1, name="TauX", dimnames=list(varnames, NA))
factorLoadings <- mxMatrix("Full", nvar, 1, TRUE, .6, name="LambdaX", labels=paste("lambda", 1:nvar, sep=""), dimnames=list(varnames, "F1"))
factorCovariance <- mxMatrix("Diag", 1, 1, FALSE, 1, name="Phi")
xResidualVariance <- mxMatrix("Diag", nvar, nvar, TRUE, .2, name="ThetaDelta", labels=paste("theta", 1:nvar, sep=""))

liModel <- mxModel(model="LISREL Factor Model",
factorMeans, xIntercepts, factorLoadings, factorCovariance, xResidualVariance,
mxExpectationLISREL(LX="LambdaX", PH="Phi", TD="ThetaDelta", TX="TauX", KA="Kappa"),
mxFitFunctionML(),
mxData(demoOneFactor, "raw")
)

liRun <- mxRun(liModel)

summary(liRun)

#--------------------------------------
Fit Joint Ordinal/Continuous Factor Model

require(OpenMx)

get data (loaded from demo data sets in OpenMx package)
data(jointdata)

specify ordinal columns as ordered factors
jointdata[,c(2,4,5)] <- mxFactor(jointdata[,c(2,4,5)],
levels=list(c(0,1), c(0, 1, 2, 3), c(0, 1, 2)))

loadings <- mxMatrix("Full", 5, 1,
free=TRUE, values=1, name="L", dimnames=list(names(jointdata), "Factor1"))

resid <- mxMatrix("Diag", 5, 5,
free=c(TRUE, FALSE, TRUE, FALSE, FALSE), values=.5, name="U")

means <- mxMatrix("Full", 5, 1,
free=c(TRUE, FALSE, TRUE, FALSE, FALSE), values=0, name="M", dimnames=list(names(jointdata), NA))

ident <- mxMatrix("Diag", 1, 1, FALSE, 1, name="I")
zerom <- mxMatrix("Zero", 1, 1, name="Z", dimnames=list("Factor1", NA))

thrFre <- c(TRUE, FALSE, FALSE, rep(TRUE, 5), FALSE)
thrVal <- c(0, NA, NA, -1, 0, 1, -1, 1, NA)
thrLab <- c("z2t1", NA, NA, "z4t1", "z4t2", "z4t3", "z5t1", "z5t2", NA)
thresh <- mxMatrix("Full", 3, 3, free=thrFre, values=thrVal, labels=thrLab, name="T", dimnames=list(c(NA, NA, NA), c("z2", "z4", "z5")))

run factor model
jointModel1 <- mxModel("ContinuousOrdinalData",
mxData(jointdata, "raw"),
loadings, resid, means, ident, zerom, thresh,
mxFitFunctionML(),

82 mxExpectationNormal

mxExpectationLISREL(LX="L", TX="M", PH="I", KA="Z", TD="U",
dimnames=names(jointdata),
thresholds="T",
threshnames=c("z2", "z4", "z5"))
)

Heads up, running this model could take up to 30 seconds.
jointResults1 <- mxRun(jointModel1, suppressWarnings=TRUE)

mxExpectationNormal Create MxExpectationNormal Object

Description

This function creates an MxExpectationNormal object.

Usage

mxExpectationNormal(covariance, means, dimnames = NA, thresholds = NA, threshnames = dimnames)

Arguments

covariance A character string indicating the name of the expected covariance algebra.

means A character string indicating the name of the expected means algebra.

dimnames An optional character vector to be assigned to the dimnames of the covariance
and means algebras.

thresholds An optional character string indicating the name of the thresholds matrix.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

Expectation functions define the way that model expectations are calculated. The mxExpectation-
Normal function uses the algebra defined by the ’covariance’ and ’means’ arguments to define the
expected covariance and means under the assumption of multivariate normality. The ’covariance’
argument takes an MxAlgebra object, which defines the expected covariance of an associated Mx-
Data object. The ’means’ argument takes an MxAlgebra object, which defines the expected means
of an associated MxData object. The ’dimnames’ arguments takes an optional character vector. If
this argument is not a single NA, then this vector is used to assign the dimnames of the means vector
as well as the row and columns dimnames of the covariance matrix.

thresholds: The name of the thresholds matrix. When needed (for modelling ordinal data), this
matrix should be created using mxMatrix(). The thresholds matrix must have as many columns as
there are ordinal variables in the model, and number of rows equal to one fewer than the maximum
number of levels found in the ordinal variables. The starting values of this matrix must also be set

mxExpectationNormal 83

to reasonable values. Fill each column with a set of ordered start thresholds, one for each level of
this column’s factor levels minus 1. These thresholds may be free if you wish them to be estimated,
or fixed. The unused rows in each column, if any, can be set to any value including NA.

threshnames: A character vector consisting of the variables in the thresholds matrix, i.e., the names
of ordinal variables in a model. This is necessary for OpenMx to map the thresholds matrix columns
onto the variables in your data. If you set the dimnames of the columns in the thresholds matrix
then threshnames is not needed.

Usage Notes: dimnames must be supplied where the matrices referenced by the covariance and
means algebras are not themselves labeled. Failure to do so leads to an error noting that the covari-
ance or means matrix associated with the FIML objective does not contain dimnames.

mxExpectationNormal evaluates with respect to an MxData object. The MxData object need not
be referenced in the mxExpectationNormal function, but must be included in the MxModel object.
When the ’type’ argument in the associated MxData object is equal to ’raw’, missing values are
permitted in the associated MxData object.

To evaluate, place an mxExpectationNormal object, the mxData object for which the expected co-
variance approximates, referenced MxAlgebra and MxMatrix objects, optional MxBounds or Mx-
Constraint objects, and an mxFitFunction such as mxFitFunctionML in an MxModel object. This
model may then be evaluated using the mxRun function.

The results of the optimization can be reported using the summary function, or accessed directly in
the ’output’ slot of the resulting model (i.e., modelName$output). Components of the output may
be referenced using the Extract functionality.

Value

Returns an MxExpectationNormal object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

M <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),
free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),

84 mxExpectationRAM

free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")
A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),

free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")
I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", means="M", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleModel", M, S, A, I, expCov, expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxExpectationRAM Create an MxExpectationRAM Object

Description

This function creates an MxExpectationRAM object.

Usage

mxExpectationRAM(A="A", S="S", F="F", M = NA, dimnames = NA, thresholds = NA, threshnames = dimnames)

Arguments

A A character string indicating the name of the ’A’ matrix.

S A character string indicating the name of the ’S’ matrix.

F A character string indicating the name of the ’F’ matrix.

M An optional character string indicating the name of the ’M’ matrix.

dimnames An optional character vector to be assigned to the column names of the ’F’ and
’M’ matrices.

thresholds An optional character string indicating the name of the thresholds matrix.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

mxExpectationRAM 85

Details

Expectation functions define the way that model expectations are calculated. The mxExpectation-
RAM calculates the expected covariance and means of a given MxData object given a RAM model.
This model is defined by reticular action modeling (McArdle and McDonald, 1984). The ’A’, ’S’,
and ’F’ arguments must refer to MxMatrix objects with the associated properties of the A, S, and F
matrices in the RAM modeling approach.

The ’dimnames’ arguments takes an optional character vector. If this argument is not a single NA,
then this vector be assigned to be the column names of the ’F’ matrix and optionally to the ’M’
matrix, if the ’M’ matrix exists.

The ’A’ argument refers to the A or asymmetric matrix in the RAM approach. This matrix consists
of all of the asymmetric paths (one-headed arrows) in the model. A free parameter in any row
and column describes a regression of the variable represented by that row regressed on the variable
represented in that column.

The ’S’ argument refers to the S or symmetric matrix in the RAM approach, and as such must be
square. This matrix consists of all of the symmetric paths (two-headed arrows) in the model. A free
parameter in any row and column describes a covariance between the variable represented by that
row and the variable represented by that column. Variances are covariances between any variable at
itself, which occur on the diagonal of the specified matrix.

The ’F’ argument refers to the F or filter matrix in the RAM approach. If no latent variables are
included in the model (i.e., the A and S matrices are of both of the same dimension as the data
matrix), then the ’F’ should refer to an identity matrix. If latent variables are included (i.e., the A
and S matrices are not of the same dimension as the data matrix), then the ’F’ argument should
consist of a horizontal adhesion of an identity matrix and a matrix of zeros.

The ’M’ argument refers to the M or means matrix in the RAM approach. It is a 1 x n matrix,
where n is the number of manifest variables + the number of latent variables. The M matrix must
be specified if either the mxData type is “cov” or “cor” and a means vector is provided, or if the
mxData type is “raw”. Otherwise the M matrix is ignored.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxExpectationRAM will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

mxExpectationRAM evaluates with respect to an MxData object. The MxData object need not be
referenced in the mxExpectationRAM function, but must be included in the MxModel object.

To evaluate, place mxExpectationRAM objects, the mxData object for which the expected covari-
ance approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and
MxConstraint objects in an MxModel object. This model may then be evaluated using the mxRun
function. The results of the optimization can be found in the ’output’ slot of the resulting model,
and may be obtained using the mxEval function..

Value

Returns a new MxExpectationRAM object. mxExpectationRAM objects should be included with
models with referenced MxAlgebra, MxData and MxMatrix objects.

86 mxExpectationRAM

References

McArdle, J. J. and MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action
Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-
251.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

matrixS <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

matrixA <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

matrixF <- mxMatrix(type="Iden", nrow=2, ncol=2, name="F")
matrixM <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),

free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

Define the expectation

expFunction <- mxExpectationRAM(M="M", dimnames = tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleRAMModel", matrixA, matrixS, matrixF, matrixM,
expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxExpectationStateSpace 87

mxExpectationStateSpace

Create an MxExpectationStateSpace Object

Description

This function creates a new MxExpectationStateSpace object.

Usage

mxExpectationStateSpace(A, B, C, D, Q, R, x0, P0, u,
dimnames = NA, thresholds = NA, threshnames = dimnames)

Arguments

A A character string indicating the name of the ’A’ matrix.

B A character string indicating the name of the ’B’ matrix.

C A character string indicating the name of the ’C’ matrix.

D A character string indicating the name of the ’D’ matrix.

Q A character string indicating the name of the ’Q’ matrix.

R A character string indicating the name of the ’R’ matrix.

x0 A character string indicating the name of the ’x0’ matrix.

P0 A character string indicating the name of the ’P0’ matrix.

u A character string indicating the name of the ’u’ matrix.

dimnames An optional character vector to be assigned to the row names of the ’C’ matrix.

thresholds Not Yet Implemented. An optional character string indicating the name of the
thresholds matrix.

threshnames Not Yet Implemented. An optional character vector to be assigned to the column
names of the thresholds matrix.

Details

Expectation functions define the way that model expectations are calculated. When used in con-
junction with the mxFitFunctionML, the mxExpectationStateSpace uses maximum likelihood pre-
diction error decomposition (PED) to obtain estimates of free parameters in a model of the raw
MxData object. State space expectations treat the raw data as a multivariate time series of equally
spaced times with each row corresponding to a single occasion. This is not a model of the block
Toeplitz lagged autocovariance matrix. State space expectations implement a classical Kalman filter
to produce expectations.

The following alternative filters are not yet implemented: square root Kalman filter (in Cholesky or
singular value decomposition form), extended Kalman filter for linear approximations to nonlinear
state space models, unscented Kalman filter for highly nonlinear state space models, Kalman-Bucy

88 mxExpectationStateSpace

filter for continuous time modeling, hybrid Kalman filter for continuous latent time with discrete ob-
servations, and Rauch-Tung-Striebel smoother for updating forecast state estimates after a complete
forward pass through the data has been made.

Missing data handling is implemented in the same fashion as full information maximum likelihood
for partially missing rows of data. Additionally, completely missing rows of data are handled by
only using the prediction step from the Kalman filter and omitting the update step.

This model uses notation for the model matrices commonly found in engineering and control theory.

The ’A’, ’B’, ’C’, ’D’, ’Q’, ’R’, ’x0’, and ’P0’ arguments must be the names of MxMatrix or
MxAlgebraobjects with the associated properties of the A, B, C, D, Q, R, x0, and P0 matrices in the
state space modeling approach.

The state space expectation is defined by the following model equations.

xt+1 = Axt +But + qt

yt = Cxt +Dut + rt

with qt and rt both independently and identically distributed random Gaussian (normal) variables
with mean zero and covariance matrices Q and R, respectively.

The first equation is called the state equation. It describes how the latent states change over time.
Also, the state equation in state space modeling is directly analogous to the structural model in
LISREL structural equation modeling.

The second equation is called the output equation. It describes how the latent states relate to the
observed states at a single point in time. The output equation shows how the observed output is
produced by the latent states. Also, the output equation in state space modeling is directly analogous
to the measurement model in LISREL structural equation modeling.

The state and output equations, together with some minimal assumptions and the Kalman filter,
imply a new expected covariance matrix and means vector for every row of data. The expected
covariance matrix of row t+ 1 is

St+1 = C(APtA
T +Q)CT +R

The expected means vector of row t+ 1 is

ŷt+1 = Cxt+1 +Dut+1

The ’dimnames’ arguments takes an optional character vector.

The ’A’ argument refers to the A matrix in the State Space approach. This matrix consists of time
regressive coefficients from the latent variable in column j at time t to the latent variable in row i
at time t+ 1. Entries in the diagonal are autoregressive coefficients. Entries in the off-diagonal are
cross-lagged regressive coefficients. If the A and B matrices are zero matrices, then the state space
model reduces to a factor analysis. The A matrix is sometimes called the state-transition model.

The ’B’ argument refers to the B matrix in the State Space approach. This matrix consists of time
regressive coefficients from the input (manifest covariate) variable j at time t to the latent variable
in row i at time t+ 1. The B matrix is sometimes called the control-input model.

The ’C’ argument refers to the C matrix in the State Space approach. This matrix consists of con-
temporaneous regression coefficients from the latent variable in column j to the observed variable

mxExpectationStateSpace 89

in row i. This matrix is directly analogous to the factor loadings matrix in LISREL and Mplus
models. The C matrix is sometimes called the observation model.

The ’D’ argument refers to the D matrix in the State Space approach. This matrix consists of con-
temporaneous regressive coefficients from the input (manifest covariate) variable j to the observed
variable in row i. The D matrix is sometimes called the feedthrough or feedforward matrix.

The ’Q’ argument refers to the Q matrix in the State Space approach. This matrix consists of
residual covariances among the latent variables. This matrix must be symmetric. As a special case,
it is often diagonal. The Q matrix is the covariance of the process noise. Just as in factor analysis
and general structural equation modeling, the scale of the latent variables is usually set by fixing
some factor loadings in the C matrix, or fixing some factor variances in the Q matrix.

The ’R’ argument refers to the R matrix in the State Space approach. This matrix consists of
residual covariances among the observed (manifest) variables. This matrix must be symmetric As a
special case, it is often diagonal. The R matrix is the covariance of the observation noise.

The ’x0’ argument refers to the x0 matrix in the State Space approach. This matrix consists of the
column vector of the initial values for the latent variables. The state space expectation uses the x0
matrix as the starting point to recursively estimate the latent variables’ values at each time. These
starting values can be difficult to pick, however, for sufficiently long time series they often do not
greatly impact the estimation.

The ’P0’ argument refers to the P0 matrix in the State Space approach. This matrix consists of the
initial values of the covariances of the error in the initial latent variable estimates given in x0. That
is, the P0 matrix gives the covariance of x0 − xtrue0 where xtrue0 is the vector of true initial
values. P0 is a measure of the accuracy of the intial latent state estimates. The Kalman filter uses
this initial covariance to recursively generated a new covariance for each time point based on the
previous time point. The Kalman filter updates this covariance so that it is as small as possible
(minimum trace). Similar to the x0 matrix, these starting values are often difficult to choose.

The ’u’ argument refers to the u matrix in the State Space approach. This matrix consists of the
inputs or manifest covariates of the state space expectation. The u matrix must be a column vector
with the same number of rows as the B and D matrices have columns. If no inputs are desired, u
can be a zero matrix. If time-varying inputs are desired, then they should be included as columns in
the MxData object and referred to in the labels of the u matrix as definition variables. There is an
example of this below.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxExpectationStateSpace will not return an error for incorrect specification,
but incorrect specification will likely lead to estimation problems or errors in the mxRun function.

mxExpectationStateSpace evaluates with respect to an MxData object. The MxData object need
not be referenced in the mxExpectationStateSpace function, but must be included in the MxModel
object. mxExpectationStateSpace requires that the ’type’ argument in the associated MxData object
be equal to ’raw’. Neighboring rows of the MxData object are treated as adjacent, equidistant time
points increasing from the first to the last row.

To evaluate, place mxExpectationStateSpace objects, the mxData object for which the expected
covariance approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds
and MxConstraint objects in an MxModel object. This model may then be evaluated using the
mxRun function. The results of the optimization can be found in the ’output’ slot of the resulting
model, and may be obtained using the mxEval function..

90 mxExpectationStateSpace

Value

Returns a new MxExpectationStateSpace object. mxExpectationStateSpace objects should be in-
cluded with models with referenced MxAlgebra, MxData and MxMatrix objects.

References

K.J. Åström and R.M. Murray (2010). Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press.

J. Durbin and S.J. Koopman. (2001). Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

R.E. Kalman (1960). A New Approach to Linear Filtering and Prediction Problems. Basic Engi-
neering, 82, 35-45.

G. Petris (2010). An R Package for Dynamic Linear Models. Journal of Statistical Software, 36,
1-16.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxExpectationStateSpace, and mxFitFunctionML
require(OpenMx)
data(demoOneFactor)
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)
ssModel <- mxModel(model="State Space Manual Example",

mxMatrix("Full", 1, 1, TRUE, .3, name="A"),
mxMatrix("Zero", 1, 1, name="B"),
mxMatrix("Full", nvar, 1, TRUE, .6, name="C", dimnames=list(varnames, "F1")),
mxMatrix("Zero", nvar, 1, name="D"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"),
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"),
mxMatrix("Zero", 1, 1, name="x0"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"),
mxMatrix("Zero", 1, 1, name="u"),
mxData(observed=demoOneFactor, type="raw"),
mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", "u"),
mxFitFunctionML()

)
ssRun <- mxRun(ssModel)
summary(ssRun)
Note the freely estimated Autoregressive parameter (A matrix)
is near zero as it should be for the independent rows of data
from the factor model.

Create and fit a model with INPUTS using mxMatrix, mxExpectationStateSpace, and mxFitFunctionML
require(OpenMx)
data(demoOneFactor)
nvar <- ncol(demoOneFactor)
varnames <- colnames(demoOneFactor)
#demoOneFactorInputs <- cbind(demoOneFactor, V1=rep(1, nrow(demoOneFactor)))

mxFactor 91

demoOneFactorInputs <- cbind(demoOneFactor, V1=rnorm(nrow(demoOneFactor)))
ssModel <- mxModel(model="State Space Inputs Manual Example",

mxMatrix("Full", 1, 1, TRUE, .3, name="A"),
mxMatrix("Full", 1, 1, TRUE, values=1, name="B"),
mxMatrix("Full", nvar, 1, TRUE, .6, name="C", dimnames=list(varnames, "F1")),
mxMatrix("Zero", nvar, 1, name="D"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="Q"),
mxMatrix("Diag", nvar, nvar, TRUE, .2, name="R"),
mxMatrix("Zero", 1, 1, name="x0"),
mxMatrix("Diag", 1, 1, FALSE, 1, name="P0"),
mxMatrix("Full", 1, 1, FALSE, labels="data.V1", name="u"),
mxData(observed=demoOneFactorInputs, type="raw"),
mxExpectationStateSpace("A", "B", "C", "D", "Q", "R", "x0", "P0", u="u"),
mxFitFunctionML()

)
ssRun <- mxRun(ssModel)
summary(ssRun)
Note the freely estimated Autoregressive parameter (A matrix)
and the freely estimated Control-Input parameter (B matrix)
are both near zero as they should be for the independent rows of data
from the factor model that does not have inputs, covariates,
or exogenous variables.

mxFactor Fail-safe Factors

Description

This is a wrapper for the R function factor.

OpenMx requires ordinal data to be ordered. R’s factor function doesn’t enforce this, hence this
wrapper exists to throw an error should you accidentally try and run with ordered = FALSE.

Also, the ‘levels’ parameter is optional in R’s factor function. However, relying on the data
to specify the data is foolhardy for the following reasons: The factor function will skip levels
missing from the data: Specifying these in levels leaves the list of levels complete. Data will often
not explore the min and max level that the user knows are possible. For these reasons this function
forces you to write out all possible levels explicitly.

Usage

mxFactor(x = character(), levels, labels = levels,
exclude = NA, ordered = TRUE, collapse = FALSE)

Arguments

x either a vector of data or a data.frame object.

levels a mandatory vector of the values that ’x’ might have taken.

92 mxFIMLObjective

labels _either_ an optional vector of labels for the levels, _or_ a character string of
length 1.

exclude a vector of values to be excluded from the set of levels.

ordered logical flag to determine if the levels should be regarded as ordered (in the order
given). Required to be TRUE.

collapse logical flag to determine if duplicate labels should collapsed into a single level

Details

If ‘x’ is a data.frame, then all of the columns of ‘x’ are converted into ordered factors. If ‘x’ is
a data.frame, then ‘levels’ and ‘labels’ may be either a list or a vector. When ‘levels’ is a list,
then different levels are assigned to different columns of the constructed data.frame object. When
‘levels’ is a vector, then the same levels are assigned to all the columns of the data.frame object.
The function will throw an error if ‘ordered’ is not TRUE or if ‘levels’ is missing. See factor for
more information on creating ordered factors.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

myVar <- c("s", "t", "a", "t", "i", "s", "t", "i", "c", "s")
ff <- mxFactor(myVar, levels=letters) # letters is a built in list of all lowercase letters of the alphabet
ff
[1] s t a t i s t i c s
Levels: a < b < c < d < e < f < g < h < i < j < k < l < m < n < o < p < q < r < s < t < u < v < w < x < y < z

as.integer(ff) # the internal codes

factor(ff) # NOTE: drops the levels that do not occur.
mxFactor prevents you doing this unintentionally.

This example works on a dataframe
foo <- data.frame(x=c(1:3),y=c(4:6),z=c(7:9))
mxFactor(foo, c(1:9)) # Applys one set of levels to all three columns
mxFactor(foo, list(c(1:3), c(4:6), c(7:9))) # Apply unique sets of levels to each variable
mxFactor(foo, c(1:9), labels=c(1,1,1,2,2,2,3,3,3), collapse=TRUE)

mxFIMLObjective DEPRECATED: Create MxFIMLObjective Object

mxFIMLObjective 93

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxExpectationNormal() and mxFitFunctionML() instead. As a temporary workaround,
mxFIMLObjective returns a list containing an MxExpectationNormal object and an MxFitFunc-
tionML object.

All occurrences of

mxFIMLObjective(covariance, means, dimnames = NA, thresholds = NA, vector = FALSE, thresh-
names = dimnames)

Should be changed to

mxExpectationNormal(covariance, means, dimnames = NA, thresholds = NA, threshnames = dim-
names) mxFitFunctionML(vector = FALSE)

Arguments

covariance A character string indicating the name of the expected covariance algebra.

means A character string indicating the name of the expected means algebra.

dimnames An optional character vector to be assigned to the dimnames of the covariance
and means algebras.

thresholds An optional character string indicating the name of the thresholds matrix.

vector A logical value indicating whether the objective function result is the likelihood
vector.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationNormal
and mxFitFunctionML as shown in the example below.

Objective functions were functions for which free parameter values are chosen such that the value
of the objective function is minimized. The mxFIMLObjective function used full-information max-
imum likelihood to provide maximum likelihood estimates of free parameters in the algebra defined
by the ’covariance’ and ’means’ arguments. The ’covariance’ argument takes an MxAlgebra ob-
ject, which defines the expected covariance of an associated MxData object. The ’means’ argument
takes an MxAlgebra object, which defines the expected means of an associated MxData object. The
’dimnames’ arguments takes an optional character vector. If this argument is not a single NA, then
this vector is used to assign the dimnames of the means vector as well as the row and columns
dimnames of the covariance matrix.

The ’vector’ argument is either TRUE or FALSE, and determines whether the objective function
returns a column vector of the likelihoods, or a single -2*(log likelihood) value.

thresholds: The name of the thresholds matrix. When needed (for modelling ordinal data), this
matrix should be created using mxMatrix(). The thresholds matrix must have as many columns as
there are ordinal variables in the model, and number of rows equal to one fewer than the maximum
number of levels found in the ordinal variables. The starting values of this matrix must also be set
to reasonable values. Fill each column with a set of ordered start thresholds, one for each level of

94 mxFIMLObjective

this column’s factor levels minus 1. These thresholds may be free if you wish them to be estimated,
or fixed. The unused rows in each column, if any, can be set to any value including NA.

threshnames: A character vector consisting of the variables in the thresholds matrix, i.e., the names
of ordinal variables in a model. This is necessary for OpenMx to map the thresholds matrix columns
onto the variables in your data. If you set the dimnames of the columns in the thresholds matrix
then threshnames is not needed.

Usage Notes: dimnames must be supplied where the matrices referenced by the covariance and
means algebras are not themselves labeled. Failure to do so leads to an error noting that the covari-
ance or means matrix associated with the FIML objective does not contain dimnames.

mxFIMLObjective evaluates with respect to an MxData object. The MxData object need not be
referenced in the mxFIMLObjective function, but must be included in the MxModel object. mx-
FIMLObjective requires that the ’type’ argument in the associated MxData object be equal to ’raw’.
Missing values are permitted in the associated MxData object.

To evaluate, place MxFIMLObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.

The results of the optimization can be reported using the summary function, or accessed directly in
the ’output’ slot of the resulting model (i.e., modelName$output). Components of the output may
be referenced using the Extract functionality.

Value

Returns a list containing an MxExpectationNormal object and an MxFitFunctionML object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

M <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),
free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),

mxFitFunctionAlgebra 95

free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")
I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", means="M", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleModel", M, S, A, I, expCov, expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxFitFunctionAlgebra Create MxFitFunctionAlgebra Object

Description

mxFitFunctionAlgebra returns an MxFitFunctionAlgebra object.

Usage

mxFitFunctionAlgebra(algebra, numObs = NA, numStats = NA, ..., gradient =
NA_character_, hessian = NA_character_, verbose = 0L)

Arguments

algebra A character string indicating the name of an MxAlgebra or MxMatrix object to
use for optimization.

numObs (optional) An adjustment to the total number of observations in the model.

numStats (optional) An adjustment to the total number of observed statistics in the model.

... Not used. Forces remaining arguments to be specified by name.

gradient (optional) A character string indicating the name of an MxAlgebra object.

hessian (optional) A character string indicating the name of an MxAlgebra object.

verbose (optional An integer to increase the level of runtime log output.

96 mxFitFunctionAlgebra

Details

Fit functions are functions for which free parameter values are chosen such that the value of the ob-
jective function is minimized. While the other fit functions in OpenMx require an expectation func-
tion for the model, the mxAlgebraObjective function uses the referenced MxAlgebra or MxMatrix
object as the function to be minimized.

If a model’s fit function is an mxFitFunctionAlgebra objective function, then the referenced alge-
bra in the objective function must return a 1 x 1 matrix (when using OpenMx’s default optimizer).
There is no restriction on the dimensions of an fit function that is not the primary, or ‘topmost’,
objective function.

To evaluate an algebra fit function, place the following objects in a MxModel object: a mxFitFunctionAlgebra,
MxAlgebra and MxMatrix entities referenced by the MxAlgebraObjective, and optional MxBounds
and MxConstraint objects. This model may then be evaluated using the mxRun function. The re-
sults of the optimization may be obtained using the mxEval function on the name of the MxAlgebra,
after the model has been run.

First and second derivatives can be provided with the algebra fit function. The dimnames on the
gradient and hessian MxAlgebras are matched against names of free variables. Names that do not
match are ignored. If you are working in log likelihood units, the customary -2 scaling factor is not
applied automatically. You have to take care of multiplying by -2 yourself.

Value

Returns an MxFitFunctionAlgebra object. MxFitFunctionAlgebra objects should be included with
models with referenced MxAlgebra and MxMatrix objects.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxAlgebra to create an algebra suitable as a reference function to be minimized. More information
about the OpenMx package may be found here.

Examples

Create and fit a very simple model that adds two numbers using mxFitFunctionAlgebra

library(OpenMx)

Create a matrix 'A' with no free parameters
A <- mxMatrix('Full', nrow = 1, ncol = 1, values = 1, name = 'A')

Create an algebra 'B', which defines the expression A + A
B <- mxAlgebra(A + A, name = 'B')

Define the objective function for algebra 'B'
objective <- mxFitFunctionAlgebra('B')

mxFitFunctionML 97

Place the algebra, its associated matrix and
its objective function in a model
tmpModel <- mxModel(model="Addition", A, B, objective)

Evalulate the algebra
tmpModelOut <- mxRun(tmpModel)

View the results
tmpModelOut$output$minimum

mxFitFunctionML Create MxFitFunctionML Object

Description

This function creates a new MxFitFunctionML object.

Usage

mxFitFunctionML(vector = FALSE)

Arguments

vector A logical value indicating whether the objective function result is the likelihood
vector.

Details

Fit functions are functions for which free parameter values are optimized such that the value of a
cost function is minimized. The mxFitFunctionML function computes -2*(log likelihood) of the
data given the current values of the free parameters and the expectation function (e.g., mxExpecta-
tionNormal or mxExpectationRAM) selected for the model.

The ’vector’ argument is either TRUE or FALSE, and determines whether the objective function
returns a column vector of the likelihoods, or a single -2*(log likelihood) value.

Usage Notes:

The results of the optimization can be reported using the summary function, or accessed directly in
the ’output’ slot of the resulting model (i.e., modelName$output). Components of the output may
be referenced using the Extract functionality.

Value

Returns a new MxFitFunctionML object. One and only one MxFitFunctionML object should be
included in each model along with an associated mxExpectationNormal or mxExpectationRAM
object.

98 mxFitFunctionMultigroup

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

M <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),
free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", means="M", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleModel", M, S, A, I, expCov, expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxFitFunctionMultigroup

Aggregate fit statistics from multiple submodels

mxFitFunctionR 99

Description

mxFitFunctionMultigroup creates a fit function consisting of the sum of the fit statistics from a list
of submodels provided.

This is conceptually similar to creating an mxAlgebra consisting of the sum of the subModel ob-
jectives and also creating an algebra fit function to optimize the model based on this aggregate
value.

This call to mxFitFunctionMultigroup:

mxFitFunctionMultigroup(c("model1", "model2"))

then, is almost equivalent to the following pair of statements:

mxAlgebra(model1.objective + model2.objective, name="myAlgebra")

mxFitFunctionAlgebra("myAlgebra")

In addition to being more compact and readable, using mxFitFunctionMultigroup has additional
side effects which are valuable for multi-group modeling.

Firstly, it aggregates analytic derivative calculations. Secondly, it allows mxRefModels to compute
saturated models for raw data, as this function can learn which are the constituent submodels.

Note: You can refer to the algebra generated by mxFitFunctionMultigroup when used in a group
"modelName" as:

modelName.fitfunction

Usage

mxFitFunctionMultigroup(groups, ..., verbose = 0L)

Arguments

groups vector of fit function names (strings)

... Not used. Forces subsequent arguments to be specified by name.

verbose the level of debugging output

Examples

require("OpenMx")
mxFitFunctionMultigroup(c("model1", "model2")) # names of sub-models to be jointly optimised

mxFitFunctionR Create MxFitFunctionR Object

Description

mxFitFunctionR returns an MxFitFunctionR object.

Usage

mxFitFunctionR(fitfun, ...)

100 mxFitFunctionR

Arguments

fitfun A function that accepts two arguments.

... The initial state information to the objective function.

Details

The mxFitFunctionR function evaluates a user-defined R function called the ’fitfun’. mxFitFunc-
tionR is useful in defining new mxFitFunctions, since any calculation that can be performed in R
can be treated as an mxFitFunction.

The ’fitfun’ argument must be a function that accepts two arguments. The first argument is the
mxModel that should be evaluated, and the second argument is some persistent state information
that can be stored between one iteration of optimization to the next iteration. It is valid for the
function to simply ignore the second argument.

The function must return either a single numeric value, or a list of exactly two elements. If the
function returns a list, the first argument must be a single numeric value and the second element
will be the new persistent state information to be passed into this function at the next iteration. The
single numeric value will be used by the optimizer to perform optimization.

The initial default value for the persistant state information is NA.

Throwing an exception (via stop) from inside fitfun may result in unpredictable behavior. You may
want to wrap your code in tryCatch while experimenting.

Value

Returns an MxFitFunctionR object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxFitFunctionR

library(OpenMx)

A <- mxMatrix(nrow = 2, ncol = 2, values = c(1:4), free = TRUE, name = 'A')
squared <- function(x) { x ^ 2 }

Define the objective function in R

objFunction <- function(model, state) {
values <- modelAvalues
return(squared(values[1,1] - 4) + squared(values[1,2] - 3) +

squared(values[2,1] - 2) + squared(values[2,2] - 1))
}

Define the expectation function

mxFitFunctionRow 101

fitFunction <- mxFitFunctionR(objFunction)

Define the model

tmpModel <- mxModel(model="exampleModel", A, fitFunction)

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxFitFunctionRow Create an MxFitFunctionRow Object

Description

mxFitFunctionRow returns an MxFitFunctionRow object.

Usage

mxFitFunctionRow(rowAlgebra, reduceAlgebra, dimnames,
rowResults = "rowResults", filteredDataRow = "filteredDataRow",
existenceVector = "existenceVector")

Arguments

rowAlgebra A character string indicating the name of the algebra to be evaluated row-wise.

reduceAlgebra A character string indicating the name of the algebra that collapses the row re-
sults into a single number which is then optimized.

dimnames A character vector of names corresponding to columns be extracted from the
data set.

rowResults The name of the auto-generated "rowResults" matrix. See details.
filteredDataRow

The name of the auto-generated "filteredDataRow" matrix. See details.
existenceVector

The name of the auto-generated "existenceVector" matrix. See details.

Details

Fit functions are functions for which free parameter values are optimized such that the value of a cost
function is minimized. The mxFitFunctionRow function evaluates a user-defined MxAlgebra object
called the ‘rowAlgebra’ in a row-wise fashion. It then stores results of the row-wise evaluation
in another MxAlgebra object called the ‘rowResults’. Finally, the mxFitFunctionRow function
collapses the row results into a single number which is then used for optimization. The MxAlgebra
object named by the ‘reduceAlgebra’ collapses the row results into a single number.

102 mxFitFunctionRow

The ‘filteredDataRow’ is populated in a row-by-row fashion with all the non-missing data from the
current row. You cannot assume that the length of the filteredDataRow matrix remains constant
(unless you have no missing data). The ‘existenceVector’ is populated in a row-by-row fashion with
a value of 1.0 in column j if a non-missing value is present in the data set in column j, and a value of
0.0 otherwise. Use the functions omxSelectRows, omxSelectCols, and omxSelectRowsAndCols to
shrink other matrices so that their dimensions will be conformable to the size of ‘filteredDataRow’.

Value

Returns a new MxFitFunctionRow object. Only one MxFitFunction object should be included in
each model. There is no need for an MxExpectation object when using mxFitFunctionRow.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Model that adds two data columns row-wise, then sums that column
Notice no optimization is performed here.

library(OpenMx)

xdat <- data.frame(a=rnorm(10), b=1:10) # Make data set
amod <- mxModel(model="example1",

mxData(observed=xdat, type='raw'),
mxAlgebra(sum(filteredDataRow), name = 'rowAlgebra'),
mxAlgebra(sum(rowResults), name = 'reduceAlgebra'),
mxFitFunctionRow(

rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a','b'))

)
amodOut <- mxRun(amod)
mxEval(rowResults, model=amodOut)
mxEval(reduceAlgebra, model=amodOut)

Model that find the parameter that minimizes the sum of the
squared difference between the parameter and a data row.

bmod <- mxModel(model="example2",
mxData(observed=xdat, type='raw'),
mxMatrix(values=.75, ncol=1, nrow=1, free=TRUE, name='B'),
mxAlgebra((filteredDataRow - B) ^ 2, name='rowAlgebra'),
mxAlgebra(sum(rowResults), name='reduceAlgebra'),
mxFitFunctionRow(

rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a'))

)
bmodOut <- mxRun(bmod)
mxEval(B, model=bmodOut)

MxFlatModel 103

mxEval(reduceAlgebra, model=bmodOut)
mxEval(rowResults, model=bmodOut)

MxFlatModel MxFlatModel This is an internal class and should not be used.

Description

MxFlatModel

This is an internal class and should not be used.

MxLISRELModel-class MxLISRELModel

Description

This is an internal class and should not be used directly.

mxLISRELObjective Create MxLISRELObjective Object

Description

This function creates a new MxLISRELObjective object.

Usage

mxLISRELObjective(LX=NA, LY=NA, BE=NA, GA=NA, PH=NA, PS=NA, TD=NA, TE=NA, TH=NA,
TX = NA, TY = NA, KA = NA, AL = NA,
dimnames = NA, thresholds = NA, vector = FALSE, threshnames = dimnames)

Arguments

LX An optional character string indicating the name of the ’LX’ matrix.

LY An optional character string indicating the name of the ’LY’ matrix.

BE An optional character string indicating the name of the ’BE’ matrix.

GA An optional character string indicating the name of the ’GA’ matrix.

PH An optional character string indicating the name of the ’PH’ matrix.

PS An optional character string indicating the name of the ’PS’ matrix.

TD An optional character string indicating the name of the ’TD’ matrix.

TE An optional character string indicating the name of the ’TE’ matrix.

104 mxLISRELObjective

TH An optional character string indicating the name of the ’TH’ matrix.

TX An optional character string indicating the name of the ’TX’ matrix.

TY An optional character string indicating the name of the ’TY’ matrix.

KA An optional character string indicating the name of the ’KA’ matrix.

AL An optional character string indicating the name of the ’AL’ matrix.

dimnames An optional character vector that is currently ignored

thresholds An optional character string indicating the name of the thresholds matrix.

vector A logical value indicating whether the objective function result is the likelihood
vector.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

Objective functions are functions for which free parameter values are chosen such that the value
of the objective function is minimized. The mxLISRELObjective provides maximum likelihood
estimates of free parameters in a model of the covariance of a given MxData object. This model
is defined by LInear Structual RELations (LISREL; Jöreskog & Sörbom, 1982, 1996). Arguments
’LX’ through ’AL’ must refer to MxMatrix objects with the associated properties of their respective
matrices in the LISREL modeling approach.

The full LISREL specification has 13 matrices and is sometimes called the extended LISREL model.
It is defined by the following equations.

η = α+Bη + Γξ + ζ

y = τy + Λyη + ε

x = τx + Λxξ + δ

The table below is provided as a quick reference to the numerous matrices in LISREL models.
Note that NX is the number of manifest exogenous (independent) variables, the number of Xs. NY
is the number of manifest endogenous (dependent) variables, the number of Ys. NK is the number
of latent exogenous variables, the number of Ksis or Xis. NE is the number of latent endogenous
variables, the number of etas.

Matrix Word Abbreviation Dimensions Expression Description
Λx Lambda x LX NX x NK Exogenous Factor Loading Matrix
Λy Lambda y LY NY x NE Endogenous Factor Loading Matrix
B Beta BE NE x NE Regressions of Latent Endogenous Variables Predicting Endogenous Variables
Γ Gamma GA NE x NK Regressions of Latent Exogenous Variables Predicting Endogenous Variables
Φ Phi PH NK x NK cov(ξ) Covariance Matrix of Latent Exogenous Variables
Ψ Psi PS NE x NE cov(ζ) Residual Covariance Matrix of Latent Endogenous Variables
Θδ Theta delta TD NX x NX cov(δ) Residual Covariance Matrix of Manifest Exogenous Variables
Θε Theta epsilon TE NY x NY cov(ε) Residual Covariance Matrix of Manifest Endogenous Variables
Θδε Theta delta epsilson TH NX x NY cov(δ, ε) Residual Covariance Matrix of Manifest Exogenous with Endogenous Variables
τx tau x TX NX x 1 Residual Means of Manifest Exogenous Variables
τy tau y TY NY x 1 Residual Means of Manifest Endogenous Variables
κ kappa KA NK x 1 mean(ξ) Means of Latent Exogenous Variables
α alpha AL NE x 1 Residual Means of Latent Endogenous Variables

mxLISRELObjective 105

From the extended LISREL model, several submodels can be defined. Subtypes of the LISREL
model are defined by setting some of the arguments of the LISREL objective to NA. Note that be-
cause the default values of each LISREL matrix is NA, setting a matrix to NA can be accomplished
by simply not giving it any other value.

The first submodel is the LISREL model without means.

η = Bη + Γξ + ζ

y = Λyη + ε

x = Λxξ + δ

The LISREL model without means requires 9 matrices: LX, LY, BE, GA, PH, PS, TD, TE, and TH.
Hence this LISREL model has TX, TY, KA, and AL as NA. This can be accomplished be leaving
these matrices at their default values.

The TX, TY, KA, and AL matrices must be specified if either the mxData type is “cov” or “cor”
and a means vector is provided, or if the mxData type is “raw”. Otherwise the TX, TY, KA, and AL
matrices are ignored and the model without means is estimated.

A second submodel involves only endogenous variables.

η = Bη + ζ

y = Λyη + ε

The endogenous-only LISREL model requires 4 matrices: LY, BE, PS, and TE. The LX, GA, PH,
TD, and TH must be NA in this case. However, means can also be specified, allowing TY and AL
if the data are raw or if observed means are provided.

Another submodel involves only exogenous variables.

x = Λxξ + δ

The exogenous-model model requires 3 matrices: LX, PH, and TD. The LY, BE, GA, PS, TE, and
TH matrices must be NA. However, means can also be specified, allowing TX and KA if the data
are raw or if observed means are provided.

The model that is run depends on the matrices that are not NA. If all 9 matrices are not NA, then the
full model is run. If only the 4 endogenous matrices are not NA, then the endogenous-only model
is run. If only the 3 exogenous matrices are not NA, then the exogenous-only model is run. If some
endogenous and exogenous matrices are not NA, but not all of them, then appropriate errors are
thrown. Means are included in the model whenever their matrices are provided.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxLISRELObjective will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

Like the mxRAMObjective, the mxLISRELObjective evaluates with respect to an MxData object.
The MxData object need not be referenced in the mxLISRELObjective function, but must be in-
cluded in the MxModel object. mxLISRELObjective requires that the ’type’ argument in the asso-
ciated MxData object be equal to ’cov’, ’cor’, or ’raw’.

106 MxListOrNull-class

To evaluate, place MxLISRELObjective objects, the mxData object for which the expected co-
variance approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and
MxConstraint objects in an MxModel object. This model may then be evaluated using the mxRun
function. The results of the optimization can be found in the ’output’ slot of the resulting model,
and may be obtained using the mxEval function.

Value

Returns a new MxLISRELObjective object. MxLISRELObjective objects should be included with
models with referenced MxAlgebra, MxData and MxMatrix objects.

References

Jöreskog, K. G. & Sörbom, D. (1996). LISREL 8: User’s Reference Guide. Lincolnwood, IL:
Scientific Software International.

Jöreskog, K. G. & Sörbom, D. (1982). Recent developments in structural equation modeling. Jour-
nal of Marketing Research, 19, 404-416.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

#####------------------------------#####
Factor Model
mLX <- mxMatrix("Full", values=c(.5, .6, .8, rep(0, 6), .4, .7, .5), name="LX", nrow=6, ncol=2, free=c(TRUE,TRUE,TRUE,rep(FALSE, 6),TRUE,TRUE,TRUE))
mTD <- mxMatrix("Diag", values=c(rep(.2, 6)), name="TD", nrow=6, ncol=6, free=TRUE)
mPH <- mxMatrix("Symm", values=c(1, .3, 1), name="PH", nrow=2, ncol=2, free=c(FALSE, TRUE, FALSE))

Create a LISREL objective with LX, TD, and PH matrix names
objective <- mxLISRELObjective(LX="LX", TD="TD", PH="PH")

testModel <- mxModel(model="testModel", mLX, mTD, mPH, objective)

MxListOrNull-class An optional list

Description

An optional list

mxMakeNames 107

mxMakeNames mxMakeNames

Description

Adjust a character vector so that it can be used as MxMatrix column or row names. OpenMx is
(much) more restrictive than base R’s make.names.

Usage

mxMakeNames(names, unique = FALSE)

Arguments

names a character vector

unique whether the pass the result through base::make.unique

See Also

base::make.names

Examples

demo <- c("", "103", "data", "foo.bar[3,2]", "+!", "!+")
mxMakeNames(demo, unique=TRUE)

mxMatrix Create MxMatrix Object

Description

This function creates a new MxMatrix object.

Usage

mxMatrix(type = "Full", nrow = NA, ncol = NA,
free = FALSE, values = NA, labels = NA, lbound = NA,
ubound = NA, byrow = getOption('mxByrow'), dimnames = NA, name = NA,
condenseSlots=getOption('mxCondenseMatrixSlots'))

108 mxMatrix

Arguments

type A character string indicating the matrix type, where type indicates the range
of values and equalities in the matrix. Must be one of: ‘Diag’, ‘Full’, ‘Iden’,
‘Lower’, ‘Sdiag’, ‘Stand’, ‘Symm’, ‘Unit’, or ‘Zero’.

nrow Integer; the desired number of rows. One or both of ‘nrow’ and ‘ncol’ is re-
quired when ‘values’, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’ arguments are not
matrices, depending on the desired MxMatrix type.

ncol Integer; the desired number of columns. One or both of ‘nrow’ and ‘ncol’ is
required when ‘values’, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’ arguments are
not matrices, depending on the desired MxMatrix type.

free A vector or matrix of logicals for free parameter specification. A single ‘TRUE’
or ‘FALSE’ will set all allowable variables to free or fixed, respectively.

values A vector or matrix of numeric starting values. By default, all values are set to
zero.

labels A vector or matrix of characters for variable label specification.

lbound A vector or matrix of numeric lower bounds. Default bounds are specified with
an NA.

ubound A vector or matrix of numeric upper bounds. Default bounds are specified with
an NA.

byrow Logical; defaults to value of global option ’mxByRow’. If FALSE (default),
the ‘values’, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’ matrices are populated by
column rather than by row.

dimnames List. The dimnames attribute for the matrix: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

name An optional character string indicating the name of the MxMatrix object.

condenseSlots Logical; defaults to value of global option ’mxByRow’ If TRUE, then the result-
ing MxMatrix will "condense" its ‘labels’, ‘free’, ‘lbound’, and ‘ubound’ down
to 1x1 matrices if they contain only FALSE (‘free’) or NA (the other three). If
FALSE, those four matrices and the ‘values’ matrix will all be of equal dimen-
sions.

Details

The mxMatrix function creates MxMatrix objects, which consist of five matrices and a ‘type’ argu-
ment. The ‘values’ matrix is made up of numeric elements whose usage and capabilities in other
functions are defined by the ‘free’ matrix. If an element is specified as a fixed parameter in the
‘free’ matrix, then the element in the ‘values’ matrix is treated as a constant value and cannot be
altered or updated by an objective function when included in an mxRun function. If an element is
specified as a free parameter in the ‘free’ matrix, the element in the ‘value’ matrix is considered a
starting value and can be changed by an objective function when included in an mxRun function.

Objects created by the mxMatrix() function are of a specific ‘type’, which specifies the number
and location of parameters in the ‘labels’ matrix and the starting values in the ‘values’ matrix. Input

mxMatrix 109

‘values’, ‘free’, and ‘labels’ matrices must be of appropriate shape and have appropriate values for
the matrix type requested. Nine types of matrices are supported:

110 mxMatrix

‘Diag’ matrices must be square, and only elements on the principal diagonal may be specified as free parameters or take non-zero values. All other elements are required to be fixed parameters with a value of 0.
‘Full’ matrices may be either rectangular or square, and all elements in the matrix may be freely estimated. This type is the default for the mxMatrix() function.
‘Iden’ matrices must be square, and consist of no free parameters. Matrices of this type have a value of 1 for all entries on the principal diagonal and the value 0 in all off-diagonal entries.
‘Lower’ matrices must be square, with a value of 0 for all entries in the upper triangle and no free parameters in the upper triangle.
‘Sdiag’ matrices must be square, with a value of 0 for all entries in the upper triangle and along the diagonal. No free parameters in the upper triangle or along the diagonal.
‘Symm’ matrices must be square, and elements in the principle diagonal and lower triangular portion of the matrix may be free parameters of any value. Elements in the upper triangular portion of the matrix are constrained to be equal to those in the lower triangular portion, such that the value and parameter specificiation of the element in row i and column j is identical to to the value and specification of the element in row j and column i.
‘Stand’ matrices are symmetric matrices (see ’Symm’) with 1’s along the main diagonal.
‘Unit’ matrices may be either rectangular or square, and contain no free parameters. All elements in matrices of this type have a value of 1 for all elements.
‘Zero’ matrices may be either rectangular or square, and contain no free parameters. All elements in matrices of this type have a value of 0 for all elements.

When ‘type’ is ‘Lower’ or ‘Symm’, then the arguments to ‘free’, ‘values’, ‘labels’, ‘lbound’, or
‘ubound’ may be vectors of length N ∗ (N + 1)/2, where N is the number of rows and columns
of the matrix. When ‘type’ is ‘Sdiag’ or ‘Stand’, then the arguments to ‘free’, ‘values’, ‘labels’,
‘lbound’, or ‘ubound’ may be vectors of length N ∗ (N − 1)/2.

Value

Returns a new MxMatrix object, which consists of a ‘values’ matrix of numeric starting values,
a ‘free’ matrix describing free parameter specification, a ‘labels’ matrix of labels for the variable
names, and ‘lbound’ and ‘ubound’ matrices of the lower and upper parameter bounds. This Mx-
Matrix object can be used as an argument in the mxAlgebra(), mxBounds(), mxConstraint() and
mxModel() functions.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxMatrix for the S4 class created by mxMatrix. More information about the OpenMx package
may be found here.

Examples

Create a 3 x 3 identity matrix

idenMatrix <- mxMatrix(type = "Iden", nrow = 3,
ncol = 3, name = "I")

Create a full 4 x 2 matrix from existing
value matrix with all free parameters

vals <- matrix(1:8, nrow = 4)
fullMatrix <- mxMatrix(type = "Full", values = vals,

free = TRUE, name = "foo")

Create a 3 x 3 symmetric matrix with free off-
diagonal parameters and starting values

MxMatrix-class 111

symmMatrix <- mxMatrix(type = "Symm", nrow = 3, ncol = 3,
free = c(FALSE, TRUE, TRUE, FALSE, TRUE, FALSE),
values = c(1, .8, .8, 1, .8, 1),
labels = c(NA, "free1", "free2", NA, "free3", NA),
name = "bar")

MxMatrix-class MxMatrix Class

Description

MxMatrix is a virtual S4 class that comprises the nine types of matrix objects used by OpenMx (see
mxMatrix() for details). An MxMatrix object is a named entity. New instances of this class can
be created using the function mxMatrix(). MxMatrix objects may be used as arguments in other
functions from the OpenMx package, including mxAlgebra(), mxConstraint(), and mxModel().

Objects from the Class

All nine types of object that the class comprises can be created via mxMatrix().

Slots

name: Character string; the name of the MxMatrix object. Note that this is the object’s "Mx name"
(so to speak), which identifies it in OpenMx’s internal namespace, rather than the symbol
identifying it in R’s worskpace. Use of MxMatrix objects in an mxAlgebra or mxConstraint
function requires reference by name.

values: Numeric matrix of values. If an element is specified as a fixed parameter in the ’free’
matrix, then the element in the ’values’ matrix is treated as a constant value and cannot be
altered or updated by an objective function when included in an mxRun() function. If an
element is specified as a free parameter in the ’free’ matrix, the element in the ’value’ matrix
is considered a starting value and can be changed by an objective function when included in
an mxRun() function.

labels: Matrix of character strings which provides the labels of free and fixed parameters. Fixed
parameters with identical labels must have identical values. Free parameters with identical
labels impose an equality constraint. The same label cannot be applied to a free parameter and
a fixed parameter. A free parameter with the label ’NA’ implies a unique free parameter, that
cannot be constrained to equal any other free parameter.

free: Logical matrix specifying whether each element is free versus fixed. An element is a free pa-
rameter if-and-only-if the corresponding value in the ’free’ matrix is ’TRUE’. Free parameters
are elements of an MxMatrix object whose values may be changed by a fitfunction when that
MxMatrix object is included in an MxModel object and evaluated using the mxRun() function.

lbound: Numeric matrix of lower bounds on free parameters.

ubound: Numeric matrix of upper bounds on free parameters.

.squareBrackets: Logical matrix; used internally by OpenMx. Identifies which elements have
labels with square brackets in them.

112 MxMatrix-class

.persist: Logical; used internally by OpenMx. Governs how mxRun() handles the MxMatrix
object when it is inside the MxModel being run.

.condenseSlots: Logical; used internally by OpenMx. If FALSE, then the matrices in the ’values’,
’labels’, ’free’, ’lbound’, and ’ubound’ slots are all of equal dimensions. If TRUE, then the last
four of those slots will "condense" a matrix consisting entirely of FALSE or NA down to 1x1.

display: Character string; used internally by OpenMx when parsing MxAlgebras.

dependencies: Integer; used internally by OpenMx when parsing MxAlgebras.

Methods

$ signature(x = "MxMatrix"): ...

$<- signature(x = "MxMatrix"): ...

[signature(x = "MxMatrix"): ...

[<- signature(x = "MxMatrix"): ...

dim signature(x = "MxMatrix"): ...

dimnames signature(x = "MxMatrix"): ...

dimnames<- signature(x = "MxMatrix"): ...

imxCreateMatrix signature(.Object = "MxMatrix"): ...

imxDeparse signature(object = "MxMatrix"): ...

imxSquareMatrix signature(.Object = "MxMatrix"): ...

imxSymmetricMatrix signature(.Object = "MxMatrix"): ...

imxVerifyMatrix signature(.Object = "MxMatrix"): ...

length signature(x = "MxMatrix"): ...

names signature(x = "MxMatrix"): ...

ncol signature(x = "MxMatrix"): ...

nrow signature(x = "MxMatrix"): ...

print signature(x = "MxMatrix"): ...

show signature(object = "MxMatrix"): ...

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxMatrix() for creating MxMatrix objects. More information about the OpenMx package may be
found here.

Examples

showClass("MxMatrix")

http://openmx.psyc.virginia.edu/documentation

mxMLObjective 113

mxMLObjective DEPRECATED: Create MxMLObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxExpectationNormal() and mxFitFunctionML() instead. As a temporary workaround,
mxMLObjective returns a list containing an MxExpectationNormal object and an MxFitFunctionML
object.

mxMLObjective(covariance, means = NA, dimnames = NA, thresholds = NA) All occurrences of

mxMLObjective(covariance, means = NA, dimnames = NA, thresholds = NA)

Should be changed to

mxExpectationNormal(covariance, means = NA, dimnames = NA, thresholds = NA, threshnames =
dimnames) mxFitFunctionML(vector = FALSE)

Arguments

covariance A character string indicating the name of the expected covariance algebra.

means An optional character string indicating the name of the expected means algebra.

dimnames An optional character vector to be assigned to the dimnames of the covariance
and means algebras.

thresholds An optional character string indicating the name of the thresholds matrix.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationNormal
and mxFitFunctionML as shown in the example below.

Objective functions are functions for which free parameter values are chosen such that the value of
the objective function is minimized. The mxMLObjective function uses full-information maximum
likelihood to provide maximum likelihood estimates of free parameters in the algebra defined by the
’covariance’ argument given the covariance of an MxData object. The ’covariance’ argument takes
an MxAlgebra object, which defines the expected covariance of an associated MxData object. The
’dimnames’ arguments takes an optional character vector. If this argument is not a single NA, then
this vector be assigned to be the dimnames of the means vector, and the row and columns dimnames
of the covariance matrix.

mxMLObjective evaluates with respect to an MxData object. The MxData object need not be
referenced in the mxMLObjective function, but must be included in the MxModel object. mxM-
LObjective requires that the ’type’ argument in the associated MxData object be equal to ’cov’ or
’cov’. The ’covariance’ argument of this function evaluates with respect to the ’matrix’ argument
of the associated MxData object, while the ’means’ argument of this function evaluates with respect
to the ’vector’ argument of the associated MxData object. The ’means’ and ’vector’ arguments are
optional in both functions. If the ’means’ argument is not specified (NA), the optional ’vector’ argu-
ment of the MxData object is ignored. If the ’means’ argument is specified, the associated MxData
object should specify a ’means’ argument of equivalent dimension as the ’means’ algebra.

114 mxMLObjective

dimnames must be supplied where the matrices referenced by the covariance and means algebras
are not themselves labeled. Failure to do so leads to an error noting that the covariance or means
matrix associated with the ML objective does not contain dimnames.

To evaluate, place MxMLObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.
The results of the optimization can be found in the ’output’ slot of the resulting model, or using the
mxEval function.

Value

Returns a list containing an MxExpectationNormal object and an MxFitFunctionML object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

S <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden", nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleModel", S, A, I, expCov, expFunction, fitFunction,
mxData(observed=cov(tmpFrame), type="cov", numObs=dim(tmpFrame)[1]))

mxModel 115

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxModel Create MxModel Object

Description

This function creates a new MxModel object.

Usage

mxModel(model = NA, ..., manifestVars = NA, latentVars = NA,
remove = FALSE, independent = NA, type = NA, name = NA)

Arguments

model This argument is either an MxModel object or a string. If ’model’ is an Mx-
Model object, then all elements of that model are placed in the resulting Mx-
Model object. If ’model’ is a string, then a new model is created with the string
as its name. If ’model’ is either unspecified or ’model’ is a named entity, data
source, or MxPath object, then a new model is created.

... An arbitrary number of mxMatrix, mxPath, mxData, and other functions such
as mxConstraints and mxCI. These will all be added or removed from the model
as specified in the ’model’ argument, based on the ’remove’ argument.

manifestVars For RAM-type models, A list of manifest variables to be included in the model.

latentVars For RAM-type models, A list of latent variables to be included in the model.

remove logical. If TRUE, elements listed in this statement are removed from the original
model. If FALSE, elements listed in this statement are added to the original
model.

independent logical. If TRUE then the model is evaluated independently of other models.

type character vector. The model type to assign to this model. Defaults to op-
tions("mxDefaultType"). See below for valid types

name An optional character vector indicating the name of the object.

116 mxModel

Details

The mxModel function is used to create MxModel objects. Objects created by this function may be
new, or may be modified versions of existing MxModel objects. By default a new MxModel object
will be created: To create a modified version of an existing MxModel object, include this model in
the ’model’ argument.

Other named-entities may be added as arguments to the mxModel function, which are then added
to or removed from the model specified in the ‘model’ argument. Other functions you can use to
add objects to the model to this way are mxCI, mxAlgebra, mxBounds, mxConstraint, mxData,
and mxMatrix objects, as well as objective functions. You can also include MxModel objects as
sub-models of the output model, and may be estimated separately or jointly depending on shared
parameters and the ‘independent’ flag discussed below. Only one MxData object and one objective
function may be included per model, but there are no restrictions on the number of other named-
entities included in an mxModel statement.

All other arguments must be named (i.e. ‘latentVars = names’), or they will be interpreted as
elements of the ellipsis list. The ‘manifestVars’ and ‘latentVars’ arguments specify the names of
the manifest and latent variables, respectively, for use with the mxPath function. The ‘remove’
argument may be used when mxModel is used to create a modified version of an existing MxMatrix
object. When ‘remove’ is set to TRUE, the listed objects are removed from the model specified in
the ‘model’ argument. When ‘remove’ is set to FALSE, the listed objects are added to the model
specified in the ‘model’ argument.

Model independence may be specified with the ‘independent’ argument. If a model is independent
(‘independent = TRUE’), then the parameters of this model are not shared with any other model.
An independent model may be estimated with no dependency on any other model. If a model is not
independent (‘independent = FALSE’), then this model shares parameters with one or more other
models such that these models must be jointly estimated. These dependent models must be entered
as arguments in another model, so that they are simultaneously optimized.

The model type is determined by a character vector supplied to the ‘type’ argument. The type of a
model is a dynamic property, ie. it is allowed to change during the lifetime of the model. To see
a list of available types, use the mxTypes command. When a new model is created and no type is
specified, the type specified by options("mxDefaultType") is used.

To be estimated, MxModel objects must include objective functions as arguments (mxAlgebraOb-
jective, mxFIMLObjective, mxMLObjective or mxRAMObjective) and executed using the mxRun
function. When MxData objects are included in models, the ’type’ argument of these objects may
require or exclude certain objective functions, or set an objective function as default.

Named entities in MxModel objects may be viewed and referenced by name using the $ symbol. For
instance, for an MxModel named "yourModel" containing an MxMatrix named "yourMatrix", the
contents of "yourMatrix" can be accessed as yourModel$yourMatrix. Slots (i.e., matrices, algebras,
etc.) in an mxMatrix may also be referenced with the $ symbol (e.g., yourModel$matrices or
yourModel$algebras). See the documentation for Classes and the examples in Classes for more
information.

Value

Returns a new MxModel object. MxModel objects must include an objective function to be used as
arguments in mxRun functions.

mxModel 117

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

See mxCI for information about adding Confidence Interval calculations to a model. See mxPath for
information about adding paths to RAM-type models. See mxMatrix for information about adding
matrices to models. See mxData for specifying the data a model is to be evaluated against. See
MxModel for the S4 class created by mxMatrix. Many advanced options can be set via mxOption
(such as calculating the Hessian). More information about the OpenMx package may be found here.

Examples

library(OpenMx)

At the simplest, you can create an empty model, placing it in an object, and add to it later
emptyModel <- mxModel(model="IAmEmpty")

Create a model named 'firstdraft' with one matrix 'A'
firstModel <- mxModel(model='firstdraft',

mxMatrix(type='Full', nrow = 3, ncol = 3, name = "A"))

Update 'firstdraft', and rename the model 'finaldraft'
finalModel <- mxModel(model=firstModel,

mxMatrix(type='Symm', nrow = 3, ncol = 3, name = "S"),
mxMatrix(type='Iden', nrow = 3, name = "F"),
name= "finaldraft")

Add data to the model from an existing data frame in object 'data'
data(twinData) # load some data
finalModel <- mxModel(model=finalModel, mxData(twinData, type='raw'))

Two ways to view the matrix named "A" in MxModel object 'model'

finalModel$A

finalModel$matrices$A

A working example using OpenMx Path Syntax
data(HS.ability.data) # load the data

Spatial <- c("visual", "cubes", "paper") # The manifest variables loading on each proposed latent variable
Verbal <- c("general", "paragrap", "sentence")
Math <- c("numeric", "series", "arithmet")

latents <- c("vis", "math", "text")
manifests <- c(Spatial, Math, Verbal)

HSModel <- mxModel(model="Holzinger_and_Swineford_1939", type="RAM",
manifestVars = manifests, # list the measured variables (boxes)
latentVars = latents, # list the latent variables (circles)

118 MxModel-class

factor loadings from latents to manifests
mxPath(from="vis", to=Spatial),# factor loadings
mxPath(from="math", to=Math), # factor loadings
mxPath(from="text", to=Verbal), # factor loadings

Allow latent variables to covary
mxPath(from="vis" , to="math", arrows=2, free=TRUE),
mxPath(from="vis" , to="text", arrows=2, free=TRUE),
mxPath(from="math", to="text", arrows=2, free=TRUE),

Allow latent variables to have variance (first fixed @ 1)
mxPath(from=latents, arrows=2, free=c(FALSE,TRUE,TRUE), values=1.0),
Manifest have residual variance
mxPath(from=manifests, arrows=2),
the data to be analysed
mxData(cov(HS.ability.data[,manifests]), type = "cov", numObs = 301))

fitModel <- mxRun(HSModel) # run the model
summary(fitModel) # examine the output: Fit statistics and path loadings

MxModel-class MxModel Class

Description

MxModel is an S4 class. An MxModel object is a named entity. New instances of this class can be
created using the function mxModel.

Details

The MxModel class has the following slots:

name - The name of the object
matrices - A list of MxMatrix objects
algebras - A list of MxAlgebra objects

submodels - A list of MxModel objects
constraints - A list of MxConstraint objects

intervals - A list of confidence intervals requested in MxCI objects
bounds - A list of MxBounds objects

latentVars - A list of latent variables
manifestVars - A list of manifest variables

data - A MxData object
objective - Either NULL or a MxObjective object

independent - TRUE if-and-only-if the model is independent
options - A list of optimizer options
output - A list with optimization results

MxModel-class 119

The ‘name’ slot is the name of the MxModel object.

The ‘matrices’ slot contains a list of the MxMatrix objects included in the model. These objects
are listed by name. Two objects may not share the same name. If a new MxMatrix is added to
an MxModel object with the same name as an MxMatrix object in that model, the added version
replaces the previous version. There is no imposed limit on the number of MxMatrix objects that
may be added here.

The ‘algebras’ slot contains a list of the MxAlgebra objects included in the model. These objects
are listed by name. Two objects may not share the same name. If a new MxAlgebra is added to
an MxModel object with the same name as an MxAlgebra object in that model, the added version
replaces the previous version. All MxMatrix objects referenced in the included MxAlgebra objects
must be included in the ‘matrices’ slot prior to estimation. There is no imposed limit on the number
of MxAlgebra objects that may be added here.

The ‘submodels’ slot contains references to all of the MxModel objects included as submodels of
this MxModel object. Models held as arguments in other models are considered to be submodels.
These objects are listed by name. Two objects may not share the same name. If a new submodel
is added to an MxModel object with the same name as an existing submodel, the added version
replaces the previous version. When a model containing other models is executed using mxRun, all
included submodels are executed as well. If the submodels are dependent on one another, they are
treated as one larger model for purposes of estimation.

The ‘constraints’ slot contains a list of the MxConstraint objects included in the model. These ob-
jects are listed by name. Two objects may not share the same name. If a new MxConstraint is added
to an MxModel object with the same name as an MxConstraint object in that model, the added ver-
sion replaces the previous version. All MxMatrix objects referenced in the included MxConstraint
objects must be included in the ‘matrices’ slot prior to estimation. There is no imposed limit on the
number of MxAlgebra objects that may be added here.

The ‘intervals’ slot contains a list of the confidence intervals requested by included MxCI objects.
These objects are listed by the free parameters, MxMatrices and MxAlgebras referenced in the
MxCI objects, not the list of MxCI objects themselves. If a new MxCI object is added to an Mx-
Model object referencing one or more free parameters MxMatrices or MxAlgebras previously listed
in the ‘intervals’ slot, the new confidence interval(s) replace the existing ones. All listed confidence
intervals must refer to free parameters MxMatrices or MxAlgebras in the model.

The ‘bounds’ slot contains a list of the MxBounds objects included in the model. These objects
are listed by name. Two objects may not share the same name. If a new MxBounds is added to
an MxModel object with the same name as an MxBounds object in that model, the added version
replaces the previous version. All MxMatrix objects referenced in the included MxBounds objects
must be included in the ‘matrices’ slot prior to estimation. There is no imposed limit on the number
of MxAlgebra objects that may be added here.

The ‘latentVars’ slot contains a list of latent variable names, which may be referenced by MxPath
objects. This slot defaults to ’NA’, and is only used when the mxPath function is used.

The ‘manifestVars’ slot contains a list of latent variable names, which may be referenced by MxPath
objects. This slot defaults to ’NA’, and is only used when the mxPath function is used.

The ‘data’ slot contains an MxData object. This slot must be filled prior to execution when an
objective function referencing data is used. Only one MxData object may be included per model,
but submodels may have their own data in their own ‘data’ slots. If an MxData object is added to
an MxModel which already contains an MxData object, the new object replaces the existing one.

120 mxOption

The ‘objective’ slot contains an objective function. This slot must be filled prior to using the mxRun
function for model execution and optimization. MxAlgebra, MxData, and MxMatrix objects re-
quired by the included objective function must be included in the appropriate slot of the MxModel
prior to using mxRun.

The ‘independent’ slot contains a logical value indicating whether or not the model is independent.
If a model is independent (independent=TRUE), then the parameters of this model are not shared
with any other model. An independent model may be estimated with no dependency on any other
model. If a model is not independent (independent=FALSE), then this model shares parameters
with one or more other models such that these models must be jointly estimated. These dependent
models must be entered as submodels of another MxModel objects, so that they are simultaneously
optimized.

The ‘options’ slot contains a list of options for the optimizer. The name of each entry in the list is
the option name to be passed to the optimizer. The values in this list are the values of the optimizer
options. The standard interface for updating options is through the mxOption function.

The ‘output’ slot contains a list of output added to the model by the mxRun function. Output
includes parameter estimates, optimization information, model fit, and other information as dictated
by the objective function. If a model has not been optimized using the mxRun function, the ’output’
slot will be ’NULL’.

Named entities in MxModel objects may be viewed and referenced by name using the $ symbol. For
instance, for an MxModel named "yourModel" containing an MxMatrix named "yourMatrix", the
contents of "yourMatrix" can be accessed as yourModel$yourMatrix. Slots (i.e., matrices, algebras,
etc.) in an mxMatrix may also be referenced with the $ symbol (e.g., yourModel$matrices or
yourModel$algebras). See the documentation for Classes and the examples in mxModel for more
information.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxModel for creating MxModel objects. More information about the OpenMx package may be
found here.

mxOption Set or Clear an Optimizer Option

Description

The function sets, shows, or clears an option that is specific to the optimizer in the back-end.

Usage

mxOption(model, key, value, reset = FALSE)

mxOption 121

Arguments

model An MxModel object or NULL

key The name of the option.

value The value of the option.

reset If TRUE then reset all options to their defaults.

Details

mxOption is used to set, clear, or query an option (given in the ‘key’ argument) in the back-end
optimizer. Valid option keys are listed below.

Use value = NULL to remove an existing option. Leaving value blank will return the current value
of the option specified by ‘key’.

To reset all options to their default values, use ‘reset = TRUE’. When reset = TRUE, ‘key’ and
‘value’ are ignored.

If the ‘model’ argument is set to NULL, the default optimizer option (i.e those applying to all
models by default) will be set.

To see the defaults, use getOption('mxOptions').

Before the model is submitted to the back-end, all keys and values are converted into strings using
the as.character function.

The maximum number of major iterations (the option “Major iterations”) for optimization for
NPSOL can be specified either by using a numeric value (such as 50, 1000, etc) or by specify-
ing a user-defined function. The user-defined function should accept two arguments as input, the
number of parameters and the number of constraints, and return a numeric value as output.

OpenMx options

Number of Threads i the number of processor cores to use. Use detectCores() to find how many are available.
Calculate Hessian [Yes | No] calculate the Hessian explicitly after optimization.

Standard Errors [Yes | No] return standard error estimates from the explicitly calculate hessian.
CI Max Iterations i the maximum number of retries when calculating confidence intervals.
Default optimizer [NPSOL | CSOLNP] the gradient descent optimizer to use

Number of Threads [0|1|2|...|10|...] number of threads used for optimization. This is how parallelism works. Default value of 0 uses detectCores() - 1.

CSOLNP is our new, experimental optimizer. There are known bugs. See the release note for
details.

NPSOL-specific options

Nolist this option suppresses printing of the options
Print level i the value of i controls the amount of printout produced by the major iterations

Minor print level i the value of i controls the amount of printout produced by the minor iterations
Print file i for i > 0 a full log is sent to the file with logical unit number i .

Summary file i for i > 0 a brief log will be output to file i .
Function precision r a measure of accuracy with which f and c can be computed.
Infinite bound size r if r > 0 defines the "infinite" bound bigbnd.

Feasibility tolerance r the maximum acceptable absolute violations in linear and nonlinear constraints.

122 mxOption

Major iterations i or a function the maximum number of major iterations before termination.
Verify level [-1:3 | Yes | No] see NPSOL manual.

Line search tolerance r controls the accuracy with which a step is taken.
Derivative level [0-3] see NPSOL manual.

Hessian [Yes | No] return the Hessian (Yes) or the transformed Hessian (No).

Checkpointing options

Always Checkpoint [Yes | No] whether to checkpoint all models during optimization.
Checkpoint Directory path the directory into which checkpoint files are written.

Checkpoint Prefix string the string prefix to add to all checkpoint filenames.
Checkpoint Fullpath path overrides the directory and prefix (useful to output to /dev/fd/2)

Checkpoint Units see list the type of units for checkpointing: ’minutes’, ’iterations’, or ’evaluations’.
Checkpoint Count i the number of units between checkpoint intervals.

Model transformation options

Error Checking [Yes | No] whether model consistency checks are performed in the OpenMx front-end
No Sort Data character vector of model names for which FIML data sorting is not performed

RAM Inverse Optimization [Yes | No] whether to enable solve(I - A) optimization
RAM Max Depth i the maximum depth to be used when solve(I - A) optimization is enabled

Multivariate normal integration parameters

mvnMaxPointsA i base number of integration points
mvnMaxPointsB i number of integration points per row
mvnMaxPointsC i number of integration points per rows^2

mvnAbsEps i absolute tolerance
mvnRelEps i relative tolerance

Value

If a model is provided, it is returned with the optimizer option either set or cleared. If value is
empty, the current value is returned.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxModel all uses of mxOption are via an mxModel whose options are set or cleared.

MxOptionalChar-class 123

Examples

set the Numbder of Threads (cores to use)
mxOption(NULL, "Number of Threads", detectCores() - 1)

testModel <- mxModel(model = "testModel") # make a model to use for example
testModel$options # show the model options (none yet)
options()$mxOptions # list all mxOptions (global settings)

testModel <- mxOption(testModel, "Function precision", 1e-5) # set the precision
testModel <- mxOption(testModel, "Function precision", NULL) # clear model-specific precision (defaults to global setting)
testModel <- mxOption(testModel, "Calculate Hessian", "No") # may optimize for speed
testModel <- mxOption(testModel, "Standard Errors" , "No") # may optimize for speed
testModel$options # see the list of options you set

MxOptionalChar-class An optional character

Description

An optional character

MxOptionalCharOrNumber-class

A character, integer, or NULL

Description

A character, integer, or NULL

MxOptionalLogical-class

An optional logical

Description

An optional logical

124 mxPath

MxOptionalMatrix-class

An optional matrix

Description

An optional matrix

MxOptionalNumeric-class

An optional numeric

Description

An optional numeric

mxPath Create List of Paths

Description

This function creates a list of paths.

Usage

mxPath(from, to = NA, connect = c("single", "all.pairs", "unique.pairs",
"all.bivariate", "unique.bivariate"), arrows = 1,
free = TRUE, values = NA, labels = NA,
lbound = NA, ubound = NA, ...)

Arguments

from character vector. These are the sources of the new paths.
to character vector. These are the sinks of the new paths.
connect String. Specifies the type of source to sink connection: "single", "all.pairs",

"all.bivariate", "unique.pairs", "unique.bivariate". Default value is "single".
arrows numeric value. Must be either 1 (for single-headed) or 2 (for double-headed

arrows).
free boolean vector. Indicates whether paths are free or fixed.
values numeric vector. The starting values of the parameters.
labels character vector. The names of the paths.
lbound numeric vector. The lower bounds of free parameters.
ubound numeric vector. The upper bounds of free parameters.
... Not used. Allows OpenMx to catch the use of the deprecated ‘all’ argument.

mxPath 125

Details

The mxPath function creates MxPath objects. These consist of a list of paths describing the relation-
ships between variables in a model using the RAM modeling approach (McArdle and MacDonald,
1984). Variables are referenced by name, and these names must appear in the ‘manifestVar’ and
‘latentVar’ arguments of the mxModel function.

Paths are specified as going "from" one variable (or set of variables) "to" another variable or set of
variables using the ‘from’ and ‘to’ arguments, respectively. If ‘to’ is left empty, it will be set to the
value of ‘from’.

‘connect’ has five possible connection types: "single", "all.pairs", "all.bivariate", "unique.pairs",
"unique.bivariate". The default value is "single". Assuming the values c(‘a’,‘b’,‘c’) for the ‘to’ and
‘from’ fields the paths produced by each connection type are as follows:

"all.pairs": (a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c).

"unique.pairs": (a,a), (a,b), (a,c), (b,b), (b,c), (c,c).

"all.bivariate": (a,b), (a,c), (b,a), (b,c), (c,a), (c,b).

"unique.bivariate": (a,b), (a,c), (b,c).

"single": (a,a), (b,b), (c,c).

Multiple variables may be input as a vector of variable names. If the ‘connect’ argument is set to
"single", then paths are created going from each entry in the ‘from’ vector to the corresponding
entry in the ‘to’ vector. If the ‘to’ and ‘from’ vectors are of different lengths when the ‘connect’
argument is set to "single", the shorter vector is repeated to make the vectors of equal length.

The ‘free’ argument specifies whether the paths created by the mxPath function are free or fixed
parameters. This argument may take either TRUE for free parameters, FALSE for fixed parameters,
or a vector of TRUEs and FALSEs to be applied in order to the created paths.

The ‘arrows’ argument specifies the type of paths created. A value of 1 indicates a one-headed
arrow representing regression. This path represents a regression of the ‘to’ variable on the ‘from’
variable, such that the arrow points to the ‘to’ variable in a path diagram. A value of 2 indicates a
two-headed arrow, representing a covariance or variance. If multiple paths are created in the same
mxPath function, then the ‘arrows’ argument may take a vector of 1s and 2s to be applied to the set
of created paths.

The ‘values’ is a numeric vectors containing the starting values of the created paths. ‘values’ gives
a starting value for estimation. The ‘labels’ argument specifies the names of the resulting MxPath
object. The ‘lbound’ and ‘ubound’ arguments specify lower and upper bounds for the created paths.

Value

Returns a list of paths.

Note

The previous implementation of ‘all’ had unsafe features. Its use is now deprecated, and has been
replaced by the new mechanism ‘connect’ which supports safe and controlled generation of desired
combinations of paths.

126 mxPath

References

McArdle, J. J. and MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action
Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-
251.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxMatrix for a matrix-based approach to path specification; mxModel for the container in which
mxPaths are embedded. More information about the OpenMx package may be found here.

Examples

A simple Example: 1 factor Confirmatory Factor Analysis

library(OpenMx)

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2,free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov",numObs=500)

)
factorFit <-mxRun(factorModel)
summary(factorFit)

A more complex example using features of R to compress what would otherwise be a long and error-prone script

myManifest <- sprintf("%02d", c(1:100)) # list of 100 variable names: "01" "02" "03"...
myLatent <- c("G1", "G2", "G3", "G4", "G5") # the latent variables for the model
Start building the model: Define its type, and add the manifest and latent variable name lists
testModel <- mxModel(model="testModel", type = "RAM", manifestVars = myManifest, latentVars = myLatent)

Create covariances between the latent variables and add to the model
Here we use combn to create the covariances
nb: To create the variances and covariances in one operation you could use
expand.grid(myLatent,myLatent) to specify from and to

uniquePairs <- combn(myLatent,2)
covariances <- mxPath(from = uniquePairs[1,], to=uniquePairs[2,], arrows = 2, free = TRUE, values = 1)
testModel <- mxModel(model=testModel, covariances)

Create variances for the latent variables
variances <- mxPath(from = myLatent, to=myLatent, arrows = 2, free = TRUE, values = 1)
testModel <- mxModel(model=testModel, variances) # add variances to the model

MxRAMModel-class 127

Make a list of paths from each packet of 20 manifests to one of the 5 latent variables
nb: The first loading to each latent is fixed to 1 to scale its variance.
singles <- list()
for (i in 1:5) {

j <- i*20
singles <- append(singles, mxPath(

from = myLatent[i], to = myManifest[(j - 19):j],
arrows = 1,
free = c(FALSE, rep(TRUE, 19)),
values = c(1, rep(0.75, 19))))

}

testModel <- mxModel(model=testModel, singles) # add single-headed paths to the model

MxRAMModel-class MxRAMModel

Description

This is an internal class and should not be used directly.

mxRAMObjective DEPRECATED: Create MxRAMObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxExpectationRAM() and mxFitFunctionML() instead. As a temporary workaround,
mxRAMObjective returns a list containing an MxExpectationNormal object and an MxFitFunc-
tionML object.

All occurrences of

mxRAMObjective(A, S, F, M = NA, dimnames = NA, thresholds = NA, vector = FALSE, thresh-
names = dimnames)

Should be changed to

mxExpectationRAM(A, S, F, M = NA, dimnames = NA, thresholds = NA, threshnames = dim-
names) mxFitFunctionML(vector = FALSE)

128 mxRAMObjective

Arguments

A A character string indicating the name of the ’A’ matrix.

S A character string indicating the name of the ’S’ matrix.

F A character string indicating the name of the ’F’ matrix.

M An optional character string indicating the name of the ’M’ matrix.

dimnames An optional character vector to be assigned to the column names of the ’F’ and
’M’ matrices.

thresholds An optional character string indicating the name of the thresholds matrix.

vector A logical value indicating whether the objective function result is the likelihood
vector.

threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationRAM and
mxFitFunctionML as shown in the example below.

Objective functions were functions for which free parameter values are chosen such that the value
of the objective function was minimized. The mxRAMObjective provided maximum likelihood
estimates of free parameters in a model of the covariance of a given MxData object. This model
is defined by reticular action modeling (McArdle and McDonald, 1984). The ’A’, ’S’, and ’F’
arguments must refer to MxMatrix objects with the associated properties of the A, S, and F matrices
in the RAM modeling approach.

The ’dimnames’ arguments takes an optional character vector. If this argument is not a single NA,
then this vector be assigned to be the column names of the ’F’ matrix and optionally to the ’M’
matrix, if the ’M’ matrix exists.

The ’A’ argument refers to the A or asymmetric matrix in the RAM approach. This matrix consists
of all of the asymmetric paths (one-headed arrows) in the model. A free parameter in any row
and column describes a regression of the variable represented by that row regressed on the variable
represented in that column.

The ’S’ argument refers to the S or symmetric matrix in the RAM approach, and as such must be
square. This matrix consists of all of the symmetric paths (two-headed arrows) in the model. A free
parameter in any row and column describes a covariance between the variable represented by that
row and the variable represented by that column. Variances are covariances between any variable at
itself, which occur on the diagonal of the specified matrix.

The ’F’ argument refers to the F or filter matrix in the RAM approach. If no latent variables are
included in the model (i.e., the A and S matrices are of both of the same dimension as the data
matrix), then the ’F’ should refer to an identity matrix. If latent variables are included (i.e., the A
and S matrices are not of the same dimension as the data matrix), then the ’F’ argument should
consist of a horizontal adhesion of an identity matrix and a matrix of zeros.

The ’M’ argument refers to the M or means matrix in the RAM approach. It is a 1 x n matrix,
where n is the number of manifest variables + the number of latent variables. The M matrix must
be specified if either the mxData type is “cov” or “cor” and a means vector is provided, or if the
mxData type is “raw”. Otherwise the M matrix is ignored.

mxRAMObjective 129

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxRAMObjective will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

mxRAMObjective evaluates with respect to an MxData object. The MxData object need not
be referenced in the mxRAMObjective function, but must be included in the MxModel object.
mxRAMObjective requires that the ’type’ argument in the associated MxData object be equal to
’cov’ or ’cor’.

To evaluate, place MxRAMObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.
The results of the optimization can be found in the ’output’ slot of the resulting model, and may be
obtained using the mxEval function..

Value

Returns a list containing an MxExpectationRAM object and an MxFitFunctionML object.

References

McArdle, J. J. and MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action
Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-
251.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionML

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Define the matrices

matrixS <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

matrixA <- mxMatrix(type = "Full", nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

matrixF <- mxMatrix(type="Iden", nrow=2, ncol=2, name="F")
matrixM <- mxMatrix(type = "Full", nrow = 1, ncol = 2, values=c(0,0),

free=c(TRUE,TRUE), labels=c("Mx", "My"), name = "M")

Define the expectation

130 mxRename

expFunction <- mxExpectationRAM(M="M", dimnames = tmpNames)

Choose a fit function

fitFunction <- mxFitFunctionML()

Define the model

tmpModel <- mxModel(model="exampleRAMModel", matrixA, matrixS, matrixF, matrixM, expFunction, fitFunction,
mxData(observed=tmpFrame, type="raw"))

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxRename Rename MxModel or a Submodel

Description

This functions renames either the top model or a submodel to a new name. All internal references
to the old model name are replaced with references to the new name.

Usage

mxRename(model, newname, oldname = NA)

Arguments

model a MxModel object.

newname the new name of the model.

oldname the name of the target model to rename. If NA then rename top model.

Value

Return a mxModel object with the target model renamed.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

mxRestore 131

Examples

library(OpenMx)

create two empty models
modelA <- mxModel(model='modelA')
modelB <- mxModel(model='modelB')

create a parent model with two submodels
modelC <- mxModel(model='modelC', modelA, modelB)

Rename modelC to model1
model1 <- mxRename(modelC, 'model1')

Rename submodel modelB to model2
model1 <- mxRename(model1, oldname = 'modelB', newname = 'model2')

model1

mxRestore Restore From Checkpoint File

Description

The function loads the last saved state from a checkpoint file.

Usage

mxRestore(model, chkpt.directory = ".", chkpt.prefix = "")

Arguments

model MxModel object to be loaded.
chkpt.directory

character. Directory where the checkpoint file is located.

chkpt.prefix character. Prefix of the checkpoint file.

Details

In general, the arguments ‘chkpt.directory’ and ‘chkpt.prefix’ should be identical to the mxOption:
‘Checkpoint Directory’ and ‘Checkpoint Prefix’ that were specificed on the model before execution.

Alternatively, the checkpoint file can be manually loaded as a data.frame in R. Use read.table
with the options header=TRUE, sep="\t", stringsAsFactors=FALSE, check.names=FALSE.

Value

Returns an MxModel object with free parameters updated to the last saved values.

132 mxRObjective

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

library(OpenMx)

Simulate some data

x=rnorm(1000, mean=0, sd=1)
y= 0.5*x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

Create a model that includes an expected covariance matrix,
an expectation function, a fit function, and an observed covariance matrix

data <- mxData(cov(tmpFrame), type="cov", numObs = 1000)
expCov <- mxMatrix(type="Symm", nrow=2, ncol=2, values=c(.2,.1,.2), free=TRUE, name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames)
fitFunction <- mxFitFunctionML()
testModel <- mxModel(model="testModel", expCov, data, expFunction, fitFunction)

#Use mxRun to optimize the free parameters in the expected covariance matrix
modelOut <- mxRun(testModel, checkpoint = TRUE)
modelOut$expCov

#Use mxRestore to load the last checkpoint saved state of the model
modelRestore <- mxRestore(testModel)
modelRestore$expCov

mxRObjective DEPRECATED: Create MxRObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxFitFunctionR() instead. As a temporary workaround, mxRObjective returns a list
containing a NULL MxExpectation object and an MxFitFunctionR object.

All occurrences of

mxRObjective(fitfun, ...)

Should be changed to

mxFitFunctionR(fitfun, ...)

mxRObjective 133

Arguments

objfun A function that accepts two arguments.

... The initial state information to the objective function.

Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxExpectationNormal
and mxFitFunctionML as shown in the example below.

The fitfun argument must be a function that accepts two arguments. The first argument is the
mxModel that should be evaluated, and the second argument is some persistent state information
that can be stored between one iteration of optimization to the next iteration. It is valid for the
function to simply ignore the second argument.

The function must return either a single numeric value, or a list of exactly two elements. If the
function returns a list, the first argument must be a single numeric value and the second element
will be the new persistent state information to be passed into this function at the next iteration. The
single numeric value will be used by the optimizer to perform optimization.

The initial default value for the persistant state information is NA.

Throwing an exception (via stop) from inside fitfun may result in unpredictable behavior. You may
want to wrap your code in tryCatch while experimenting.

Value

Returns a list containing a NULL mxExpectation object and an MxFitFunctionR object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and fit a model using mxFitFunctionR

library(OpenMx)

A <- mxMatrix(nrow = 2, ncol = 2, values = c(1:4), free = TRUE, name = 'A')
squared <- function(x) { x ^ 2 }

Define the objective function in R

objFunction <- function(model, state) {
values <- modelAvalues
return(squared(values[1,1] - 4) + squared(values[1,2] - 3) +

squared(values[2,1] - 2) + squared(values[2,2] - 1))
}

Define the expectation function

fitFunction <- mxFitFunctionR(objFunction)

134 mxRowObjective

Define the model

tmpModel <- mxModel(model="exampleModel", A, fitFunction)

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)
summary(tmpModelOut)

mxRowObjective DEPRECATED: Create MxRowObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use mxFitFunctionRow() instead. As a temporary workaround, mxRowObjective returns a
list containing a NULL MxExpectation object and an MxFitFunctionRow object.

All occurrences of

mxRowObjective(rowAlgebra, reduceAlgebra, dimnames, rowResults = "rowResults", filteredDataRow
= "filteredDataRow", existenceVector = "existenceVector")

Should be changed to

mxFitFunctionRow(rowAlgebra, reduceAlgebra, dimnames, rowResults = "rowResults", filtered-
DataRow = "filteredDataRow", existenceVector = "existenceVector")

Arguments

rowAlgebra A character string indicating the name of the algebra to be evaluated row-wise.

reduceAlgebra A character string indicating the name of the algebra that collapses the row re-
sults into a single number which is then optimized.

dimnames A character vector of names corresponding to columns be extracted from the
data set.

rowResults The name of the auto-generated "rowResults" matrix. See details.

filteredDataRow

The name of the auto-generated "filteredDataRow" matrix. See details.

existenceVector

The name of the auto-generated "existenceVector" matrix. See details.

mxRowObjective 135

Details

Objective functions are functions for which free parameter values are chosen such that the value
of the objective function is minimized. The mxRowObjective function evaluates a user-defined
MxAlgebra object called the ‘rowAlgebra’ in a row-wise fashion. It then stores results of the row-
wise evaluation in another MxAlgebra object called the ‘rowResults’. Finally, the mxRowObjective
function collapses the row results into a single number which is then used for optimization. The
MxAlgebra object named by the ‘reduceAlgebra’ collapses the row results into a single number.

The ‘filteredDataRow’ is populated in a row-by-row fashion with all the non-missing data from the
current row. You cannot assume that the length of the filteredDataRow matrix remains constant
(unless you have no missing data). The ‘existenceVector’ is populated in a row-by-row fashion with
a value of 1.0 in column j if a non-missing value is present in the data set in column j, and a value of
0.0 otherwise. Use the functions omxSelectRows, omxSelectCols, and omxSelectRowsAndCols to
shrink other matrices so that their dimensions will be conformable to the size of ‘filteredDataRow’.

Value

Please use mxFitFunctionRow() instead. As a temporary workaround, mxRowObjective returns a
list containing a NULL MxExpectation object and an MxFitFunctionRow object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Model that adds two data columns row-wise, then sums that column
Notice no optimization is performed here.

library(OpenMx)

xdat <- data.frame(a=rnorm(10), b=1:10) # Make data set
amod <- mxModel(model="example1",

mxData(observed=xdat, type='raw'),
mxAlgebra(sum(filteredDataRow), name = 'rowAlgebra'),
mxAlgebra(sum(rowResults), name = 'reduceAlgebra'),
mxFitFunctionRow(

rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a','b'))

)
amodOut <- mxRun(amod)
mxEval(rowResults, model=amodOut)
mxEval(reduceAlgebra, model=amodOut)

Model that find the parameter that minimizes the sum of the
squared difference between the parameter and a data row.

bmod <- mxModel(model="example2",
mxData(observed=xdat, type='raw'),
mxMatrix(values=.75, ncol=1, nrow=1, free=TRUE, name='B'),

136 mxRun

mxAlgebra((filteredDataRow - B) ^ 2, name='rowAlgebra'),
mxAlgebra(sum(rowResults), name='reduceAlgebra'),
mxFitFunctionRow(

rowAlgebra='rowAlgebra',
reduceAlgebra='reduceAlgebra',
dimnames=c('a'))

)
bmodOut <- mxRun(bmod)
mxEval(B, model=bmodOut)
mxEval(reduceAlgebra, model=bmodOut)
mxEval(rowResults, model=bmodOut)

mxRun Send a Model to the Optimizer

Description

This function begins optimization on the top-level model.

Usage

mxRun(model, ..., intervals = FALSE, silent = FALSE, suppressWarnings = FALSE,
unsafe = FALSE, checkpoint = FALSE, useSocket = FALSE, onlyFrontend = FALSE,
useOptimizer = TRUE)

Arguments

model A MxModel object to be optimized.

... Not used. Forces remaining arguments to be specified by name.

intervals A boolean indicating whether to compute the specified confidence intervals.

silent A boolean indicating whether to print status to terminal.

suppressWarnings

A boolean indicating whether to suppress warnings.

unsafe A boolean indicating whether to ignore errors.

checkpoint A boolean indicating whether to periodically write parameter values to a file.

useSocket A boolean indicating whether to periodically write parameter values to a socket.

onlyFrontend A boolean indicating whether to run only front-end model transformations.

useOptimizer A boolean indicating whether to run only the log-likelihood of the current free
parameter values but not move any of the free parameters.

mxRun 137

Details

The mxRun function is used to optimize free parameters in MxModel objects based on an expec-
tation function and fit function. MxModel objects included in the mxRun function must include an
appropriate expectation and fit functions.

If the ‘silent’ flag is TRUE, then model execution will not print any status messages to the terminal.

If the ‘suppressWarnings’ flag is TRUE, then model execution will not issue a warning if NPSOL
returns a non-zero status code.

If the ‘unsafe’ flag is TRUE, then any error conditions will throw a warning instead of an error. It
is strongly recommended to use this feature only for debugging purposes.

Free parameters are estimated or updated based on the expectation and fit functions. These esti-
mated values, along with estimation information and model fit, can be found in the ’output’ slot of
MxModel objects after mxRun has been used.

If a model is dependent on or shares parameters with another model, both models must be included
as arguments in another MxModel object. This top-level MxModel object must include expectation
and fit functions in both submodels, as well as an additional fit function describing how the results
of the first two should be combined.

Value

Returns an MxModel object with free parameters updated to their final values. The return value
contains an "output" slot with the results of optimization.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and run the 1-factor CFA on the openmx.psyc.virginia.edu front page

library(OpenMx)

data(demoOneFactor) # load the demoOneFactor dataframe

manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable
model <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests, labels=paste("b", 1:5, sep="")),
mxPath(from=manifests, arrows=2, labels=paste("u", 1:5, sep="")),
mxPath(from=latents , arrows=2, free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov", numObs=500)

)
model <- mxRun(model) # Run the model, returning the result into model
summary(model) # Show summary of the fitted model

138 mxSimplify2Array

mxSetDefaultOptions Reset global options to the default

Description

Reset global options to the default

Usage

mxSetDefaultOptions()

mxSimplify2Array Like simplify2array but works with vectors of different lengths

Description

Vectors are filled column-by-column into a matrix. Shorter vectors are padded with NAs to fill
whole columns.

Usage

mxSimplify2Array(x, higher = FALSE)

Arguments

x a list of vectors

higher whether to produce a higher rank array (defaults to FALSE)

Examples

v1 <- 1:3
v2 <- 4:5
v3 <- 6:10
mxSimplify2Array(list(v1,v2,v3))

[,1] [,2] [,3]
[1,] 1 4 6
[2,] 2 5 7
[3,] 3 NA 8
[4,] NA NA 9
[5,] NA NA 10

mxStandardizeRAMpaths 139

mxStandardizeRAMpaths Standardize RAM models’ path coefficients

Description

Provides a dataframe containing the standardized values of all nonzero path coefficients appearing
in the A and S matrices of models that use RAM expectation (either of type="RAM" or containing an
explicit mxExpectationRAM() statement). These standardized values are what the path coefficients
would be if all variables in the analysis–both manifest and latent–were standardized to unit variance.
Can optionally include asymptotic standard errors for those standardized coefficients, computed via
the delta method.

Usage

mxStandardizeRAMpaths(model,SE=FALSE)

Arguments

model An mxModel object, that either uses RAM expectation or contains at least one
submodel that does.

SE Logical. Should standard errors be included with the standardized point esti-
mates? Defaults to FALSE. Certain conditions are required for use of SE=TRUE;
see "Details" below.

Details

Matrix A contains the Asymmetric paths, i.e. the single-headed arrows. Matrix S contains the
Symmetric paths, i.e. the double-headed arrows. The function will work even if mxMatrix objects
named "A" and "S" are absent from the model, since it identifies which matrices in the model have
been assigned the roles of A and S in the mxExpectationRAM statement. Note that, in models of
type="RAM", the necessary matrices and expectation statement are automatically assembled from
the mxPath objects.

If model contains any submodels with independent=TRUE that use RAM expectation, mxStandardizeRAMpaths()
automatically applies itself recursively over those submodels.

Use of SE=TRUE requires that package numDeriv be installed. It also requires that model contain no
mxConstraint statements, and have a nonempty hessian element in its output slot. There are three
common reasons why the latter condition may not be met. First, the model may not have been run
yet, i.e. it was not output by mxRun(). Second, mxOption "Hessian" might be set to "No". Third,
computing the Hessian matrix might possibly have been skipped per a user-defined mxCompute*
statement (if any are present in the model). If model contains RAM-expectation submodels with
independent=TRUE, these conditions are checked separately for each such submodel.

In any event, using these standard errors for hypothesis-testing or forming confidence intervals is
not generally advised. Instead, it is considered best practice to conduct likelihood-ratio tests or
compute likelihood-based confidence intervals (from mxCI()), as in examples below.

The user should note that mxStandardizeRAMpaths() only cares whether an element of A or S is
nonzero, and not whether it is a fixed or free parameter. So, for instance, if the function is used on a

140 mxStandardizeRAMpaths

model not yet run, any free parameters in A or S initialized at zero will not appear in the function’s
output.

The user is warned to interpret the output of mxStandardizeRAMpaths() cautiously if any elements
of A or S depend upon definition variables.

Value

If argument model is a single-group model that uses RAM expecation, then mxStandardizeRAMpaths()
returns a dataframe, with one row for each nonzero path coefficient in A and S, and with the follow-
ing columns:

name Character strings that uniquely identify each nonzero path coefficient in terms
of the model name, the matrix ("A" or "S"), the row number, and the column
number.

label Character labels for those path coefficients that are labeled elements of an mxMatrix
object, and NA for those that are not. Note that path coefficients having the same
label (and therefore the same UNstandardized value) can have different stan-
dardized values, and therefore the same label may appear more than once in this
dataframe.

matrix Character strings of "A" or "S", depending on which matrix contains the given
path coefficient.

row Character. The rownames of the matrix containing each path coefficient; row
numbers are used instead if the matrix has no rownames.

col Character. The colnames of the matrix containing each path coefficient; column
numbers are used instead if the matrix has no colnames.

Raw.Value Numeric values of the raw (i.e., UNstandardized) path coefficients.

Raw.SE Numeric values of the asymptotic standard errors of the raw path coefficients if
if SE=TRUE, or NA otherwise.

Std.Value Numeric values of the standardized path coefficients.

Std.SE Numeric values of the asymptotic standard errors of the standardized path coef-
ficients if SE=TRUE, or NA otherwise.

If model is a multi-group model containing at least one submodel with RAM expectation, then
mxStandardizeRAMpaths() returns a list. The list has a number of elements equal to the number
of submodels that either have RAM expectation or contain a submodel that does. List elements cor-
responding to RAM-expectation submodels contain a dataframe, as described above. List elements
corresponding to "container" submodels are themselves lists, of the kind described here.

Examples

library(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,

mxThreshold 141

mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2, values=0.1),
mxPath(from=latents, arrows=2,free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov",numObs=500)

)
factorFit <-mxRun(factorModel)
summary(factorFit)$parameters
mxStandardizeRAMpaths(model=factorFit,SE=FALSE)

Likelihood ratio test of variable x1's factor loading:
factorModelNull <- omxSetParameters(factorModel,labels="One Factor.A[1,6]",

values=0,free=FALSE)
factorFitNull <- mxRun(factorModelNull)
mxCompare(factorFit,factorFitNull)[2,"p"] #<--p-value

Confidence intervals for all standardized paths:
factorModel2 <- mxModel(model=factorModel,

mxMatrix(type="Iden",nrow=nrow(factorModel$A),name="I"),
mxAlgebra(vec2diag(diag2vec(solve(I-A)%*%S%*%t(solve(I-A)))%^%-0.5) ,

name="InvSD"),
mxAlgebra(InvSD %*% A %*% solve(InvSD),

name="Az",dimnames=dimnames(factorModel$A)),
mxAlgebra(InvSD %*% S %*% InvSD,

name="Sz",dimnames=dimnames(factorModel$S)),
mxCI(c("Az","Sz"))

)
factorFit2 <- mxRun(factorModel2,intervals=TRUE)
Contains point values and confidence limits for all paths:
summary(factorFit2)$CI

mxThreshold Create List of Thresholds

Description

This function creates a list of thresholds.

Usage

mxThreshold(vars, nThresh=NA,
free=FALSE, values=NA, labels=NA,
lbound=NA, ubound=NA)

Arguments

vars character vector. These are the variables for which thresholds are to be specified.

nThresh numeric vector. These are the number of thresholds for each variables listed in
‘vars’.

free boolean vector. Indicates whether threshold parameters are free or fixed.

142 mxThreshold

values numeric vector. The starting values of the parameters.

labels character vector. The names of the parameters.

lbound numeric vector. The lower bounds of free parameters.

ubound numeric vector. The upper bounds of free parameters.

Details

The mxPath function creates MxThreshold objects. These consist of a list of ordinal variables and
the thresholds that define the relationship between the observed ordinal variable and the continuous
latent variable assumed to underly it. This function directly mirrors the usage of mxPath, but is used
to specify thresholds rather than means, variances and bivariate relationships.

The ‘vars’ argument specifies which variables you wish to specify thresholds for. Variables are
referenced by name, and these names must appear in the ‘manifestVar’ argument of the mxModel
function if thresholds are to be correctly processed. Additionally, variables for which thresholds are
specified must be specified as ordinal factors in whatever data is included in the model.

The ‘nThresh’ argument specifies how many thresholds are to be specified for the variable or vari-
ables included in the ‘vars’ argument. The number of thresholds for a particular variable should be
one fewer than the number of categories specified for that variable.

The ‘free’ argument specifies whether the thresholds created by the mxThreshold function are free
or fixed parameters. This argument may take either TRUE for free parameters, FALSE for fixed
parameters, or a vector of TRUEs and FALSEs to be applied in order to the created thresholds.

The ‘values’ is a numeric vectors containing the starting values of the created thresholds. ‘values’
gives a starting value for estimation. The ‘labels’ argument specifies the names of the parameters in
the resulting MxThreshold object. The ‘lbound’ and ‘ubound’ arguments specify lower and upper
bounds for the created threshold parameters.

Thresholds for multiple variables may be specified simultaneously by including a vector of variable
names to the ‘vars’ argument. When multiple variables are included in the ‘vars’ argument, the
length of the ‘vars’ argument must be evenly divisable by the length of the ‘nThresh’ argument. All
subsequent arguments (‘free’ through ‘ubound’) should have their lengths be a factor of the total
number of thresholds specified for all variables.

If four variables are included in the ‘vars’ argument, then the ‘nThresh’ argument should contain ei-
ther one, two or four elements. If the ‘nThresh’ argument specifies two thresholds for each variable,
then ‘free’, ‘values’, and all subsequent arguments should specify eight values by including one,
two, four or eight elements. Whenever fewer values are specified than are required (e.g., specify
two values for eight thresholds), then the entire vector of values is repeated until the required num-
ber of values is reached, and will return an error if the correct number of values cannot be achieved
by repeating the entire vector.

Value

Returns a list of thresholds.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

mxThreshold 143

See Also

mxPath for comparable specification of paths. mxMatrix for a matrix-based approach to thresholds
specification; mxModel for the container in which mxThresholds are embedded. More information
about the OpenMx package may be found here.

Examples

a simple one factor ordinal model
require(OpenMx)

data(myFADataRaw)

oneFactorOrd <- myFADataRaw[,c("z1", "z2", "z3")]

oneFactorOrd$z1 <- mxFactor(oneFactorOrd$z1, levels=c(0, 1))
oneFactorOrd$z2 <- mxFactor(oneFactorOrd$z2, levels=c(0, 1))
oneFactorOrd$z3 <- mxFactor(oneFactorOrd$z3, levels=c(0, 1, 2))

oneFactorModel <- mxModel("Common Factor Model Path Specification",
type="RAM",
mxData(
observed=oneFactorOrd,
type="raw"
),
manifestVars=c("z1","z2","z3"),
latentVars="F1",
residual variances
mxPath(
from=c("z1","z2","z3"),
arrows=2,
free=FALSE,
values=c(1,1,1),
labels=c("e1","e2","e3")
),
latent variance
mxPath(
from="F1",
arrows=2,
free=TRUE,
values=1,
labels ="varF1"
),
factor loadings
mxPath(
from="F1",
to=c("z1","z2","z3"),
arrows=1,
free=c(FALSE,TRUE,TRUE),
values=c(1,1,1),
labels=c("l1","l2","l3")
),
means

144 mxTryHard

mxPath(
from="one",
to=c("z1","z2","z3","F1"),
arrows=1,
free=FALSE,
values=0,
labels=c("meanz1","meanz2","meanz3","meanF")
),
thresholds
mxThreshold(vars=c("z1", "z2", "z3"),
nThresh=c(1,1,2),
free=TRUE,
values=c(-1, 0, -.5, 1.2)
)
) # close model

oneFactorResults <- mxRun(oneFactorModel)

mxTryHard Make multiple attempts to run a model

Description

Makes multiple attempts to fit an MxModel object with mxRun() until the optimizer yields an ac-
ceptable solution or the maximum number of attempts is reached. Each attempt uses the parameter
estimates of the previous attempt as start values, except they are each multiplied by random draws
from a uniform distribution. From among its attempts, the function returns the fitted, post-mxRun()
model with the smallest fit-function value, and prints to the console the start values it used for that
model.

Usage

mxTryHard(model,extraTries=10,greenOK=FALSE,loc=1,scale=0.25,checkHess=TRUE,fit2beat=Inf,paste=TRUE,...)

Arguments

model The model to be run; object of class MxModel.
extraTries The number of attempts to run the model in addition to the first. In effect, is

the maximum number of attempts mxTryHard() will make, since the function
will stop once an acceptable solution is reached. Defaults to 10, in which case a
maximum of 11 total attempts will be made.

greenOK Logical; is a solution with Mx status GREEN (npsolstatus=1) acceptable? De-
faults to FALSE.

loc, scale The location and scale parameters of the uniform (rectangular) distribution from
which random values are drawn to disturb start values between attempts. The
location parameter is the distribution’s median, and the scale parameter is the
half-width of the rectangle (that is, the absolute difference between the median
and the extrema). Defaults to a uniform distribution on the interval (0.75, 1.25).

mxTryHard 145

checkHess Logical; is a positive-definite Hessian a requirement for an acceptable solution?
Defaults to TRUE.

fit2beat An upper limit to the objective-function value that an acceptable solution may
have. Useful if a nested submodel of model has already been fitted, since model,
with its additional free parameters, should not yield a fit-function value any
greater than that of the submodel.

paste Logical. If TRUE (default), start values for the returned fitted model are printed
to console as a comma-separated string. This is useful if the user wants to copy-
paste these values into an R script, say, in an omxSetParameters() statement.
If FALSE, the vector of start values is printed as-is. Note that this vector, from
omxGetParameters(), has names corresponding to the free parameters; these
names are not displayed when paste=TRUE.

... Additional arguments to be passed to mxRun() (for example, intervals=TRUE).
Note that mxTryHard() always internally invokes mxRun() with argument suppressWarnings=TRUE.

Value

Usually, mxTryHard() returns a post-mxRun() MxModel object. Specifically, this will be the fitted
model having the smallest fit-function value found by mxTryHard() during its attempts. The start
values used to obtain this fitted model are printed to console.

If every attempt at running model fails, mxTryHard() returns an object of class ’try-error’, and the
start values from the last attempt are printed to console.

mxTryHard() throws a warning if the returned MxModel object has a nonzero npsolstatus.

See Also

mxRun()

Examples

library(OpenMx)

data(demoOneFactor) # load the demoOneFactor dataframe

manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable
model <- mxModel(model="One Factor", type="RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests, labels=paste("b", 1:5, sep="")),
mxPath(from=manifests, arrows=2, labels=paste("u", 1:5, sep="")),
mxPath(from=latents , arrows=2, free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov", numObs=500)

)
model <- mxTryHard(model) # Run the model, returning the result into model
summary(model) # Show summary of the fitted model

146 mxVersion

mxTypes List Currently Available Model Types

Description

This function returns a vector of the currently available type names.

Usage

mxTypes()

Value

Returns a character vector of type names.

Examples

mxTypes()

mxVersion Returns Current Version String

Description

This function returns a string with the current version number of OpenMx. Optionally (with ver-
bose = TRUE (the default)), it prints a message containing the version of R, the platform, and the
optimiser.

Usage

mxVersion(model = NULL, verbose = TRUE)

Arguments

model optional MxModel to request optimizer from (default = NULL)

verbose Whether to print version information to the console (default = TRUE)

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

myFADataRaw 147

Examples

Print useful version information.
mxVersion()
If you just want the version, use this call.
x = mxVersion(verbose=FALSE)

library(OpenMx)
data(demoOneFactor) # load the demoOneFactor dataframe
manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable
model <- mxModel(model = "One Factor", type = "RAM",

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents, to = manifests, labels = paste("b", 1:5, sep = "")),
mxPath(from = manifests, arrows = 2 , labels = paste("u", 1:5, sep = "")),
mxPath(from = latents , arrows = 2 , free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)

)
mxVersion(model, verbose = TRUE)

myFADataRaw Example 500-row dataset with 12 generated variables

Description

Twelve columns of generated numeric data: x1 x2 x3 x4 x5 x6 y1 y2 y3 z1 z2 z3.

Usage

data(myFADataRaw)

Details

The x variables intercorrelate around .6 with each other.

The y variables intercorrelate around .5 with each other, and correlate around .3 with the X vars.

There are three ordinal variables, z1, z2, and z3.

The data are used in some OpenMx examples, especially confirmatory factor analysis.

There are no missing data.

Examples

data(myFADataRaw)
str(myFADataRaw)

148 mzfData

mzfData MZ female example twin data

Description

Data for extended twin example ETC88.R

Usage

data("mzfData")

Format

A data frame with 3099 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

mzmData 149

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(mzfData)
str(mzfData)

mzmData MZ Male example data

Description

Data for extended twin example ETC88.R

Usage

data("mzmData")

Format

A data frame with 3019 observations on the following 37 variables.

famid a numeric vector

e1 a numeric vector

e2 a numeric vector

e3 a numeric vector

e4 a numeric vector

e5 a numeric vector

e6 a numeric vector

e7 a numeric vector

e8 a numeric vector

150 mzmData

e9 a numeric vector

e10 a numeric vector

e11 a numeric vector

e12 a numeric vector

e13 a numeric vector

e14 a numeric vector

e15 a numeric vector

e16 a numeric vector

e17 a numeric vector

e18 a numeric vector

a1 a numeric vector

a2 a numeric vector

a3 a numeric vector

a4 a numeric vector

a5 a numeric vector

a6 a numeric vector

a7 a numeric vector

a8 a numeric vector

a9 a numeric vector

a10 a numeric vector

a11 a numeric vector

a12 a numeric vector

a13 a numeric vector

a14 a numeric vector

a15 a numeric vector

a16 a numeric vector

a17 a numeric vector

a18 a numeric vector

Examples

data(mzmData)
str(mzmData)

Named-entity 151

Named-entity Named Entities

Description

A named entity is an S4 object that can be referenced by name.

Details

Every named entity is guaranteed to have a slot called "name". Within a model, the named entities
of that model can be accessed using the $ operator. Access is limited to one nesting depth, such that
if ’B’ is a submodel of ’A’, and ’C’ is a matrix of ’B’, then ’C’ must be accessed using ABC.

The following S4 classes are named entities in the OpenMx library: MxAlgebra, MxConstraint,
MxMatrix, MxModel, MxData, and MxObjective.

Examples

library(OpenMx)

Create a model, add a matrix to it, and then access the matrix by name.

testModel <- mxModel(model="anEmptyModel")

testMatrix <- mxMatrix(type="Full", nrow=2, ncol=2, values=c(1,2,3,4), name="yourMatrix")

yourModel <- mxModel(testModel, testMatrix, name="noLongerEmpty")

yourModel$yourMatrix

numHess1 numeric Hessian data 1

Description

data file used by the HessianTest.R script

Usage

data("numHess1")

Format

A 12 by 12 data frame containing Hessian (numeric variables a-l)

152 omxAllInt

Examples

data(numHess1)
str(numHess1)

numHess2 numeric Hessian data 2

Description

data file used by the HessianTest.R script

Usage

data("numHess2")

Format

A 12 by 12 data frame containing Hessian matrix (numeric variables a-l)

Examples

data(numHess2)
str(numHess2)

omxAllInt All Interval Multivariate Normal Integration

Description

omxAllInt computes the probabilities of a large number of cells of a multivariate normal distri-
bution that has been sliced by a varying number of thresholds in each dimension. While the same
functionality can be achieved by repeated calls to omxMnor, omxAllInt is more efficient for re-
peated operations on a single covariance matrix. omxAllInt returns an nx1 matrix of probabilities
cycling from lowest to highest thresholds in each column with the rightmost variable in covariance
changing most rapidly.

Usage

omxAllInt(covariance, means, ...)

Arguments

covariance the covariance matrix describing the multivariate normal distribution.
means a row vector containing means of the variables of the underlying distribution.
... a matrix or set of matrices containing one column of thresholds for each column

of covariance. Each column must contain a strictly increasing set of thresholds
for the corresponding variable of the underlying distribution. NA values in these
thresholds indicate that the list of thresholds in that column has ended.

omxAllInt 153

Details

covariance and means contain the covariances and means of the multivariate distribution from
which probabilities are to be calculated.

covariance must be a square covariance or correlation matrix with one row and column for each
variable.

means must be a vector of length nrows(covariance) that contains the mean for each correspond-
ing variable.

All further arguments are considered threshold matrices.

Threshold matrices contain locations of the hyperplanes delineating the intervals to be calculated.
The first column of the first matrix corresponds to the thresholds for the first variable represented
by the covariance matrix. Subsequent columns of the same matrix correspond to thresholds for
subsequent variables in the covariance matrix. If more variables exist in the covariance matrix than
in the first threshold matrix, the first column of the second threshold matrix will be used, and so
on. That is, if covariance is a 4x4 matrix, and the three threshold matrices are specified, one with
a single column and the others with two columns each, the first column of the first matrix will
contain thresholds for the first variable in covariance , the two columns of the second matrix will
correspond to the second and third variables of covariance , respectively, and the first column of the
third threshold matrix will correspond to the fourth variable. Any extra columns will be ignored.

Each column in the threshold matrices must contain some number of strictly increasing thresholds,
delineating the boundaries of a cell of integration. That is, if the integral from -1 to 0 and 0 to 1 are
required for a given variable, the corresponding threshold column should contain the values -1, 0,
and 1, in that order. Thresholds may be set to Inf or -Inf if a boundary at positive or negative infinity
is desired.

Within a threshold column, a value of +Inf, if it exists, is assumed to be the largest threshold, and
any rows after it are ignored in that column. A value of NA, if it exists, indicates that there are no
further thresholds in that column, and is otherwise ignored. A threshold column consisting of only
+Inf or NA values will cause an error.

For all i>1, the value in row i must be strictly larger than the value in row i-1 in the same column.

The return value of omxAllInt is a matrix consisting of a single column with one row for each
combination of threshold levels.

See Also

omxMnor

Examples

data(myFADataRaw)

covariance <- cov(myFADataRaw[,1:5])
means <- colMeans(myFADataRaw[,1:5])
thresholdForColumn1 <- cbind(c(-Inf, 0, 1)) # Integrate from -Infinity to 0 and 0 to 1 on first variable

Note: The first variable will never be calculated from 1 to +Infinity.
thresholdsForColumn2 <- cbind(c(-Inf, -1, 0, 1, Inf)) # These columns will be integrated from -Inf to -1, -1 to 0, etc.
thresholdsForColumns3and4 <- cbind(c(-Inf, 1.96, 2.326, Inf), c(-Inf, -1.96, 2.326, Inf))
omxAllInt(covariance, means, thresholdForColumn1, thresholdsForColumn2, thresholdsForColumns3and4, thresholdsForColumn2)

154 omxApply

Notice that columns 2 and 5 are assigned identical thresholds.

An alternative specification of the same calculation follows
covariance <- cov(myFADataRaw[,1:5])
means <- colMeans(myFADataRaw[,1:5])
thresholds <- cbind(c(-Inf, 0, 1, NA, NA), # Note NAs to indicate the end of the sequence of thresholds.

c(-Inf, -1, 0, 1, Inf),
c(-Inf, 1.96, 2.32, Inf, NA),
c(-Inf, -1.96, 2.32, Inf, NA),
c(-Inf, -1, 0, 1, Inf))

omxAllInt(covariance, means, thresholds)

omxApply On-Demand Parallel Apply

Description

If the snowfall library is loaded, then this function calls sfApply. Otherwise it invokes apply.

Usage

omxApply(x, margin, fun, ...)

Arguments

x a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.

margin a vector giving the subscripts which the function will be applied over.

fun the function to be applied to each element of x.

... optional arguments to fun.

See Also

omxLapply, omxSapply

Examples

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
dimnames(x)[[1]] <- letters[1:8]
omxApply(x, 2, mean, trim = .2)

omxAssignFirstParameters 155

omxAssignFirstParameters

Assign First Available Values to Model Parameters

Description

Sometimes you may have a free parameter with two different starting values in your model. OpenMx
will not run a model until all instances of a free parameter have the same starting value. It is often
sufficient to arbitrarily select one of those starting values for optimization.

This function accomplishes that task of assigning valid starting values to the free parameters of a
model. It selects an arbitrary current value (the "first" value it finds, where "first" is not defined) for
each free parameter and uses that value for all instances of that parameter in the model.

Usage

omxAssignFirstParameters(model, indep = FALSE)

Arguments

model a MxModel object.
indep assign parameters to independent submodels.

See Also

omxGetParameters, omxSetParameters

Examples

A <- mxMatrix('Full', 3, 3, values = c(1:9), labels = c('a','b', NA), free = TRUE, name = 'A')
model <- mxModel(model=A, name = 'model')
model <- omxAssignFirstParameters(model)

Note: All cells with the same label now have the same start value. Note also that NAs are untouched.

model$matrices$A

$labels
[,1] [,2] [,3]
[1,] "a" "a" "a"
[2,] "b" "b" "b"
[3,] NA NA NA
#
$values
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 6 9

156 omxBrownie

omxBrownie Make Brownies in OpenMx

Description

This function returns a brownie recipe.

Usage

omxBrownie(quantity=1, walnuts=TRUE)

Arguments

quantity Number of batches of brownies desired. Defaults to one.

walnuts Logical. Indicates whether walnuts are to be included in the brownies. Defaults
to TRUE.

Details

Returns a brownie recipe. Alter the ‘quantity‘ variable to make more pans of brownies. Ingredients,
equipment and procedure are listed, but neither ingredients nor equipment are provided.

Value

Returns a brownie recipe.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

More information about the OpenMx package may be found here.

Examples

Return a brownie recipe
omxBrownie()

omxCheckCloseEnough 157

omxCheckCloseEnough Approximate Equality Testing Function

Description

This function tests whether two numeric vectors or matrixes are approximately equal to one another,
within a specified threshold.

Usage

omxCheckCloseEnough(a, b, epsilon = 10^(-15), na.action = na.fail)

Arguments

a a numeric vector or matrix

b a numeric vector or matrix

epsilon a non-negative tolerance threshold

na.action either na.fail (default) or na.pass. Use of na.omit or na.exclude is not recom-
mended.

Details

Arguments ‘a’ and ‘b’ must be of the same type, ie. they must be either vectors of equal dimension
or matrices of equal dimension. The two arguments are compared element-wise for approximate
equality. If the absolute value of the difference of any two values is greater than the threshold, then
an error will be thrown. If ‘a’ and ‘b’ are approximately equal to each other, by default the function
will print a statement informing the user the test has passed. To turn off these print statements use
options("mxPrintUnitTests" = FALSE).

When na.action is set to na.pass, a and b are expected to have identical missingness patterns.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckWithinPercentError, omxCheckIdentical, omxCheckSetEquals, omxCheckTrue, omxCheckEquals

Examples

omxCheckCloseEnough(c(1, 2, 3), c(1.1, 1.9 ,3.0), epsilon = 0.5)
omxCheckCloseEnough(matrix(3, 3, 3), matrix(4, 3, 3), epsilon = 2)
Throws an error
try(omxCheckCloseEnough(c(1, 2, 3), c(1.1, 1.9 ,3.0), epsilon = 0.01))

158 omxCheckEquals

omxCheckEquals Equality Testing Function

Description

This function tests whether two objects are equal using the ‘==’ operator.

Usage

omxCheckEquals(a, b)

Arguments

a the first value to compare.

b the second value to compare.

Details

Performs the ‘==’ comparison on the two arguments. If the two arguments are not equal, then an er-
ror will be thrown. If ‘a’ and ‘b’ are equal to each other, by default the function will print a statement
informing the user the test has passed. To turn off these print statements use options("mxPrintUnitTests" = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckSetEquals, omxCheckTrue, omxCheckIdentical

Examples

omxCheckEquals(c(1, 2, 3), c(1, 2, 3))

omxCheckEquals(FALSE, FALSE)

Throws an error
try(omxCheckEquals(c(1, 2, 3), c(2, 1, 3)))

omxCheckIdentical 159

omxCheckIdentical Exact Equality Testing Function

Description

This function tests whether two objects are equal.

Usage

omxCheckIdentical(a, b)

Arguments

a the first value to compare.

b the second value to compare.

Details

Performs the ‘identical’ comparison on the two arguments. If the two arguments are not equal,
then an error will be thrown. If ‘a’ and ‘b’ are equal to each other, by default the function will
print a statement informing the user the test has passed. To turn off these print statements use
options("mxPrintUnitTests" = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckSetEquals, omxCheckTrue, omxCheckEquals

Examples

omxCheckIdentical(c(1, 2, 3), c(1, 2, 3))

omxCheckIdentical(FALSE, FALSE)

Throws an error
try(omxCheckIdentical(c(1, 2, 3), c(2, 1, 3)))

160 omxCheckSetEquals

omxCheckSetEquals Set Equality Testing Function

Description

This function tests whether two vectors contain the same elements.

Usage

omxCheckSetEquals(a, b)

Arguments

a the first vector to compare.

b the second vector to compare.

Details

Performs the ‘setequal’ function on the two arguments. If the two arguments do not contain the
same elements, then an error will be thrown. If ‘a’ and ‘b’ contain the same elements, by default
the function will print a statement informing the user the test has passed. To turn off these print
statements use options("mxPrintUnitTests" = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckIdentical, omxCheckTrue, omxCheckEquals

Examples

omxCheckSetEquals(c(1, 1, 2, 2, 3), c(3, 2, 1))

omxCheckSetEquals(matrix(1, 1, 1), matrix(1, 3, 3))

Throws an error
try(omxCheckSetEquals(c(1, 2, 3, 4), c(2, 1, 3)))

omxCheckTrue 161

omxCheckTrue Boolean Equality Testing Function

Description

This function tests whether an object is equal to TRUE.

Usage

omxCheckTrue(a)

Arguments

a the value to test.

Details

Checks element-wise whether an object is equal to TRUE. If any of the elements are false, then an
error will be thrown. If ‘a’ is TRUE, by default the function will print a statement informing the user
the test has passed. To turn off these print statements use options("mxPrintUnitTests" = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckIdentical, omxCheckSetEquals,
omxCheckEquals

Examples

omxCheckTrue(1 + 1 == 2)

omxCheckTrue(matrix(TRUE, 3, 3))

Throws an error
try(omxCheckTrue(FALSE))

162 omxCheckWithinPercentError

omxCheckWithinPercentError

Approximate Percent Equality Testing Function

Description

This function tests whether two numeric vectors or matrixes are approximately equal to one another,
within a specified percentage.

Usage

omxCheckWithinPercentError(a, b, percent = 0.1)

Arguments

a a numeric vector or matrix.

b a numeric vector or matrix.

percent a non-negative percentage.

Details

Arguments ‘a’ and ‘b’ must be of the same type, ie. they must be either vectors of equal dimension
or matrices of equal dimension. The two arguments are compared element-wise for approximate
equality. If the absolute value of the difference of any two values is greater than the percentage
difference of ‘a’, then an error will be thrown. If ‘a’ and ‘b’ are approximately equal to each other,
by default the function will print a statement informing the user the test has passed. To turn off
these print statements use options("mxPrintUnitTests" = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckIdentical, omxCheckSetEquals, omxCheckTrue, omxCheckEquals

Examples

omxCheckWithinPercentError(c(1, 2, 3), c(1.1, 1.9 ,3.0), percent = 50)

omxCheckWithinPercentError(matrix(3, 3, 3), matrix(4, 3, 3), percent = 150)

Throws an error
try(omxCheckWithinPercentError(c(1, 2, 3), c(1.1, 1.9 ,3.0), percent = 0.01))

omxGetParameters 163

omxGetParameters Fetch Model Parameters

Description

Return a vector of the chosen parameters from the model.

Usage

omxGetParameters(model, indep = FALSE, free = c(TRUE, FALSE, NA),
fetch = c('values', 'free', 'lbound', 'ubound', 'all'))

Arguments

model a MxModel object

indep fetch parameters from independent submodels.

free fetch either free parameters (TRUE), or fixed parameters or both types. Default
value is TRUE.

fetch which attribute of the parameters to fetch. Default choice is ‘values’.

Details

The argument ‘free’ dictates whether to return only free parameters or only fixed parameters or both
free and fixed parameters. The function can return unlabelled free parameters (parameters with a la-
bel of NA). These anonymous free parameters will be identified as ‘modelname.matrixname[row,col]’.
It will not return fixed parameters that have a label of NA. No distinction is made between ordinary
labels, definition variables, and square bracket constraints. The function will return either a vector
of parameter values, or free/fixed designations, or lower bounds, or upper bounds, depending on
the ‘fetch’ argument. Using fetch with ‘all’ returns a data frame that is populated with all of the
attributes.

See Also

omxSetParameters, omxLocateParameters, omxAssignFirstParameters

Examples

library(OpenMx)

A <- mxMatrix('Full', 2, 2, labels = c("A11", "A12", "A21", NA), values= 1:4,
free = c(TRUE,TRUE,FALSE,TRUE), byrow=TRUE, name = 'A')

model <- mxModel(A, name = 'model')

Request all free parameters in model
omxGetParameters(model)

A11 A12 model.A[2,2]

164 omxGraphviz

1 2 4

Request fixed parameters from model
omxGetParameters(model, free = FALSE)
A21
3

A$labels
[,1] [,2]
[1,] "A11" "A12"
[2,] "A21" NA

A$free
[,1] [,2]
[1,] TRUE TRUE
[2,] FALSE TRUE

A$labels
[,1] [,2]
[1,] "A11" "A12"
[2,] "A21" NA

Example using un-labelled parameters

Read in some demo data
data(demoOneFactor)
Grab the names for manifestVars
manifestVars <- names(demoOneFactor)
nVar = length(manifestVars) # 5 variables
factorModel <- mxModel("One Factor",

mxMatrix(name="A", type="Full", nrow=nVar, ncol=1, values=0.2, free=TRUE,
lbound = 0.0, labels=letters[1:nVar]),

mxMatrix(name="L", type="Symm", nrow=1, ncol=1, values=1, free=FALSE),
the "U" matrix has nVar (5) anonymous free parameters
mxMatrix(name="U", type="Diag", nrow=nVar, ncol=nVar, values=1, free=TRUE),
mxAlgebra(expression=A %&% L + U, name="R"),
mxExpectationNormal(covariance="R", dimnames=manifestVars),
mxFitFunctionML(),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500)

)

Get all free parameters
params <- omxGetParameters(factorModel)
lbound <- omxGetParameters(factorModel, fetch="lbound")
Set new values for these params, saving them in a new model
newFactorModel <- omxSetParameters(factorModel, names(params), values = 1:10)
Read out the values from the new model
newParams <- omxGetParameters(newFactorModel)

omxGraphviz Show RAM Model in Graphviz Format

omxLapply 165

Description

The function accepts a RAM style model and outputs a visual representation of the model in
Graphviz format. The function will output either to a file or to the console. The recommended
file extension for an output file is ".dot".

Usage

omxGraphviz(model, dotFilename = "")

Arguments

model An RAM-type model.

dotFilename The name of the output file. Use "" to write to console.

Value

Invisibly returns a string containing the model description in graphviz format.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

omxLapply On-Demand Parallel Lapply

Description

If the snowfall library is loaded, then this function calls sfLapply. Otherwise it invokes lapply.

Usage

omxLapply(x, fun, ...)

Arguments

x a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.

fun the function to be applied to each element of x.

... optional arguments to fun.

See Also

omxApply, omxSapply

166 omxLocateParameters

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
omxLapply(x,mean)

omxLocateParameters Summarize Model Parameters

Description

Return a data.frame object summarizing the free parameters in the model.

Usage

omxLocateParameters(model, labels = NULL, indep = FALSE)

Arguments

model a MxModel object
labels optionally specify which free parameters to retrieve.
indep fetch parameters from independent submodels.

Details

Invoking the function with the default value for the ‘labels’ argument retrieves all the free parame-
ters. The ‘labels’ argument can be used to select a subset of the free parameters. Note that ‘NA’ is
a valid possible input to the ‘labels’ argument.

See Also

omxGetParameters, omxSetParameters, omxAssignFirstParameters

Examples

A <- mxMatrix('Full', 2, 2, labels = c("A11", "A12", NA, NA), values= 1:4,
free = TRUE, byrow = TRUE, name = 'A')

model <- mxModel(A, name = 'model')

Request all free parameters in model
omxLocateParameters(model)

Request free parameters "A11" and all NAs
omxLocateParameters(model, c("A11", NA))

omxLogical 167

omxLogical Logical mxAlgebra() operators

Description

omxNot computes the unary negation of the values of a matrix. omxAnd computes the binary and
of two matrices. omxOr computes the binary or of two matrices. omxGreaterThan computes a
binary greater than of two matrices. omxLessThan computes the binary less than of two matrices.
omxApproxEquals computes a binary equals within a specified epsilon of two matrices.

Usage

omxNot(x)
omxAnd(x, y)
omxOr(x, y)
omxGreaterThan(x, y)
omxLessThan(x, y)
omxApproxEquals(x, y, epsilon)

Arguments

x the first argument, the matrix which the logical operation will be applied to.

y the second argument, applicable to binary functions.

epsilon the third argument, specifies the error threshold for omxApproxEquals. Abs(x[i][j]-
y[i][j]) must be less than epsilon[i][j].

Examples

A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'A')
B <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'B')
EPSILON <- mxMatrix(values = 0.04*1:25, nrow = 5, ncol = 5, name = "EPSILON")

model <- mxModel(A, B, EPSILON, name = 'model')

mxEval(omxNot(A), model)
mxEval(omxGreaterThan(A,B), model)
mxEval(omxLessThan(B,A), model)
mxEval(omxOr(omxNot(A),B), model)
mxEval(omxAnd(omxNot(B), A), model)
mxEval(omxApproxEquals(A,B, EPSILON), model)

168 omxMnor

omxMatrixOperations MxMatrix operations

Description

omxCbind columnwise binding of two or more MxMatrices. omxRbind rowwise binding of two or
more MxMatrices. omxTranspose transpose of MxMatrix.

Usage

omxCbind(..., allowUnlabeled =
getOption("mxOptions")[["Allow Unlabeled"]],
dimnames = NA, name = NA)

omxRbind(..., allowUnlabeled =
getOption("mxOptions")[["Allow Unlabeled"]],
dimnames = NA, name = NA)

omxTranspose(matrix, allowUnlabeled =
getOption("mxOptions")[["Allow Unlabeled"]],
dimnames = NA, name = NA)

Arguments

... two or more MxMatrix objects

matrix MxMatrix input

allowUnlabeled whether or not to accept free parameters with NA labels

dimnames list. The dimnames attribute for the matrix: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

name an optional character string indicating the name of the MxMatrix object

omxMnor Multivariate Normal Integration

Description

Given a covariance matrix, a means vector, and vectors of lower and upper bounds, returns the
multivariate normal integral across the space between bounds.

Usage

omxMnor(covariance, means, lbound, ubound)

omxSapply 169

Arguments

covariance the covariance matrix describing the multivariate normal distribution.

means a row vector containing means of the variables of the underlying distribution.

lbound a row vector containing the lower bounds of the integration in each variable.

ubound a row vector containing the upper bounds of the integration in each variable.

Details

The order of columns in the ‘means’, ‘lbound’, and ‘ubound’ vectors are assumed to be the same as
that of the covariance matrix. That is, means[i] is considered to be the mean of the variable whose
variance is in covariance[i,i]. That variable will be integrated from lbound[i] to ubound[i] as part of
the integration.

The value of ubound[i] or lbound[i] may be set to Inf or -Inf if a boundary at positive or negative
infinity is desired.

For all i, ubound[i] must be strictly greater than lbound[i].

Examples

data(myFADataRaw)

covariance <- cov(myFADataRaw[,1:3])
means <- colMeans(myFADataRaw[,1:3])
lbound <- c(-Inf, 0, 1) # Integrate from -Infinity to 0 on first variable
ubound <- c(0, Inf, 2.5) # From 0 to +Infinity on second, and from 1 to 2.5 on third
omxMnor(covariance, means, lbound, ubound)
0.0005995

An alternative specification of the bounds follows
Integrate from -Infinity to 0 on first variable
v1bound = c(-Inf, 0)
From 0 to +Infinity on second
v2bound = c(0, Inf)
and from 1 to 2.5 on third
v3bound = c(1, 2.5)
bounds <- cbind(v1bound, v2bound, v3bound)
lbound <- bounds[1,]
ubound <- bounds[2,]
omxMnor(covariance, means, lbound, ubound)

omxSapply On-Demand Parallel Sapply

Description

If the snowfall library is loaded, then this function calls sfSapply. Otherwise it invokes sapply.

170 omxSaturatedModel

Usage

omxSapply(x, fun, ..., simplify = TRUE, USE.NAMES = TRUE)

Arguments

x a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.

fun the function to be applied to each element of x.

... optional arguments to fun.

simplify logical; should the result be simplified to a vector or matrix if possible?

USE.NAMES logical; if TRUE and if x is a character, use x as names for the result unless it had
names already.

See Also

omxApply, omxLapply

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
omxSapply(x, quantile)

omxSaturatedModel Create Reference (Saturated and Independence) Models

Description

This function creates and optionally runs saturated and independence (null) models of a base model
or data set for use with mxSummary to obtain more fit indices.

Usage

mxRefModels(x, run=FALSE)

Arguments

x A MxModel object, data frame, or matrix.

run logical. If TRUE runs the models before returning; otherwise returns built mod-
els without running.

omxSaturatedModel 171

Details

For typical structural equation models the saturated model is the free-est possible model. All covari-
ances and, when possilbe, all means are estimated. In the case of ordinal data, the ordinal means
are fixed to zero and the thresholds are estimated. When the ordinal data are binary, those vari-
ances are also constrained to one. This is the free-est possible model, only constrained for model
identification. The saturated model is used to create the RMSEA, and Chi-squared fit indices.

The independence model, sometimes called the null model, is a model of each variable being com-
pletely independent of every other variable. As such, all the variances and, when possible, all means
are estimated. However, covariances are set to zero. Ordinal variables are handled the same for the
independence and saturated models. The independence model is used, along with the saturated
model, to create CFI and TLI fit indices.

When the mxFitFunctionMultigroup fit function is used, mxRefModels creates the appropriate
multigroup saturated and independence models. Saturated and independence models are created
separately for each group. Each group has its own saturated and independence model. The multi-
group saturated model is a multigroup model where each group has its own saturated model, and
similarly for the independence model.

One potentially important limitation of the mxRefModels function is for behavioral genetics models.
If variables ’x’, ’y’, and ’z’ are measured on twins 1 and 2 creating the modeled variables ’x1’, ’y1’,
’z1’, ’x2’, ’y2’, ’z2’, then this function may not create the intended saturated or independence mod-
els. In particular, the means of ’x1’ and ’x2’ are estimated separately. Similarly, the covariance of
’x1’ with ’y1’ and ’x2’ with ’y2’ are allowed be be distinct: cov(x1, y1)! = covx2, y2. Moreover,
the cross-twin covariances are estimated: e.g. cov(x1, y2)! = 0.

Another potential misuse of this function is for models with definition variables. If definition vari-
ables are detect, a warning message is passed because the saturated and independence model may
not be correct because they do not account for the definition variables.

When an MxModel has been run, some effort is made to make the reference models for only the
variables used in the model. For covariance data, all variables are modeled by default. For raw data
when the model has been run, only the modeled variables are used in the reference models. This
matches the behavior of mxModel.

In general, it is best practice to give mxRefModels a model that has already been run.

For IFA models (mxExpectationBA81), the independence model preserves equality constraints
among item parameters from the original model.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

raw data version of frontpage model

require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor",

type="RAM",

172 omxSelectRowsAndCols

manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2,

free=FALSE, values=1.0),
mxPath(from = 'one', to = manifests),
mxData(demoOneFactor, type="raw"))

summary(factorRun <- mxRun(factorModel))
factorSat <- mxRefModels(factorRun, run=TRUE)
summary(factorRun, refModels=factorSat)

omxSelectRowsAndCols Filter rows and columns from an mxMatrix

Description

This function filters rows and columns from a matrix using a single row or column R matrix as a
selector.

Usage

omxSelectRowsAndCols(x, selector)
omxSelectRows(x, selector)
omxSelectCols(x, selector)

Arguments

x the matrix to be filtered

selector A single row or single column R matrix indicating which values should be fil-
tered from the mxMatrix.

Details

omxSelectRowsAndCols, omxSelectRows, and omxSelectCols returns the filtered entries in a target
matrix specified by a single row or single column selector matrix. Each entry in the selector matrix is
treated as a logical data indicating if the corresponding entry in the target matrix should be excluded
(0 or FALSE) or included (not 0 or TRUE). Typically the function is used to filter data from a target
matrix using an existence vector which specifies what data entries are missing. This can be seen in
the demo: RowObjectiveFIMLBivariateSaturated.

Value

Returns a new matrix with the filtered data.

omxSetParameters 173

References

The function is most often used when filtering data for missingness. This can be seen in the demo:
RowObjectiveFIMLBivariateSaturated. The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.
The omxSelect* functions share some similarity to the Extract function in the R programming lan-
guage.

Examples

loadings <- c(1, -0.625, 0.1953125, 1, -0.375, 0.0703125, 1, -0.375, 0.0703125)
loadings <- matrix(loadings, 3, 3, byrow= TRUE)
existenceList <- c(1, 0, 1)
existenceList <- matrix(existenceList, 1, 3, byrow= TRUE)
rowsAndCols <- omxSelectRowsAndCols(loadings, existenceList)
rows <- omxSelectRows(loadings, existenceList)
cols <- omxSelectCols(loadings, existenceList)

omxSetParameters Assign Model Parameters

Description

Modify the attributes of parameters in a model. This function cannot modify parameters that have
NA labels. Often you will want to call omxAssignFirstParameters after using this, to force the
starting values of equated parameters to the same value (otherwise the model cannot begin to be
evaluated)

Usage

omxSetParameters(model, labels, free = NULL, values = NULL,
newlabels = NULL, lbound = NULL, ubound = NULL, indep = FALSE,
strict = TRUE, name = NULL)

Arguments

model an MxModel object.

labels a character vector of target parameter names.

free a boolean vector of parameter free/fixed designations.

values a numeric vector of parameter values.

newlabels a character vector of new parameter names.

lbound a numeric vector of lower bound values.

ubound a numeric vector of upper bound values.

indep boolean. set parameters in independent submodels.

strict boolean. If TRUE then throw an error when a label does not appear in the model.

name character string. (optional) a new name for the model.

174 OpenMx

See Also

omxGetParameters, omxAssignFirstParameters

Examples

A <- mxMatrix('Full', 3, 3, labels = c('a','b', NA), free = TRUE, name = 'A')
model <- mxModel(model="testModel", A, name = 'model')
model <- omxSetParameters(model, c('a', 'b'), values = c(1, 2)) # set value of cells labelled "a" and "b" to 1 and 2 respectively
model <- omxSetParameters(model, c('a', 'b'), newlabels = c('b', 'a')) # set label of cell labelled "a" to "b" and vice versa
model <- omxSetParameters(model, c('a'), newlabels = 'b') # set label of cells labelled "a" to "b"
model <- omxAssignFirstParameters(model) # ensure initial values are the same for each instance of a labeled parameter

OpenMx OpenMx: An package for Structural Equation Modeling and Matrix
Algebra Optimization

Description

OpenMx is a package for structural equation modeling, matrix algebra optimization and other sta-
tistical estimation problems. Try the example below. We try and have useful help files: for instance
help(mxRun) to learn more. Also the reference manual

Details

OpenMx solves algebra optimization and statistical estimation problems using matrix algebra. Most
users use it for Structural equation modeling.

The core function is mxModel, which makes a model. Models are containers for data, matrices,
mxPaths algebras, bounds and constraints. Models most often have an expectation function (e.g.,
mxExpectationNormal) to calculate the expectations for the model. Models need a fit function.
Several of these are built-in (e.g., mxFitFunctionML) OpenMx also allows user-defined fit func-
tions for purposes not covered by the built-in functions. (e.g., mxFitFunctionR or mxFitFunction-
Algebra).

Once built, the resulting mxModel can be run (i.e., optimized) using mxRun. This returns the fitted
model.

You can see the resulting parameter estimates, algebra evaluation etc using summary(yourModel)

The user’s manual is online (see reference below), but functions mxRun, mxModel, mxMatrix all
have working examples to get you started as well.

The main OpenMx functions are: mxAlgebra, mxBounds, mxCI, mxConstraint, mxData, mxMa-
trix, mxModel, and mxPath

Expectation functions include mxExpectationNormal, mxExpectationRAM, mxExpectationLISREL,
and mxExpectationStateSpace;

Fit functions include mxFitFunctionML, mxFitFunctionAlgebra, mxFitFunctionRow and mxFit-
FunctionR.

OpenMx comes with several useful datasets built-in. Access them using data(package="OpenMx")

ordinalTwinData 175

To cite package ’OpenMx’ in publications use:

Steven M. Boker, Michael C. Neale, Hermine H. Maes, Michael J. Wilde, Michael Spiegel, Tim-
othy R. Brick, Jeffrey Spies, Ryne Estabrook, Sarah Kenny, Timothy C. Bates, Paras Mehta, and
John Fox. (2011) OpenMx: An Open Source Extended Structural Equation Modeling Framework.
Psychometrika.

Steven M. Boker, Michael C. Neale, Hermine H. Maes, Michael J. Wilde, Michael Spiegel, Tim-
othy R. Brick, Ryne Estabrook, Timothy C. Bates, Paras Mehta, Timo von Oertzen, Ross J. Gore,
Michael D. Hunter, Daniel C. Hackett, Julian Karch and Andreas M. Brandmaier. (2014) OpenMx
2 User Guide.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation

Examples

library(OpenMx)
data(demoOneFactor)
===============================
= Make and run a 1-factor CFA =
===============================

latents = c("G") # the latent factor
manifests = names(demoOneFactor) # manifest variables to be modeled
====================
= Make the MxModel =
====================
m1 <- mxModel("One Factor", type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = latents, to = manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)
)

===============================
= mxRun it and get a summary! =
===============================

m1 = mxRun(m1)
summary(m1, show = "std")

ordinalTwinData Data for ordinal twin model

Description

Example data for ordinal twin-data modelling. Three variables measured in each twin.

http://openmx.psyc.virginia.edu/documentation

176 rvectorize

Usage

data("ordinalTwinData")

Format

A data frame with 139 observations on the following 7 variables.

zyg a numeric vector

var1_twin1 a numeric vector

var2_twin1 a numeric vector

var3_twin1 a numeric vector

var1_twin2 a numeric vector

var2_twin2 a numeric vector

var3_twin2 a numeric vector

Examples

data(ordinalTwinData)
str(ordinalTwinData)

rvectorize Vectorize By Row

Description

This function returns the vectorization of an input matrix in a row by row traversal of the matrix.
The output is returned as a column vector.

Usage

rvectorize(x)

Arguments

x an input matrix.

See Also

cvectorize, vech, vechs

Examples

rvectorize(matrix(1:9, 3, 3))
rvectorize(matrix(1:12, 3, 4))

summary-MxModel 177

summary-MxModel Model Summary

Description

This function returns summary statistics of a model after it has been run

Usage

summary(object, ..., verbose=FALSE)

Arguments

object A MxModel object.

... Any number of named arguments (see below).

verbose logical. Changes the printing style for summary (see Details)

Details

mxSummary allows the user to set or override the following parameters of the model:

numObs Numeric. Specify the total number of observations for the model.

numStats Numeric. Specify the total number of observed statistics for the model.

refModels List of MxModel objects. Specify a saturated and independence likelihoods in single
argument for testing.

SaturatedLikelihood Numeric or MxModel object. Specify a saturated likelihood for testing.

SaturatedDoF Numeric. Specify the degrees of freedom of the saturated likelihood for testing.

IndependenceLikelihood Numeric or MxModel object. Specify an independence likelihood for
testing.

IndependenceDoF Numeric. Specify the degrees of freedom of the independence likelihood for
testing.

indep Logical. Set to FALSE to ignore independent submodels in summary.

The verbose argument changes the printing style for the summary of a model. When verbose=FALSE,
a relatively minimal amount of information is printed: the free parameters, the likelihood, and
a few fit indices. When more information is available, more is printed. For example, when the
model has a saturated likelihood, several additional fit indices are printed. On the other hand, when
verbose=TRUE, the compute plan, the data summary, and additional timing information are always
printed. Moreover, available fit indices are printed regarless of whether or not they are defined. The
undefined fit indices are printed as NA. Running a saturated model and including it with the call to
summary will define these fit indices and they will dislay meaningful values. It should be noted that
the verbose argument only changes the printing style, all of the same information is calculated and
exists in the output of summary. More information is displayed when verbose=TRUE, and less when
verbose=FALSE.

178 summary-MxModel

The Information Criteria (AIC, BIC) are reported in a table. The table shows different ver-
sions of the information criteria. Each entry in the table is an AIC or BIC obtained using different
penalties. In particular, the entries of the table do not show different penalties, but rather different
versions of AIC and BIC. For example the AIC is reported with both a Parameters Penalty and a
Degrees of Freedom Penalty. AIC generally takes the form −2LL + 2 ∗ k. With the Parameters
Penalty k is the number of free parameters. With the Degrees of Freedom Penalty, k is the model
degrees of freedom. BIC is defined similarly: −2LL+ k ∗ log(N) where k is either the number of
free parameters or the degrees of freedom. The Sample-Size Adjusted BIC is only defined for the
parameters penalty: −2LL+ k ∗ log((N + 2)/24).

The refModels, SaturatedLikelihood, SaturatedDoF, IndependenceLikelihood, and IndependenceDoF
arguments can be used to obtain further fit statistics (RMSEA, CFI, TLI, Chi-Squared). For covari-
ance data, saturated and independence models are fitted automatically so all fit indices are reported.
For raw data, these reference models are not estimated to save computational time. For an easy
way to make reference models for most cases is provided by the mxRefModels function. When
the SaturatedLikelihood or IndependenceLikelihood arguments are used, the appropriate de-
grees of freedom are attempted to be calculated by OpenMx. However, depending on the model, it
may sometimes behoove the user to also explicity provide the corresponding SaturatedDoF and/or
IndependenceDoF. Again, for the vast majority of cases, the mxRefModels function handles these
situations effectively and convenietly.

The summary function can report Error codes as follows:

• 1: The final iterate satisfies the optimality conditions to the accuracy requested, but the se-
quence of iterates has not yet converged. NPSOL was terminated because no further improve-
ment could be made in the merit function (Mx status GREEN)

• 2: The linear constraints and bounds could not be satisfied. The problem has no feasible
solution.

• 3: The nonlinear constraints and bounds could not be satisfied. The problem may have no
feasible solution.

• 4: The major iteration limit was reached (Mx status BLUE).

• 6: The model does not satisfy the first-order optimality conditions to the required accuracy,
and no improved point for the merit function could be found during the final linesearch (Mx
status RED)

• 7: The function derivates returned by funcon or funobj appear to be incorrect.

• 9: An input parameter was invalid

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

library(OpenMx)
data(demoOneFactor) # load the demoOneFactor dataframe
manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable
model <- mxModel(model="One Factor", type="RAM",

tr 179

manifestVars = manifests,
latentVars = latents,
mxPath(from = latents, to=manifests, labels = paste("b", 1:5, sep = "")),
mxPath(from = manifests, arrows = 2, labels = paste("u", 1:5, sep = "")),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)

)
model <- mxRun(model) # Run the model, returning the result into model

Show summary of the fitted model
summary(model)

Compute the summary and store in the variable "statistics"
statistics <- summary(model)

Access components of the summary
statistics$parameters
statistics$SaturatedLikelihood

Specify a saturated likelihood for testing
summary(model, SaturatedLikelihood = -3000)

Add a CI and view it in the summary
model = mxRun(mxModel(model=model, mxCI("b5")), intervals = TRUE)
summary(model)

tr trace

Description

This function returns the trace of an n-by-n square matrix x, defined to be the sum of the elements
on the main diagonal (the diagonal from the upper left to the lower right).

Usage

tr(x)

Arguments

x an input matrix. Must be square

Details

The input matrix must be square.

See Also

vech, rvectorize, cvectorize

180 twinData

Examples

tr(matrix(1:9, 3, 3))
tr(matrix(1:12, 3, 4))

twinData Australian twin sample biometric data.

Description

Australian twin data with 3808 observations on the 12 variables including body mass index (BMI)
assessed in both MZ and DZ twins.

Questionnaires were mailed to 5967 pairs age 18 years and over. These data consist of completed
questionnaires returned by both members of 3808 (64 percent) pairs. There are two cohort blocks
in the data: a younger group (zyg 1:5), and an older group (zyg 6:10)

It is a wide dataset, with two individuals per line. Data include zygosity (zyg), along with heights
in metres, weights in kg, and the derived variables BMI in kg/m^2 (stored as “htwt1” and “htwt2”),
as well as the log of this variable, stored here as bm1 and bm2. The logged values are more closely
normally distributed.

fam is a family identifier. Age is entered only once, as the both twins in each pair share a common
age.

fam a numeric vector

age a numeric vector

zyg a numeric vector

part a numeric vector

wt1 a numeric vector

wt2 a numeric vector

ht1 a numeric vector

ht2 a numeric vector

htwt1 a numeric vector

htwt2 a numeric vector

bmi1 a numeric vector

bmi2 a numeric vector

Usage

data(twinData)

twinData 181

Format

A data frame with 3808 observations on the following 12 variables.

fam a numeric vectorof family IDs

age a numeric vectorof ages (years)

zyg a numeric vectorof zygosity (see below for important details)

part a numeric vector

wt1 a numeric vectorof weights in kg (twin 1)

wt2 a numeric vectorof weights in kg (twin 2)

ht1 a numeric vectorof heights in kg (twin 1)

ht2 a numeric vectorof heights in kg (twin 2)

htwt1 a numeric vectorof kg/m^2 twin 1

htwt2 a numeric vectorof kg/m^2 twin 2

bmi1 a numeric vectorof log BMI for twin 1

bmi2 a numeric vectorof log BMI for twin 2

Details

Zygosity is coded as follows 1 == MZFF (i.e MZ females) 2 == MZMM (i.e MZ males) 3 == DZFF
4 == DZMM 5 == DZOS opposite sex pairs

Note: Zygosity 6:10 is the same, for an older cohort in the sample. So: 6 == MZFF (i.e MZ females)
7 == MZMM (i.e MZ males) 8 == DZFF 9 == DZMM 10 == DZOS opposite sex pairs

References

Martin, N. G. & Jardine, R. (1986). Eysenck’s contribution to behavior genetics. In S. Modgil & C.
Modgil (Eds.), Hans Eysenck: Consensus and Controversy. Falmer Press: Lewes, Sussex.

Martin, N. G., Eaves, L. J., Heath, A. C., Jardine, R., Feindgold, L. M., & Eysenck, H. J. (1986).
Transmission of social attitudes. Proceedings of the National Academy of Science, 83, 4364-4368.

Examples

data(twinData)
str(twinData)
plot(wt1 ~ wt2, data = twinData)
mzData <- as.matrix(subset(myTwinData, zyg == 1, c(bmi1, bmi2)))
dzData <- as.matrix(subset(myTwinData, zyg == 3, c(bmi1, bmi2)))

182 vech

vec2diag Create Diagonal Matrix From Vector

Description

Given an input row or column vector, vec2diag returns a diagonal matrix with the input argument
along the diagonal.

Usage

vec2diag(x)

Arguments

x a row or column vector.

Details

Similar to the function diag, except that the input argument is always treated as a vector of elements
to place along the diagonal.

See Also

diag2vec

Examples

vec2diag(matrix(1:4, 1, 4))
vec2diag(matrix(1:4, 4, 1))

vech Half-vectorization

Description

This function returns the half-vectorization of an input matrix as a column vector.

Usage

vech(x)

Arguments

x an input matrix.

vech2full 183

Details

The half-vectorization of an input matrix consists of the elements in the lower triangle of the matrix,
including the elements along the diagonal of the matrix, as a column vector. The column vector is
created by traversing the matrix in column-major order.

See Also

vech2full, vechs, rvectorize, cvectorize

Examples

vech(matrix(1:9, 3, 3))
vech(matrix(1:12, 3, 4))

vech2full Inverse Half-vectorization

Description

This function returns the symmetric matrix constructed from a half-vectorization.

Usage

vech2full(x)

Arguments

x an input single column or single row matrix.

Details

The half-vectorization of an input matrix consists of the elements in the lower triangle of the matrix,
including the elements along the diagonal of the matrix, as a column vector. The column vector is
created by traversing the matrix in column-major order. The inverse half-vectorization takes a
vector and reconstructs a symmetric matrix such that vech2full(vech(x)) is identical to x if x is
symmetric.

Note that very few vectors have the correct number of elements to construct a symmetric matrix.
For example, vectors with 1, 3, 6, 10, and 15 elements can be used to make a symmetric matrix, but
none of the other numbers between 1 and 15 can. An error is thrown if the number of elements in x
cannot be used to make a symmetric matrix.

See Also

vechs2full, vech, vechs, rvectorize, cvectorize

184 vechs

Examples

vech2full(1:10)

matrix(1:16, 4, 4)
vech(matrix(1:16, 4, 4))
vech2full(vech(matrix(1:16, 4, 4)))

vechs Strict Half-vectorization

Description

This function returns the strict half-vectorization of an input matrix as a column vector.

Usage

vechs(x)

Arguments

x an input matrix.

Details

The half-vectorization of an input matrix consists of the elements in the lower triangle of the matrix,
excluding the elements along the diagonal of the matrix, as a column vector. The column vector is
created by traversing the matrix in column-major order.

See Also

vech, rvectorize, cvectorize

Examples

vechs(matrix(1:9, 3, 3))
vechs(matrix(1:12, 3, 4))

vechs2full 185

vechs2full Inverse Strict Half-vectorization

Description

This function returns the symmetric matrix constructed from a strict half-vectorization.

Usage

vechs2full(x)

Arguments

x an input single column or single row matrix.

Details

The strict half-vectorization of an input matrix consists of the elements in the lower triangle of
the matrix, excluding the elements along the diagonal of the matrix, as a column vector. The
column vector is created by traversing the matrix in column-major order. The inverse strict half-
vectorization takes a vector and reconstructs a symmetric matrix such that vechs2full(vechs(x))
is equal to x with zero along the diagonal if x is symmetric.

Note that very few vectors have the correct number of elements to construct a symmetric matrix.
For example, vectors with 1, 3, 6, 10, and 15 elements can be used to make a symmetric matrix, but
none of the other numbers between 1 and 15 can. An error is thrown if the number of elements in x
cannot be used to make a symmetric matrix.

See Also

vech2full, vech, vechs, rvectorize, cvectorize

Examples

vechs2full(1:10)

matrix(1:16, 4, 4)
vechs(matrix(1:16, 4, 4))
vechs2full(vechs(matrix(1:16, 4, 4)))

Index

∗Topic classes
MxMatrix-class, 111

∗Topic datasets
Bollen, 6
dzfData, 9
dzmData, 10
dzoData, 12
HS.ability.data, 15
imxConstraintRelations, 18
imxDataTypes, 21
imxModelTypes, 33
imxReservedNames, 37
imxSeparatorChar, 38
myFADataRaw, 147
mzfData, 148
mzmData, 149
numHess1, 151
numHess2, 152
ordinalTwinData, 175
twinData, 180

[,MxMatrix-method (MxMatrix-class), 111
[<-,MxMatrix-method (MxMatrix-class),

111
[[,MxFlatModel-method (MxFlatModel), 103
[[,MxModel-method (MxModel-class), 118
[[<-,MxFlatModel-method (MxFlatModel),

103
[[<-,MxLISRELModel-method

(MxLISRELModel-class), 103
[[<-,MxModel-method (MxModel-class), 118
[[<-,MxRAMModel-method

(MxRAMModel-class), 127
$,MxFlatModel-method (MxFlatModel), 103
$,MxMatrix-method (MxMatrix-class), 111
$,MxModel-method (MxModel-class), 118
$<-,MxFlatModel-method (MxFlatModel),

103
$<-,MxLISRELModel-method

(MxLISRELModel-class), 103

$<-,MxMatrix-method (MxMatrix-class),
111

$<-,MxModel-method (MxModel-class), 118
$<-,MxRAMModel-method

(MxRAMModel-class), 127

apply, 154
as.character, 121
as.list, 154, 165, 170

base::make.names, 107
base::make.unique, 107
Bollen, 6

Classes, 46, 50, 68, 116, 120
cvectorize, 7, 44, 176, 179, 183–185

data.frame, 70, 72
detectCores, 121
diag, 8, 44, 182
diag2vec, 8, 44, 182
dim,MxMatrix-method (MxMatrix-class),

111
dimnames, 83, 94
dimnames,MxAlgebra-method

(MxAlgebra-class), 46
dimnames,MxMatrix-method

(MxMatrix-class), 111
dimnames<-,MxAlgebra-method

(MxAlgebra-class), 46
dimnames<-,MxMatrix-method

(MxMatrix-class), 111
dzfData, 9
dzmData, 10
dzoData, 12

eigen, 14
eigenval, 44
eigenval (eigenvec), 13
eigenvec, 13
Extract, 53, 55, 83, 94, 97

186

INDEX 187

factor, 91, 92

genericFitDependencies,MxBaseFitFunction-method,
14

here, 45, 48–50, 54, 55, 70, 72, 96, 110, 112,
117, 120, 126, 143, 156

HS.ability.data, 15
HS.fake.data (HS.ability.data), 15

ieigenval (eigenvec), 13
ieigenvec (eigenvec), 13
imxAddDependency, 17
imxCheckMatrices, 17
imxCheckVariables, 18
imxConDecMatrixSlots, 18
imxConDecMatrixSlots,MxMatrix-method

(imxConDecMatrixSlots), 18
imxConstraintRelations, 18
imxConvertIdentifier, 19
imxConvertLabel, 19
imxConvertSubstitution, 20
imxCreateMatrix, 20
imxCreateMatrix,DiagMatrix-method

(imxCreateMatrix), 20
imxCreateMatrix,FullMatrix-method

(imxCreateMatrix), 20
imxCreateMatrix,IdenMatrix-method

(imxCreateMatrix), 20
imxCreateMatrix,LowerMatrix-method

(imxCreateMatrix), 20
imxCreateMatrix,MxMatrix-method

(MxMatrix-class), 111
imxCreateMatrix,MxMatrix-method

(imxCreateMatrix), 20
imxCreateMatrix,SdiagMatrix-method

(imxCreateMatrix), 20
imxCreateMatrix,StandMatrix-method

(imxCreateMatrix), 20
imxCreateMatrix,SymmMatrix-method

(imxCreateMatrix), 20
imxCreateMatrix,UnitMatrix-method

(imxCreateMatrix), 20
imxCreateMatrix,ZeroMatrix-method

(imxCreateMatrix), 20
imxDataTypes, 21
imxDefaultGetSlotDisplayNames, 21
imxDeparse, 22

imxDeparse,IdenMatrix-method
(imxDeparse), 22

imxDeparse,matrix-method (imxDeparse),
22

imxDeparse,MxAlgebra-method
(imxDeparse), 22

imxDeparse,MxConstraint-method
(imxDeparse), 22

imxDeparse,MxData-method (imxDeparse),
22

imxDeparse,MxMatrix-method
(MxMatrix-class), 111

imxDeparse,MxMatrix-method
(imxDeparse), 22

imxDeparse,UnitMatrix-method
(imxDeparse), 22

imxDeparse,ZeroMatrix-method
(imxDeparse), 22

imxDependentModels, 22
imxDiff, 22
imxDmvnorm, 23
imxEvalByName, 23
imxExtractMethod, 24
imxExtractNames, 24
imxExtractReferences, 24
imxExtractSlot, 25
imxFilterDefinitionVariables, 25
imxFlattenModel, 26
imxFreezeModel, 26
imxGenerateLabels, 26
imxGenerateNamespace, 27
imxGenericModelBuilder, 27
imxGenSwift, 28
imxGetSlotDisplayNames, 28
imxHasNPSOL, 29
imxIdentifier, 29
imxIndependentModels, 29
imxInitModel, 30
imxInitModel,MxLISRELModel-method

(imxInitModel), 30
imxInitModel,MxModel-method

(imxInitModel), 30
imxInitModel,MxRAMModel-method

(imxInitModel), 30
imxIsDefinitionVariable, 30
imxIsPath, 30
imxLocateFunction, 31
imxLocateIndex, 31

188 INDEX

imxLocateLabel, 32
imxLog, 32
imxLookupSymbolTable, 32
imxModelBuilder, 33
imxModelBuilder,MxLISRELModel-method

(imxModelBuilder), 33
imxModelBuilder,MxModel-method

(imxModelBuilder), 33
imxModelBuilder,MxRAMModel-method

(imxModelBuilder), 33
imxModelTypes, 33
imxMpiWrap, 34
imxOriginalMx, 34
imxPPML, 34
imxPPML.Test.Battery, 35
imxPreprocessModel, 36
imxReplaceMethod, 36
imxReplaceModels, 36
imxReplaceSlot, 37
imxReservedNames, 37
imxReverseIdentifier, 38
imxSameType, 38
imxSeparatorChar, 38
imxSfClient, 39
imxSimpleRAMPredicate, 39
imxSparseInvert, 39
imxSquareMatrix, 40
imxSquareMatrix,DiagMatrix-method

(imxSquareMatrix), 40
imxSquareMatrix,IdenMatrix-method

(imxSquareMatrix), 40
imxSquareMatrix,LowerMatrix-method

(imxSquareMatrix), 40
imxSquareMatrix,MxMatrix-method

(MxMatrix-class), 111
imxSquareMatrix,MxMatrix-method

(imxSquareMatrix), 40
imxSquareMatrix,SdiagMatrix-method

(imxSquareMatrix), 40
imxSquareMatrix,StandMatrix-method

(imxSquareMatrix), 40
imxSquareMatrix,SymmMatrix-method

(imxSquareMatrix), 40
imxSymmetricMatrix, 40
imxSymmetricMatrix,LowerMatrix-method

(imxSymmetricMatrix), 40
imxSymmetricMatrix,MxMatrix-method

(MxMatrix-class), 111

imxSymmetricMatrix,MxMatrix-method
(imxSymmetricMatrix), 40

imxSymmetricMatrix,SdiagMatrix-method
(imxSymmetricMatrix), 40

imxSymmetricMatrix,StandMatrix-method
(imxSymmetricMatrix), 40

imxSymmetricMatrix,SymmMatrix-method
(imxSymmetricMatrix), 40

imxTypeName, 40
imxTypeName,MxLISRELModel-method

(imxTypeName), 40
imxTypeName,MxModel-method

(imxTypeName), 40
imxTypeName,MxRAMModel-method

(imxTypeName), 40
imxVerifyMatrix, 41
imxVerifyMatrix,DiagMatrix-method

(imxVerifyMatrix), 41
imxVerifyMatrix,FullMatrix-method

(imxVerifyMatrix), 41
imxVerifyMatrix,IdenMatrix-method

(imxVerifyMatrix), 41
imxVerifyMatrix,LowerMatrix-method

(imxVerifyMatrix), 41
imxVerifyMatrix,MxMatrix-method

(MxMatrix-class), 111
imxVerifyMatrix,MxMatrix-method

(imxVerifyMatrix), 41
imxVerifyMatrix,SdiagMatrix-method

(imxVerifyMatrix), 41
imxVerifyMatrix,StandMatrix-method

(imxVerifyMatrix), 41
imxVerifyMatrix,SymmMatrix-method

(imxVerifyMatrix), 41
imxVerifyMatrix,UnitMatrix-method

(imxVerifyMatrix), 41
imxVerifyMatrix,ZeroMatrix-method

(imxVerifyMatrix), 41
imxVerifyModel, 41
imxVerifyModel,MxLISRELModel-method

(imxVerifyModel), 41
imxVerifyModel,MxModel-method

(imxVerifyModel), 41
imxVerifyModel,MxRAMModel-method

(imxVerifyModel), 41
imxVerifyName, 41
imxVerifyReference, 42

lapply, 165

INDEX 189

length,MxMatrix-method
(MxMatrix-class), 111

logm, 42

matrix, 70, 72
Mod, 13
MxAlgebra, 42–45, 47, 50, 67, 70, 72, 79, 82,

83, 85, 88–90, 93–96, 101, 106,
112–114, 118–120, 129, 135, 151

MxAlgebra (MxAlgebra-class), 46
mxAlgebra, 42, 46, 48, 70, 72, 75, 96, 110,

111, 116, 174
MxAlgebra-class, 46
mxAlgebraObjective, 46, 116
MxAlgebras, 53–55, 119
MxBounds, 47–49, 79, 83, 85, 89, 94, 96, 106,

114, 119, 129
MxBounds (MxBounds-class), 49
mxBounds, 48, 49, 50, 110, 116, 174
MxBounds-class, 49
MxCharOrList-class, 50
MxCharOrNumber-class, 50
mxCheckIdentification, 50
MxCI, 52–54, 119
MxCI (MxCI-class), 55
mxCI, 52, 53, 55, 115–117, 139, 174
MxCI-class, 55
mxCompare, 56
mxComputeConfidenceInterval, 58
MxComputeConfidenceInterval-class

(mxComputeConfidenceInterval),
58

mxComputeEM, 59
MxComputeEM-class (mxComputeEM), 59
mxComputeGradientDescent, 60
MxComputeGradientDescent-class

(mxComputeGradientDescent), 60
mxComputeHessianQuality, 61
MxComputeHessianQuality-class

(mxComputeHessianQuality), 61
mxComputeIterate, 62
MxComputeIterate-class

(mxComputeIterate), 62
mxComputeNewtonRaphson, 62
MxComputeNewtonRaphson-class

(mxComputeNewtonRaphson), 62
mxComputeNothing, 63
mxComputeNumericDeriv, 63

MxComputeNumericDeriv-class
(mxComputeNumericDeriv), 63

mxComputeOnce, 43, 64
MxComputeOnce-class (mxComputeOnce), 64
mxComputeReportDeriv, 65
MxComputeReportDeriv-class

(mxComputeReportDeriv), 65
mxComputeSequence, 65
MxComputeSequence-class

(mxComputeSequence), 65
mxComputeStandardError, 66
MxComputeStandardError-class

(mxComputeStandardError), 66
MxConstraint, 47, 66, 67, 79, 83, 85, 89, 94,

96, 106, 114, 119, 129, 151
MxConstraint (MxConstraint-class), 68
mxConstraint, 46, 66, 68, 69, 110, 111, 115,

116, 139, 174
MxConstraint-class, 68
MxData, 69, 70, 77, 79, 82, 83, 85, 87, 89, 90,

93, 94, 104–106, 113, 116, 118–120,
128, 129, 151

MxData (MxData-class), 71
mxData, 69, 71, 72, 79, 83, 85, 89, 94, 106,

114–117, 129, 174
MxData-class, 71
mxDataDynamic, 73
MxDataDynamic-class (mxDataDynamic), 73
mxErrorPool, 73
mxEval, 47, 74, 79, 85, 89, 96, 106, 114, 129
mxEvalByName (mxEval), 74
mxExpectationBA81, 75, 171
mxExpectationLISREL, 77, 174
MxExpectationLISREL-class

(mxExpectationLISREL), 77
mxExpectationNormal, 82, 93, 97, 113, 133,

174
MxExpectationNormal-class

(mxExpectationNormal), 82
mxExpectationRAM, 79, 84, 97, 128, 139, 174
MxExpectationRAM-class

(mxExpectationRAM), 84
mxExpectationStateSpace, 87, 174
MxExpectationStateSpace-class

(mxExpectationStateSpace), 87
mxFactor, 91
mxFIMLObjective, 92, 116
mxFitFunctionAlgebra, 45, 47, 70, 72, 95,

190 INDEX

174
MxFitFunctionAlgebra-class

(mxFitFunctionAlgebra), 95
mxFitFunctionML, 69, 70, 72, 83, 87, 93, 97,

113, 128, 133, 174
MxFitFunctionML-class

(mxFitFunctionML), 97
mxFitFunctionMultigroup, 98, 171
MxFitFunctionMultigroup-class

(mxFitFunctionMultigroup), 98
mxFitFunctionR, 99, 174
MxFitFunctionR-class (mxFitFunctionR),

99
mxFitFunctionRow, 101, 174
MxFitFunctionRow-class

(mxFitFunctionRow), 101
mxFitFunctionWLS, 70
MxFlatModel, 103
MxFlatModel-class (MxFlatModel), 103
MxLISRELModel-class, 103
mxLISRELObjective, 103
MxListOrNull-class, 106
mxMakeNames, 107
MxMatrices, 53–55, 119
MxMatrix, 43, 45–47, 49, 50, 54, 56, 67, 74,

77, 79, 83, 85, 88–90, 94–96,
104–108, 110, 114, 116, 118–120,
128, 129, 151

mxMatrix, 45, 46, 49, 50, 54, 70, 72, 82, 93,
107, 111, 112, 115–117, 126, 139,
140, 143, 174

MxMatrix-class, 111
mxMLObjective, 113, 116
MxModel, 43, 47, 49, 50, 53–55, 67, 69, 74, 79,

83, 85, 89, 94, 96, 105, 106,
111–117, 120, 121, 129, 131, 136,
137, 144–146, 151

MxModel (MxModel-class), 118
mxModel, 51, 55, 57, 70, 72, 75, 110, 111, 115,

118, 120, 122, 125, 126, 130, 139,
142, 143, 171, 174

MxModel-class, 118
MxNonNullData-class (MxData-class), 71
mxOption, 117, 120, 120, 131, 139
MxOptionalChar-class, 123
MxOptionalCharOrNumber-class, 123
MxOptionalLogical-class, 123
MxOptionalMatrix-class, 124

MxOptionalNumeric-class, 124
MxPath, 70, 72, 119, 125
mxPath, 115–117, 119, 124, 139, 142, 143, 174
MxPath-class (mxPath), 124
MxRAMModel-class, 127
mxRAMObjective, 105, 116, 127
mxRefModels, 99, 178
mxRefModels (omxSaturatedModel), 170
mxRename, 130
mxRestore, 131
mxRObjective, 132
mxRowObjective, 134
mxRun, 47, 53, 55, 74, 79, 83, 85, 89, 94, 96,

105, 106, 108, 111, 112, 114, 116,
119, 120, 129, 136, 139, 144, 145,
174

mxSetDefaultOptions, 138
mxSimplify2Array, 138
mxStandardizeRAMpaths, 139, 139
mxSummary, 53, 170
mxSummary (summary-MxModel), 177
MxThreshold, 142
mxThreshold, 141
MxThreshold-class (mxThreshold), 141
mxTryHard, 144
mxTypes, 116, 146
mxVersion, 146
myFADataRaw, 147
mzfData, 148
mzmData, 149

Named entities, 116, 120
named entity, 46, 55, 68, 71, 111, 118
Named-entities (Named-entity), 151
named-entities, 116
named-entities (Named-entity), 151
Named-entity, 151
named-entity (Named-entity), 151
names, 170
names,MxMatrix-method (MxMatrix-class),

111
names,MxModel-method (MxModel-class),

118
ncol,MxMatrix-method (MxMatrix-class),

111
nrow,MxMatrix-method (MxMatrix-class),

111
NULL, 71
numHess1, 151

INDEX 191

numHess2, 152

omxAllInt, 44, 152
omxAnd, 44
omxAnd (omxLogical), 167
omxApply, 154, 165, 170
omxApproxEquals, 44
omxApproxEquals (omxLogical), 167
omxAssignFirstParameters, 155, 163, 166,

173, 174
omxBrownie, 156
omxCbind (omxMatrixOperations), 168
omxCheckCloseEnough, 157, 158–162
omxCheckEquals, 157, 158, 159–162
omxCheckIdentical, 157, 158, 159, 160–162
omxCheckSetEquals, 157–159, 160, 161, 162
omxCheckTrue, 157–160, 161, 162
omxCheckWithinPercentError, 157–161,

162
omxExponential, 44
omxGetParameters, 145, 155, 163, 166, 174
omxGraphviz, 164
omxGreaterThan, 44
omxGreaterThan (omxLogical), 167
omxLapply, 154, 165, 170
omxLessThan, 44
omxLessThan (omxLogical), 167
omxLocateParameters, 163, 166
omxLogical, 167
omxMatrixOperations, 168
omxMnor, 44, 152, 153, 168
omxNot, 44
omxNot (omxLogical), 167
omxOr, 44
omxOr (omxLogical), 167
omxRbind (omxMatrixOperations), 168
omxSapply, 154, 165, 169
omxSaturatedModel, 170
omxSelectCols, 102, 135
omxSelectCols (omxSelectRowsAndCols),

172
omxSelectRows, 102, 135
omxSelectRows (omxSelectRowsAndCols),

172
omxSelectRowsAndCols, 102, 135, 172
omxSetParameters, 145, 155, 163, 166, 173
omxTranspose (omxMatrixOperations), 168
OpenMx, 68, 174
OpenMx-package (OpenMx), 174

option, 108
options, 57
ordinalTwinData, 175

print,MxAlgebra-method
(MxAlgebra-class), 46

print,MxConstraint-method
(mxConstraint), 66

print,MxExpectationLISREL-method
(mxExpectationLISREL), 77

print,MxExpectationNormal-method
(mxExpectationNormal), 82

print,MxExpectationRAM-method
(mxExpectationRAM), 84

print,MxExpectationStateSpace-method
(mxExpectationStateSpace), 87

print,MxFitFunctionAlgebra-method
(mxFitFunctionAlgebra), 95

print,MxFitFunctionML-method
(mxFitFunctionML), 97

print,MxFitFunctionR-method
(mxFitFunctionR), 99

print,MxFitFunctionRow-method
(mxFitFunctionRow), 101

print,MxFlatModel-method (MxFlatModel),
103

print,MxMatrix-method (MxMatrix-class),
111

print,MxModel-method (MxModel-class),
118

print,MxNonNullData-method
(MxData-class), 71

print,MxPath-method (mxPath), 124
print,MxThreshold-method (mxThreshold),

141

read.table, 131
rvectorize, 7, 44, 176, 179, 183–185

sapply, 169
sfApply, 154
sfLapply, 165
sfSapply, 169
show,MxAlgebra-method

(MxAlgebra-class), 46
show,MxConstraint-method

(mxConstraint), 66
show,MxExpectationLISREL-method

(mxExpectationLISREL), 77

192 INDEX

show,MxExpectationNormal-method
(mxExpectationNormal), 82

show,MxExpectationRAM-method
(mxExpectationRAM), 84

show,MxExpectationStateSpace-method
(mxExpectationStateSpace), 87

show,MxFitFunctionAlgebra-method
(mxFitFunctionAlgebra), 95

show,MxFitFunctionML-method
(mxFitFunctionML), 97

show,MxFitFunctionR-method
(mxFitFunctionR), 99

show,MxFitFunctionRow-method
(mxFitFunctionRow), 101

show,MxFlatModel-method (MxFlatModel),
103

show,MxMatrix-method (MxMatrix-class),
111

show,MxModel-method (MxModel-class), 118
show,MxNonNullData-method

(MxData-class), 71
show,MxPath-method (mxPath), 124
show,MxThreshold-method (mxThreshold),

141
summary, 53, 83, 94, 97
summary (summary-MxModel), 177
summary,MxModel-method

(summary-MxModel), 177
summary-MxModel, 177

tr, 179
twinData, 180

vec2diag, 8, 44, 182
vech, 7, 44, 176, 179, 182, 183–185
vech2full, 44, 183, 183, 185
vechs, 7, 44, 176, 183, 184, 185
vechs2full, 44, 183, 185

	Bollen
	cvectorize
	diag2vec
	dzfData
	dzmData
	dzoData
	eigenvec
	genericFitDependencies,MxBaseFitFunction-method
	HS.ability.data
	imxAddDependency
	imxCheckMatrices
	imxCheckVariables
	imxConDecMatrixSlots
	imxConstraintRelations
	imxConvertIdentifier
	imxConvertLabel
	imxConvertSubstitution
	imxCreateMatrix
	imxDataTypes
	imxDefaultGetSlotDisplayNames
	imxDeparse
	imxDependentModels
	imxDiff
	imxDmvnorm
	imxEvalByName
	imxExtractMethod
	imxExtractNames
	imxExtractReferences
	imxExtractSlot
	imxFilterDefinitionVariables
	imxFlattenModel
	imxFreezeModel
	imxGenerateLabels
	imxGenerateNamespace
	imxGenericModelBuilder
	imxGenSwift
	imxGetSlotDisplayNames
	imxHasNPSOL
	imxIdentifier
	imxIndependentModels
	imxInitModel
	imxIsDefinitionVariable
	imxIsPath
	imxLocateFunction
	imxLocateIndex
	imxLocateLabel
	imxLog
	imxLookupSymbolTable
	imxModelBuilder
	imxModelTypes
	imxMpiWrap
	imxOriginalMx
	imxPPML
	imxPPML.Test.Battery
	imxPreprocessModel
	imxReplaceMethod
	imxReplaceModels
	imxReplaceSlot
	imxReservedNames
	imxReverseIdentifier
	imxSameType
	imxSeparatorChar
	imxSfClient
	imxSimpleRAMPredicate
	imxSparseInvert
	imxSquareMatrix
	imxSymmetricMatrix
	imxTypeName
	imxVerifyMatrix
	imxVerifyModel
	imxVerifyName
	imxVerifyReference
	logm
	mxAlgebra
	MxAlgebra-class
	mxAlgebraObjective
	mxBounds
	MxBounds-class
	MxCharOrList-class
	MxCharOrNumber-class
	mxCheckIdentification
	mxCI
	MxCI-class
	mxCompare
	mxComputeConfidenceInterval
	mxComputeEM
	mxComputeGradientDescent
	mxComputeHessianQuality
	mxComputeIterate
	mxComputeNewtonRaphson
	mxComputeNothing
	mxComputeNumericDeriv
	mxComputeOnce
	mxComputeReportDeriv
	mxComputeSequence
	mxComputeStandardError
	mxConstraint
	MxConstraint-class
	mxData
	MxData-class
	mxDataDynamic
	mxErrorPool
	mxEval
	mxExpectationBA81
	mxExpectationLISREL
	mxExpectationNormal
	mxExpectationRAM
	mxExpectationStateSpace
	mxFactor
	mxFIMLObjective
	mxFitFunctionAlgebra
	mxFitFunctionML
	mxFitFunctionMultigroup
	mxFitFunctionR
	mxFitFunctionRow
	MxFlatModel
	MxLISRELModel-class
	mxLISRELObjective
	MxListOrNull-class
	mxMakeNames
	mxMatrix
	MxMatrix-class
	mxMLObjective
	mxModel
	MxModel-class
	mxOption
	MxOptionalChar-class
	MxOptionalCharOrNumber-class
	MxOptionalLogical-class
	MxOptionalMatrix-class
	MxOptionalNumeric-class
	mxPath
	MxRAMModel-class
	mxRAMObjective
	mxRename
	mxRestore
	mxRObjective
	mxRowObjective
	mxRun
	mxSetDefaultOptions
	mxSimplify2Array
	mxStandardizeRAMpaths
	mxThreshold
	mxTryHard
	mxTypes
	mxVersion
	myFADataRaw
	mzfData
	mzmData
	Named-entity
	numHess1
	numHess2
	omxAllInt
	omxApply
	omxAssignFirstParameters
	omxBrownie
	omxCheckCloseEnough
	omxCheckEquals
	omxCheckIdentical
	omxCheckSetEquals
	omxCheckTrue
	omxCheckWithinPercentError
	omxGetParameters
	omxGraphviz
	omxLapply
	omxLocateParameters
	omxLogical
	omxMatrixOperations
	omxMnor
	omxSapply
	omxSaturatedModel
	omxSelectRowsAndCols
	omxSetParameters
	OpenMx
	ordinalTwinData
	rvectorize
	summary-MxModel
	tr
	twinData
	vec2diag
	vech
	vech2full
	vechs
	vechs2full
	Index

