OpenMx Reference Manual

February 13, 2012

Date 2012-02-03
Title Multipurpose Software for Statistical Modeling

Author Steven M. Boker, Michael C. Neale, Her-
mine H. Maes, Michael J. Wilde, Michael Spiegel, Timothy R. Brick, Ryne Estabrook, Timo-
thy C. Bates, Paras Mehta, Timo von Oertzen, Ross J. Gore, Michael D. Hunter, Daniel C. Hack-
ett, Julian Karch, Andreas Brandmaier

Maintainer OpenMx Development Team <openmx-developers@list.mail.virginia.edu>
URL http://openmx.psyc.virginia.edu

Description The OpenMx Project intends to rewrite and extend the popular statistical pack-
age Mx to address the challenges facing a large range of modern statistical prob-
lems such as: the difficulty of measuring behavioral traits; the availability of technologies -
such as such as magnetic resonance imaging, continuous physiological monitoring and microar-
rays - which generate extremely large amounts of data often with complex time-dependent pat-
terning; and increased sophistication in the statistical models used to analyze the data.

License Apache License 2.0
Depends methods
Suggests snowfall
LazyLoad yes

LazyData yes

Collate MxData.R DefinitionVars.R MxReservedNames.R MxNamespace.R MxSearchRe-
place.R MxFlatSearchReplace.R MxUntitled.R MxCharOrNumber.R MxAlgebraFunc-
tions.R MxExponential. R MxMatrix.R DiagMatrix.R FullMatrix.R IdenMatrix.R LowerMa-
trix.R SdiagMatrix.R StandMatrix.R SymmMatrix.R UnitMatrix.R ZeroMatrix.R MxAlge-
bra.R MxCycleDetection.R MxAlgebraConvert.R MxAlgebraTransform.R MxSquare-
Bracket.R MxEval.R MxRename.R MxPath.R MxObjectiveMetaData.R MxRAMMeta-
Data.R MxObjectiveFunction.R MxBounds.R MxConstraint.R MxInterval. R MxTypes.R Mx-
Model.R MxRAMModel.R MxModelDisplay.R MxFlatModel.R MxMultiModel.R MxModel-
Functions.R MxModelParameters.R MxUnitTesting.R MxAlgebraObjective.R MxRowObjec-
tive.R MxFIMLObjective.R MxMLObjective.R MxRAMObjective.R MxLISRELObjec-

1

http://openmx.psyc.virginia.edu

2 R topics documented:

tive.R MxRObjective.R MxApply.R MxRun.R MxRunHelperFunctions.R MxSummary.R Mx-
Compare.R MxSwift.R MxOptions.R MxThreshold.R OriginalMx.R MxGraph.R Mx-
Graphviz.R MxDeparse.R MxCommunication.R MxRestore.R MxVersion.R MxError-
Pool.R MxPPML.R MxRAMtoML.R MxDiff.R MxErrorHandling.R MxDetectCores.R zzz.R

Version 1.2.0-1919

R topics documented:

CVECIOTIZE v o v e i e i e e e e e e e e e e e e e e 3
diag2vec e e e 4
CIZENVEC . .« . v v v v e e 5
mxAlgebra e 6
MxAlgebra-class e e 9
mxAlgebraObjectiveo 9
mxBounds e 11
MxBounds-class e e e e e e e 12
mxCL . . e e e e 13
MxClI-class e e e e 15
MXCOMPATE o v v e 16
mXCoNStraint e e e e e e e e e e e 17
MxConstraint-class e e e e 19
mxData e e e e e e e e e e 20
MxData-class e 22
mxErrorPool 23
mxEval e e e 24
mxFactor e e e 25
mxFIMLObjective e 26
MXMatriX o . e e e e e e e e e e e e e e e e e 28
MxMatrix-class e e e e 30
mxMLObjective L e 31
mxModel e e e e 33
MxModel-class e e e 36
mxOPON e 38
mxPath e e e e 40
MXRAMODbjective e e 43
mxRename e 45
MXRESIOre e e e e e e e e 46
mxRObjective 47
mxRowObjective 48
mxRuUn. e e e e e 50
mXTYPEs e e 52
MXVEISION o o e e e e e e e e 52
Named-entity o 0 e e e e e e e 53
omxAllInt e e 53
OmMXAPPLYy e 55
omxAssignFirstParameters 56

omxCheckCloseEnough 57

cvectorize 3

omxCheckEquals 58
omxCheckldentical 59
omxCheckSetEquals 60
omxCheckTrue e 61
omxCheckWithinPercentError, 62
omxGetParameters e e e e e e e e e 63
omxGraphviz e e 64
omxLapply e 65
omxLogical L 65
omXMNOr e e e 66
omxSapply 67
omxSelectRowsAndCols e 68
omxSetParameters e e e e e e e e e e e 69
OpenMX e 70
IVECIOTIZE o o o i o i e e e e e e e 70
summary-MxModelo 71
twinData e e e e e e 72
vec2diag e e 73
VECh . . L e e e e 74
VEChS . . . e e e 74
Index 76
cvectorize Vectorize By Column
Description

This function returns the vectorization of an input matrix in a column by column traversal of the
matrix. The output is returned as a column vector.

Usage

cvectorize(x)

Arguments

X

See Also

an input matrix.

rvectorize, vech, vechs

Examples

cvectorize(matrix(1:9, 3, 3))
cvectorize(matrix(1:12, 3, 4))

4 diag2vec

diag2vec Extract Diagonal of a Matrix

Description

Given an input matrix, diag2vec returns a column vector of the elements along the diagonal.

Usage

diag2vec(x)

Arguments

X an input matrix.

Details

Similar to the function diag, except that the input argument is always treated as a matrix (i.e.,
it doesn’t have diag()’s functions of returning an Identity matrix from an nrow specification, nor
to return a matrix wrapped around a diagonal if provided with a vector). To get vector2matrix
functionality, call vec2diag.

See Also

vec2diag

Examples

diag2vec(matrix(1:9, nrow=3))
[,1]

01,1 1

#[2,] 5

[3,] 9

diag2vec(matrix(1:12, nrow=3, ncol=4))
[,1]

#[1,]
[2,] 5
[3,]

eigenvec 5

eigenvec Eigenvector/Eigenvalue Decomposition

Description

eigenval computes the real parts of the eigenvalues of a square matrix. eigenvec computes the
real parts of the eigenvectors of a square matrix. ieigenval computes the imaginary parts of the
eigenvalues of a square matrix. ieigenvec computes the imaginary parts of the eigenvectors of
a square matrix. eigenval and ieigenval return nx1 matrices containing the real or imaginary
parts of the eigenvalues, sorted in decreasing order of the modulus of the complex eigenvalue.
For eigenvalues without an imaginary part, this is equivalent to sorting in decreasing order of the
absolute value of the eigenvalue. (See Mod for more info.) eigenvec and ieigenvec return nxn
matrices, where each column corresponds to an eigenvector. These are sorted in decreasing order
of the modulus of their associated complex eigenvalue.

Usage

eigenval (x)
eigenvec(x)
ieigenval (x)
ieigenvec(x)

Arguments

X the square matrix whose eigenvalues/vectors are to be calculated.

Details

Eigenvectors returned by eigenvec and ieigenvec are normalized to unit length.

See Also

eigen
Examples

A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = ’A’)
G <- mxMatrix(values = c(0, -1, 1, -1), nrow=2, ncol=2, name=’'G’)

model <- mxModel(A, G, name = ’model’)

mxEval (eigenvec(A), model)
mxEval (eigenvec(G), model)
mxEval(eigenval(A), model)
mxEval (eigenval(G), model)
mxEval (ieigenvec(A), model)
mxEval (ieigenvec(G), model)
mxEval(ieigenval (A), model)

6 mxAlgebra

mxEval (ieigenval(G), model)

mxAlgebra Create MxAlgebra Object

Description

This function creates a new MxAlgebra object.

Usage

mxAlgebra(expression, name = NA, dimnames = NA)

Arguments
expression An R expression of OpenMx-supported matrix operators and matrix functions.
name An optional character string indicating the name of the object.
dimnames list. The dimnames attribute for the algebra: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.
Details

The mxAlgebra function is used to create algebraic expressions that operate on one or more MxMa-
trix objects. To evaluate an MxAlgebra object, it must be placed in an MxModel object, along with
all referenced MxMatrix objects and the mxAlgebraObjective function. The mxAlgebraObjective
function must reference the MxAlgebra object to be evaluated by name.

The following operators are supported in mxAlgebra:

solve() Inversion

t() Transposition

* Elementwise powering
%% Kronecker powering
+ Addition

- Subtraction

%*% Matrix Multiplication
* Element or dot product
/ Element division

%x% Kronecker product
%&% Quadratic product

mxAlgebra 7

The following functions are supported in mxAlgebra:

cbind Horizontal adhesion
rbind Vertical adhesion
det Determinant

tr Trace

sum Sum

prod Product

max Maximum

min Min

abs Absolute value

sin Sine

sinh Hyperbolic sine
cos Cosine

cosh Hyperbolic cosine
tan Tangent

tanh Hyperbolic tangent
exp Exponent

log Natural Logarithm
sqrt Square root

eigenval FEigenvalues of a square matrix. Usage: eigenval(x); eigenvec(x); ieigenval(x); ieigen-
vec(X)

rvectorize Vectorize by row

cvectorize Vectorize by column

vech Half-vectorization

vechs Strict half-vectorization

vec2diag Create a diagonal matrix

diag2vec Extract diagonal from matrix

omxMnor Multivariate Normal Integration

omxAllInt All cells Multivariate Normal Integration
omxNot Perform unary negation on a matrix

omxAnd Perform binary and on two matrices

omxOr Perform binary or on two matrices
omxGreaterThan Perform binary greater on two matrices
omxLessThan Perform binary less than on two matrices
omxApproxEquals Perform binary equals to (within a specified epsilon) on two matrices

omxExponential Matrix Exponential

8 mxAlgebra

Value

Returns a new MxAlgebra object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxAlgebra for the S4 class created by mxAlgebra. mxAlgebraObjective for an objective functions
which takes an MxAlgebra or MxMatrix object as the function to be minimized. MxMatrix and
mxMatrix for objects which may be entered in the ’expression’ argument and the function that
creates them. More information about the OpenMx package may be found here.

Examples

A <- mxMatrix("Full”, nrow = 3, ncol = 3, values=2, name = "A")

Simple example: algebra B simply evaluates to the matrix A
B <- mxAlgebra(A, name = "B")

Compute A + B
C <- mxAlgebra(A + B, name = "C")

Compute sin(C)
D <- mxAlgebra(sin(C), name = "D")

Make a model and evaluate the mxAlgebra object ’D’

A <- mxMatrix("Full”, nrow = 3, ncol = 3, values=2, name = "A")
model <- mxModel("AlgebraExample”, A, B, C, D)

fit <- mxRun(model)

mxEval(D, fit)

Numbers in mxAlgebras are upgraded to 1x1 matrices

Example of Kronecker powering (%*%) and multiplication (%x%)

A <- mxMatrix(type="Full”, nrow=3, ncol=3, value=c(1:9), name="A")
ml <- mxModel("kron”, A, mxAlgebra(A %"% 2, name="KroneckerPower"))
mxRun(m1) $KroneckerPower

Running kron

mxAlgebra ’KroneckerPower’
@formula: A %"% 2

@result:

[,11 0,21 [,3]
#[1,] 1 16 49
#[2,] 4 25 64

[3,] 9 36 81

mxAlgebraObjective 9

MxAlgebra-class MxAlgebra Class

Description
MxAlgebra is an S4 class. An MxAlgebra object is a named entity. New instances of this class can
be created using the function mxAlgebra.

Details

The MxAlgebra class has the following slots:

name - The name of the object
formula - The R expression to be evaluated
result - amatrix with the computation result

The ‘name’ slot is the name of the MxAlgebra object. Use of MxAlgebra objects in the mxConstraint
function or an objective function requires reference by name.

The ‘formula’ slot is an expression containing the expression to be evaluated. These objects are
operated on or related to one another using one or more operations detailed in the mxAlgebra help
file.

The ‘result’ slot is used to hold the results of computing the expression in the ‘formula’ slot. If the
containing model has not been executed, then the ‘result’ slot will hold a 0 x 0 matrix. Otherwise
the slot will store the computed value of the algebra using the final estimates of the free parameters.

Slots may be referenced with the @ symbol. See the documentation for Classes and the examples
in the mxAlgebra document for more information.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxAlgebra, mxMatrix, MxMatrix

mxAlgebraObjective Function to Create MxAlgebraObjective Object

Description

This function creates a new MxAlgebraObjective object.

10 mxAlgebraObjective
Usage
mxAlgebraObjective(algebra, numObs = NA, numStats = NA)
Arguments
algebra A character string indicating the name of an MxAlgebra or MxMatrix object to
use for optimization.
numObs (optional) An adjustment to the total number of observations in the model.
numStats (optional) An adjustment to the total number of observed statistics in the model.
Details

Objective functions are functions for which free parameter values are chosen such that the value of
the objective function is minimized. While the other objective functions in OpenMx are packaged
with a function to be optimized (i.e., maximum likelihood), the mxAlgebraObjective function uses
the referenced MxAlgebra or MxMatrix object as the function to be minimized.

If a model’s primary objective function is a mxAlgebraObjective objective function, then the ref-
erenced algebra in the objective function must return a 1 x 1 matrix (when using OpenMx’s default
optimizer). There is no restriction on the dimensions of an objective function that is not the primary,
or ‘topmost’, objective function.

To evaluate an algebra objective function, place the following objects in a MxModel object: a
MxAlgebraObjective, MxAlgebra and MxMatrix entities referenced by the MxAlgebraObjective,
and optional MxBounds and MxConstraint entities. This model may then be evaluated using the
mxRun function. The results of the optimization may be obtained using the mxEval function on the
name of the MxAlgebra, after the model has been run.

Value

Returns a new MxAlgebraObjective object. MxAlgebraObjective objects should be included with
models with referenced MxAlgebra and MxMatrix objects.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxAlgebra to create an algebra suitable as a reference function to be minimized. More information
about the OpenMx package may be found here.

Examples

Create a matrix ’A’ with no free parameters
A <- mxMatrix(’Full’, nrow = 1, ncol = 1, values = c(0), name = ’A’)

Create an algebra ’B’, which defines the expression A + A
B <- mxAlgebra(A + A, name = ’B’)

Define the objective function for algebra ’B’

mxBounds 11

objective <- mxAlgebraObjective(’B’)

Place the algebra, its associated matrix and
its objective function in a model
model <- mxModel(A, B, objective)

Evalulate the algebra
modelRun <- mxRun(model)

View the results
modelRun@output

mxBounds Create MxBounds Object

Description

This function creates a new MxBounds object.

Usage

mxBounds(parameters, min = NA, max = NA)

Arguments
parameters A character vector indicating the names of the parameters on which to apply
bounds.
min A numeric value for the lower bound. NA means use default value.
max A numeric value for the upper bound. NA means use default value.
Details

Creates a set of boundaries or limits for a parameter or set of parameters. Parameters may be any
free parameter or parameters from an MxMatrix object. Parameters may be referenced either by
name or by referring to their position in the ’spec’ matrix of an MxMatrix object.

Minima and maxima may be specified as scalar numeric values.

Value
Returns a new MxBounds object. If used as an argument in an MxModel object, the parameters
referenced in the ’parameters’ argument must also be included prior to optimization.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

12 MxBounds-class

See Also
MxBounds for the S4 class created by mxBounds. MxMatrix and mxMatrix for free parameter

specification. More information about the OpenMx package may be found here.

Examples

#Create lower and upper bounds for parameters A’ and ’B’
bounds <- mxBounds(c(’A’, ’'B’), 3, 5)

#Create a lower bound of zero for a set of variance parameters

varianceBounds <- mxBounds(c(’Var1’, ’Var2’, ’Var3’), 0)
MxBounds-class MxBounds Class
Description

MxBounds is an S4 class. New instances of this class can be created using the function mxBounds.

Details

The MxBounds class has the following slots:

min - The lower bound
max - The upper bound
parameters - The vector of parameter names

The *min’ and "'max’ slots hold scalar numeric values for the lower and upper bounds on the list of
parameters, respectively.

Parameters may be any free parameter or parameters from an MxMatrix object. Parameters may be
referenced either by name or by referring to their position in the ’spec’ matrix of an MxMatrix ob-
ject. To affect an estimation or optimization, an MxBounds object must be included in an MxModel
object with all referenced MxAlgebra and MxMatrix objects.

Slots may be referenced with the @ symbol. See the documentation for Classes and the examples
in the mxBounds document for more information.
References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxBounds for the function that creates MxBounds objects. MxMatrix and mxMatrix for free pa-
rameter specification. More information about the OpenMx package may be found here.

mxCI 13

mxCI Create mxCI Object

Description

This function creates a new MxCI object, which are used to estimate likelihood-based confidence
intervals.

Usage

mxCI(reference, interval = 0.95, type=c("both”, "lower”, "upper"))

Arguments
reference A character vector of free parameters, mxMatrices, mxMatrix elements and mx-
Algebras on which confidence intervals for free parameters are to be estimated,
listed by name.
interval A scalar numeric value indicating the confidence interval to be estimated. Must
be between 0 and 1. Defaults to 0.95.
type A character string indicating whether the upper, lower or both confidence limits
are returned. Defaults to "both".
Details

The mxCI function creates MxCI objects, which can be used as arguments in MxModel objects.
When models containing MxCI objects are optimized using mxRun with the ‘intervals’ argument
set to TRUE, likelihood-based confidence intervals are returned. The likelihood-based confidence
intervals calculated by MxCI objects are symmetric with respect to the change in likelihood in
either direction, and are not necessarily symmetric around the parameter estimate. Estimation of
confidence intervals requires both that an MxCI object be included in the model and that the ‘inter-
vals’ argument of the mxRun function is set to TRUE. When estimated, confidence intervals can be
accessed in the model output at @output$confidencelntervals or by using summary on a fitted
MxModel object.

The likelihood-based confidence intervals returned using MxCI are obtained by increasing or de-
creasing the value of each parameter until the -2 log likelihood of the model increases by an amount
corresponding to the requested interval. The confidence limit specified by the ‘interval’ argument is
transformed into a corresponding difference in the model -2 log likelihood based on the likelihood
ratio test. Thus, a requested confidence interval for a parameter will first determine the correspond-
ing quantile from the chi-squared distribution with one degree of freedom (a value of 3.841459
when a 95 percent confidence interval is requested). That quantile will be populated into either the
‘lowerdelta’ slot, the ‘upperdelta’ slot, or both in the output MxCI object.

Estimation of likelihood-based confidence intervals begins after optimization has been completed,
with each parameter moved in the direction(s) specified in the ‘type’ argument until the specified
increase in -2 log likelihood is reached. All other free parameters are left free for this stage of

14 mxCI

optimization. This process repeats until all confidence intervals have been calculated. The calcu-
lation of likelihood-based confidence intervals can be computationally intensive, and may add a
significant amount of time to model estimation when many confidence intervals are requested.

Multiple parameters, MxMatrices and MxAlgebras may be listed in the ‘reference’ argument. In-
dividual elements of MxMatrices and MxAlgebras may be listed as well, using the syntax “ma-
trix[row,col]” (see Extract for more information). Only scalar numeric values for the ‘interval’
argument are supported. Users requesting different confidence ranges for different parameters must
use separate mxClI statements. MxModel objects can hold multiple MxCI objects, but only one
confidence interval may be requested per named-entity.

Confidence interval estimation may result in model non-convergence at the confidence limit. Sep-
arate optimizer messages may be passed for each confidence limit. This has no impact on the
parameter estimates themselves, but may indicate a problem with the referenced confidence limit.
Model non-convergence for a particular confidence limit may indicate parameter interdependence or
the influence of a parameter boundary. Checking the validity of a confidence limit can be done my
estimating a model with the appropriate parameter fixed at the confidence limit in question. If the
confidence limit is valid, the -2 log likelihoods of these two models should differ by the chi-squared
criterion specified in the MxCI’s ‘lowerdelta’ or ‘upperdelta’ slot.

Value
Returns a new MxCI object. If used as an argument in an MxModel object, the parameters, MxMa-
trices and MxAlgebras listed in the "reference’ argument must also be included prior to optimization.
References
The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation. Addi-
tional support for mxCI() can be found on the OpenMx wiki at http://openmx.psyc.virginia.edu/wiki.
See Also
MxCT for the S4 class created by mxCI. MxMatrix and mxMatrix for free parameter specification.
More information about the OpenMx package may be found here.

Examples

generate data

covariance <- matrix(c(1.0, 0.5, 0.5, 1.0),
nrow=2,

dimnames=list(c("a", "b"), c("a", "b")))

data <- mxData(covariance, "cov", numObs=100)

create an expected covariance matrix
expect <- mxMatrix("Symm", 2, 2,

free=TRUE,
values=c(1, .5, 1),
labels=c("var1”, "cov12", "var2"),

name="expectedCov")

request 95 percent confidence intervals

MxClI-class 15

ci <= mxCI(c("var1”, "cov12", "var2"))

specify the model

model <- mxModel("Confidence Interval Example”,
data, expect, ci,

mxMLObjective("expectedCov”, dimnames=c("a", "b")))

run the model
results <- mxRun(model, intervals=TRUE)

view confidence intervals
print(summary(results)$CI)

view all results
summary(results)

MxCI-class MxClI Class

Description
MxClI is an S4 class. An MxCI object is a named entity. New instances of this class can be created
using the function mxCI. MxCI objects may be used as arguments in the mxModel function.
Details
The MxCI class has the following slots:

reference - The name of the object
lowerdelta - Either a matrix or a data frame
upperdelta - A vector for means, or NA if missing

The reference slot contains a character vector of named free parameters, MxMatrices and MxAlge-
bras on which confidence intervals are desired. Individual elements of MxMatrices and MxAlgebras
may be listed as well, using the syntax “matrix[row,col]” (see Extract for more information).

The lowerdelta and upperdelta slots give the changes in likelihoods used to define the confidence
interval. The upper bound of the likelihood-based confidence interval is estimated by increasing the
parameter estimate, leaving all other parameters free, until the model -2 log likelihood increased
by ‘upperdelta’. The lower bound of the confidence interval is estimated by decreasing the pa-
rameter estimate, leaving all other parameters free, until the model -2 log likelihood increased by
‘lowerdata’.

Likelihood-based confidence intervals may be specified by including one or more MxCI objects
in an MxModel object. Estimation of confidence intervals requires model optimization using the

16 mxCompare

mxRun function with the ‘intervals’ argument set to TRUE. The calculation of likelihood-based
confidence intervals can be computationally intensive, and may add a significant amount of time to
model estimation when many confidence intervals are requested.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxClI for creating MxCI objects. More information about the OpenMx package may be found here.

mxCompare Assign Model Parameters

Description

Compare the fit of one or more models to a base model. The output is a table with one row per
model comparison.

Usage

mxCompare(base, comparison, ..., all = FALSE)
Arguments

base A MxModel object or list of MxModel objects.

comparison A MxModel object or list of MxModel objects.

Not used. Forces remaining arguments to be specified by name.

all A boolean value on whether to compare all bases with all comparisons.

Details

Use options(’digits’ = N) to set the minimum number of significant digits to be printed in values.
The following columns appear in the output:

base Name of the base model

comparison Name of the comparison model

ep Estimated parameters of the comparison model

minus2LL. Minus 2*log-likelihood of the comparison model

df Degrees in freedom of the comparison model

AIC Akaike’s Information Criterion for the comparison model

diffLL. Change in minus 2*log-likelihood

diffdf Change in degrees of freedom

p Significance level of the change in fitness function

mxConstraint

See Also

mxModel; options (use options('mxOptions’) to see all the OpenMx-specific options)

Examples

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G1")
modell <- mxModel("One Factor”, type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from = latents, to=manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs = 500)

)

fit1l <- mxRun(model?)

latents <- c("G1", "G2")

model2 <- mxModel(name="Two Factor”, type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from = latents[1], to=manifests[1:3]),
mxPath(from = latents[2], to=manifests[4:5]),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov"”, numObs=500)

)

fit2 <- mxRun(model2)

mxCompare(fitl, c(fit2))

vary precision of the output (no effect for this example)
oldPrecision = as.numeric(options(’digits’))
options(’digits’ = 3)

mxCompare(fitl, c(fit2))

options(’digits’ = oldPrecision)
mxConstraint Create MxConstraint Object
Description

This function creates a new MxConstraint object.

Usage

mxConstraint(expression, name = NA)

18 mxConstraint

Arguments
expression An R expression of matrix operators and matrix functions.
name An optional character string indicating the name of the object.
Details

The mxConstraint function defines relationships between two MxAlgebra or MxMatrix objects.
They are used to affect the estimation of free parameters in the referenced objects. The constraint
relation is written identically to how a MxAlgebra expression would be written. The outermost
operator in this relation must be either ‘<’, ‘=="or *>’. To affect an estimation or optimization, an
MxConstraint object must be included in an MxModel object with all referenced MxAlgebra and
MxMatrix objects.

Usage Note: Use of mxConstraint should be avoided where it is possible to achieve the constraint
by equating free parameters by label or position in an MxMatrix or MxAlgebra object. Including
mxConstraints in an mxModel will disable standard errors and the calculation of the final Hessian,
and thus should be avoided when standard errors are of importance. Constraints also add computa-
tional overhead. If one labels two parameters the same, the optimizer has one fewer parameter to
optimize. However, if one uses mxConstraint to do the same thing, both parameters remain esti-
mated and a Lagrangian multiplier is added to maintain the constraint. This constraint also has to
have its gradients computed and the order of the Hessian grows as well. So while both approaches
should work, the mxConstraint() will take longer to do so.

Alernatives to mxConstraints include using labels, Ibound or ubound arguments or algebras. Free
parameters in the same MxModel may be constrained to equality by giving them the same name in
their respective ’labels’ matrices. Similarly, parameters may be fixed to an individual element in a
MxModel object or the result of an MxAlgebra object through labeling. For example, assigning a
label of “name[1,1]* fixes the value of a parameter at the value in first row and first column of the
matrix or algebra “name*. The mxConstraint function should be used to enforce inequalities that
cannot be conveyed using other methods.
Value

Returns an MxConstraint object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxConstraint for the S4 class created by mxConstraint.

Examples

#Create a constraint between MxMatrices ’A’ and ’B’
constraint <- mxConstraint(A > B, name = ’AdominatesB’)

Constrain matrix ’K’ to be equal to matrix ’limit’

model <- mxModel("con_test”,

MxConstraint-class 19

mxMatrix(type="Full”, nrow=2, ncol=2, free=TRUE, name="K"),
mxMatrix(type="Full”, nrow=2, ncol=2, free=FALSE, name="limit", values=1:4),

mxConstraint(K == limit, name = "Klimit_equality"),

mxAlgebra(min(K), name="minK"),

mxAlgebraObjective("minK")

)

Not run:

fit <- mxRun(model)

fit@matrices$K@values

End(Not run)
[,11 [,2]
#[1,] 1 3
#[2,] 2 4

Constrain both free parameters of a matrix to equality using labels (both are set to "eq")
equal <- mxMatrix("Full”, 2, 1, free=TRUE, values=1, labels="eq", name="D")

Constrain a matrix element in to be equal to the result of an algebra
start <- mxMatrix("”Full”, 1, 1, free=TRUE, values=1, labels="param”, name="F")
alg <- mxAlgebra(log(start), name="logP")

Force the fixed parameter in matrix G to be the result of the algebra
end <- mxMatrix("Full”, 1, 1, free=FALSE, values=1, labels="logP[1,1]", name="G")

MxConstraint-class MxConstraint Class

Description

MxConstraint is an S4 class. An MxConstraint object is a named entity. New instances of this class
can be created using the function mxConstraint.

Details

The MxConstraint class has the following slots:

name - The name of the object
formula - The R expression to be evaluated

The ‘name’ slot is the name of the MxConstraint object. Use of MxConstraint objects in other
functions in the OpenMx library may require reference by name.

The ‘formula’ slot is an expression containing the expression to be evaluated. These objects are
operated on or related to one another using one or more operations detailed in the mxConstraint
help file.

Slots may be referenced with the @ symbol. See the documentation for Classes and the examples

20 mxData

in the mxConstraint document for more information.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxConstraint for the function that creates MxConstraint objects.

mxData Create MxData Object

Description

This function creates a new MxData object.

Usage

mxData(observed, type, means = NA, numObs = NA)

Arguments
observed A matrix or data.frame which provides data to the MxData object.
type A character string defining the type of data in the ‘observed’ argument. Must be
one of “raw”, “cov”, “cor”, or “sscp”.
means An optional vector of means for use when ‘type’ is “cov”, or “cor”.
numObs The number of observations in the data supplied in the ‘observed’ argument.
Required unless ‘type’ equals “raw”.
Details

The mxData function creates MxData objects, which can be used as arguments in MxModel objects.
The ‘observed’ argument may take either a data frame or a matrix, which is then described with the
‘type’ argument. Data types describe compatibility and usage with objective functions in MxModel
objects. Four different data types are supported:

raw The contents of the ‘observed’ argument are treated as raw data. Missing values are permitted
and must be designated as the system missing value. The ‘means’ and ‘numObs’ arguments
cannot be specified, as the ‘means’ argument is not relevant and the ‘numObs’ argument is
automatically populated with the number of rows in the data. Data of this type must use the
mxFIMLObjective function as its objective function in MxModel objects, which deals with
covariance estimation under full-information maximum likelihood.

cov The contents of the ‘observed’ argument are treated as a covariance matrix. The ‘means’
argument is not required, but may be included for estimations involving means. The ‘nu-
mObs’ argument is required, which should reflect the number of observations or rows in the
data described by the covariance matrix. Data of this type may use the mxMLObjective, or
mxRAMObjective functions, depending on the specified model.

mxData 21

cor The contents of the ‘observed’ argument are treated as a correlation matrix. The ‘means’
argument is not required, but may be included for estimations involving means. The ‘nu-
mObs’ argument is required, which should reflect the number of observations or rows in the
data described by the covariance matrix. Data of this type may use the mxMLObjective, or
mxRAMObjective functions, depending on the specified model.

sscp The contents of the ‘observed’ argument are treated as a sums-of-squares and cross-products
matrix. The ‘means’ argument is not used. The ‘numObs’ argument is required, which should
reflect the number of observations or rows in the data described by the covariance matrix.
Data of this type may use the mxMLObjective, or mxRAMODbjective functions, depending on
the specified model.

MxData objects may not be included in MxAlgebra objects or use the mxAlgebraObjective func-
tion. If these capabilities are desired, data should be appropriately input or transformed using the
mxMatrix and mxAlgebra functions.

While column names are stored in the ‘observed’ slot of MxData objects, these names are not
recognized as variable names in MxPath objects. Variable names must be specified using the ‘man-
ifestVars’ argument of the mxModel function prior to use in MxPath objects.

The mxData function does not currently place restrictions on the size, shape, or symmetry of matri-
ces input into the ‘observed’ argument. While it is possible to specify MxData objects as covariance,
correlation or sscp matrices that do not have the properties commonly associated with these matri-
ces, failure to correctly specify these matrices will likely lead to problems in model estimation.

OpenMx uses the names of variables to map them onto the objective functions and other elements
associated with your model. For data.frames, ensure you have set the names(). For matrices set
names using, for instance, row.names=c("your", "columns"). Covariance cor and sscp matrices
need to have both the row and column names set and these must be identical, for instance by using
dimnames=list(varNames, varNames).

Value

Returns a new MxData object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxData for the S4 class created by mxData. matrix and data.frame for objects which may be
entered as arguments in the ‘observed’ slot. More information about the OpenMx package may be
found here.

Examples

#Create a covariance matrix

covMatrix <- matrix(c(0.77642931, 0.39590663,
0.39590663, 0.49115615),
nrow = 2, ncol = 2, byrow = TRUE)

22 MxData-class

#Create an MxData object including that covariance matrix
data <- mxData(covMatrix, ’cov’, numObs = 100)

model <- mxModel(data)

MxData-class MxData Class

Description

MxData is an S4 class. An MxData object is a named entity. New instances of this class can be
created using the function mxData. MxData is an S4 class union. An MxData object is either NULL
or a MxNonNullData object.

Details

The MxNonNullData class has the following slots:

name - The name of the object
observed - Either a matrix or a data frame
vector - A vector for means, or NA if missing
type - Either 'raw’, ’cov’, ’cor’, or ’sscp’
numObs - The number of oberservations

The name’ slot is the name of the MxData object.

The ‘observed’ slot is used to contain data, either as a matrix or as a data frame. Use of the data in
this slot by other functions depends on the value of the ’type’ slot. When ’type’ is equal to ’cov’,
“cor’, or ’sscp’, the data input into the matrix’ slot should be a symmetric matrix or data frame.

The ’vector’ slot is used to contain a vector of numeric values, which is used as a vector of means
for MxData objects with ’type’ equal to "cov’, *cor’, or ’sscp’. This slot may be used in estimation
using the mxMLObjective function.

The ’type’ slot may take one of four supported values:

raw The contents of the ‘observed’ slot are treated as raw data. Missing values are permitted and
must be designated as the system missing value. The ’vector’ and 'numObs’ slots cannot be
specified, as the "vector’ argument is not relevant and the 'numObs’ argument is automatically
populated with the number of rows in the data. Data of this type must use the mxFIMLOb-
jective function as its objective function in MxModel objects, which deals with covariance
estimation under full-information maximum likelihood.

cov The contents of the ‘observed’ slot are treated as a covariance matrix. The ’vector’ argument
is not required, but may be included for estimations involving means. The 'numObs’ slot
is required. Data of this type may use the mxMLObjective, or mxRAMObjective functions,
depending on the specified model.

mxErrorPool 23

cor The contents of the ‘observed’ slot are treated as a correlation matrix. The ’vector’ argument
is not required, but may be included for estimations involving means. The 'numObs’ slot
is required. Data of this type may use the mxMLObjective, or mxRAMObjective functions,
depending on the specified model.

sscp The contents of the ‘observed’ slot are treated as a sums-of-squares and cross-products ma-
trix. The ’vector’ argument is not required, but may be included for estimations involving
means. The 'numObs’ slot is required. Data of this type may use the mxMLObjective, or
mxRAMObjective functions, depending on the specified model.

The 'numObs’ slot describes the number of observations in the data. If ’type’ equals ‘raw’, then
’numObs’ is automatically populated as the number of rows in the matrix or data frame in the ‘ob-
served’ slot. If "type’ equals cov’, ’cor’, or ’sscp’, then this slot must be input using the 'numObs’
argument in the mxData function when the MxData argument is created.

MxData objects may not be included in MxAlgebra objects or use the mxAlgebraObjective func-
tion. If these capabilities are desired, data should be appropriately input or transformed using the
mxMatrix and mxAlgebra functions.

While column names are stored in the ‘observed’ slot of MxData objects, these names are not
recognized as variable names in MxPath objects. Variable names must be specified using the *man-
ifestVars’ argument of the mxModel function prior to use in MxPath objects.

The mxData function does not currently place restrictions on the size, shape, or symmetry of matri-
ces input into the ‘observed’ argument. While it is possible to specify MxData objects as covariance,
correlation or sscp matrices that do not have the properties commonly associated with these matri-
ces, failure to correctly specify these matrices will likely lead to problems in model estimation.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxData for creating MxData objects, matrix and data.frame for objects which may be entered as
arguments in the matrix’ slot. More information about the OpenMx package may be found here.

mxErrorPool Query the Error Pool

Description

Retrieve models from the pool that did not complete successfully.

Usage

mxErrorPool (modelnames = NA, reset = FALSE)

Arguments

modelnames Either NA or a character vector of model names.
reset Either TRUE or FALSE.

24 mxEval

Details

If ‘modelnames’ is NA, then the list of all error models will be returned. Otherwise a subset of
models will be returned, basedon the model names passed in as a argument. If ‘reset’ is TRUE, then
the error pool is reset to the empty list.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

mxEval Evaluate Values in MxModel

Description
This function can be used to evaluate an arbitrary R expression that includes named entities from a
MxModel object, or labels from a MxMatrix object.

Usage

mxEval (expression, model, compute = FALSE, show = FALSE, defvar.row = 1)

Arguments

expression An arbitrary R expression.

model The model in which to evaluate the expression.

compute If TRUE then compute the value of algebra expressions.

show If TRUE then print the translated expression.

defvar.row The row number for definition variables when compute=TRUE.
Details

The argument ‘expression’ is an arbitrary R expression. Any named entities that are used within the
R expression are translated into their current value from the model. Any labels from the matrices
within the model are translated into their current value from the model. Finally the expression is
evaluated and the result is returned. To enable debugging, the ‘show’ argument has been provided.
The most common mistake when using this function is to include named entities in the model that
are identical to R function names. For example, if a model contains a named entity named ‘c’, then
the following mxEval call will return an error: mxEval(c(A, B, C), model).

If ‘compute’ is FALSE, then MxAlgebra expressions return their current values as they have been
computed by the optimization call (using mxRun). If the ‘compute’ argument is TRUE, then Mx-
Algebra expressions will be calculated in R. Any references to an objective function that has not yet
been calculated will return a 1 x 1 matrix with a value of NA.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

mxFactor 25

See Also

mxAlgebra to create algebraic expressions inside your model and mxModel for the model object
mxEval looks inside when evaluating.

Examples

matrixA <- mxMatrix("Full”, nrow = 1, ncol =1,
values = 1, name = "A")

algebraB <- mxAlgebra(A + A, name = "B")

model <- mxModel(matrixA, algebraB)

model <- mxRun(model)

start <- mxEval(-pi * A, model)

Not run:

mxEval(plot(sin, start, B * pi), model)

The statement above is equivalent to:

plot(sin, -pi, 2 * pi)

End(Not run)

mxFactor Fail-safe Factors

Description

This is a wrapper for the R function factor.

OpenMx requires ordinal data to be ordered. R’s factor function doesn’t enforce this, hence this
wrapper exists to throw an error should you accidentally try and run with ordered = FALSE.

Also, the ‘levels’ parameter is optional in R’s factor function. However, relying on the data
to specify the data is foolhardy for the following reasons: The factor function will skip levels
missing from the data: Specifying these in levels leaves the list of levels complete. Data will often
not explore the min and max level that the user knows are possible. For these reasons this function
forces you to write out all possible levels explicitly.

Usage

mxFactor(x = character(), levels, labels = levels,
exclude = NA, ordered = TRUE)

26 mxFIML Objective

Arguments
X either a vector of data or a data.frame object.
levels a mandatory vector of the values that *x” might have taken.
labels _either_ an optional vector of labels for the levels, _or_ a character string of
length 1.
exclude a vector of values to be excluded from the set of levels.
ordered logical flag to determine if the levels should be regarded as ordered (in the order
given). Required to be TRUE.
Details

If ‘x’ is a data.frame, then all of the columns of ‘x’ are converted into ordered factors. If ‘X’ is
a data.frame, then ‘levels’ and ‘labels’ may be either a list or a vector. When ‘levels’ is a list,
then different levels are assigned to different columns of the constructed data.frame object. When
‘levels’ is a vector, then the same levels are assigned to all the columns of the data.frame object.
The function will throw an error if ‘ordered’ is not TRUE or if ‘levels’ is missing. See factor for
more information on creating ordered factors.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

myVar <- c("s", "t", "a", "t", "i", "s", "t", "i", "c", "s")

ff <- mxFactor(myVar, levels=letters) # letters is a built in list of all lowercase letters of the alphabet
ff

#[M1statistics

#Levels: a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<g<r<s<t<u<v<w<x<y<z

as.integer(ff) # the internal codes

factor(ff) # NOTE: drops the levels that do not occur.
mxFactor prevents you doing this unintentionally.

This example works on a dataframe

foo <- data.frame(x=c(1:3),y=c(4:6),z=c(7:9))

mxFactor(foo, c(1:9)) # Applys one set of levels to all three columns
mxFactor(foo, list(c(1:3), c(4:6), c(7:9))) # Apply unique sets of levels to each variable

mxFIMLObjective Create MxFIMLObjective Object

Description

This function creates a new MxFIMLODbjective object.

mxFIML Objective 27

Usage

mxFIMLObjective(covariance, means, dimnames = NA, thresholds = NA, vector = FALSE, threshnames = dimname

Arguments
covariance A character string indicating the name of the expected covariance algebra.
means A character string indicating the name of the expected means algebra.
dimnames An optional character vector to be assigned to the dimnames of the covariance
and means algebras.
thresholds An optional character string indicating the name of the thresholds matrix.
vector A logical value indicating whether the objective function result is the likelihood
vector.
threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.
Details

Objective functions are functions for which free parameter values are chosen such that the value of
the objective function is minimized. The mxFIMLObjective function uses full-information maxi-
mum likelihood to provide maximum likelihood estimates of free parameters in the algebra defined
by the ’covariance’ and means’ arguments. The ’covariance’ argument takes an MxAlgebra ob-
ject, which defines the expected covariance of an associated MxData object. The ’means’ argument
takes an MxAlgebra object, which defines the expected means of an associated MxData object. The
’dimnames’ arguments takes an optional character vector. If this argument is not a single NA, then
this vector be assigned to be the dimnames of the means vector, and the row and columns dimnames
of the covariance matrix. The ’vector’ argument is either TRUE or FALSE, and determines whether
the objective function returns a column vector of the likelihoods, or a single -2*(log likelihood)
value.

mxFIMLObjective evaluates with respect to an MxData object. The MxData object need not be
referenced in the mxFIMLODbjective function, but must be included in the MxModel object. mx-
FIMLObjective requires that the "type’ argument in the associated MxData object be equal to 'raw’.
Missing values are permitted in the associated MxData object.

dimnames must be supplied where the matrices referenced by the covariance and means algebras
are not themselves labeled. Failure to do so leads to an error noting that the covariance or means
matrix associated with the FIML objective does not contain dimnames.

To evaluate, place MXFIMLObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.
The results of the optimization can be found in the "output’ slot of the resulting model, and may be
referenced using the Extract functionality.

Value

Returns a new MxFIMLObjective object. MXFIMLObjective objects should be included with mod-
els with referenced MxAlgebra, MxData and MxMatrix objects.

28 mxMatrix

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

A <- mxMatrix(values = 0.5, nrow = 2, ncol =1,
free = TRUE, name = "A")

D <- mxMatrix(type = "Diag”, values = c(0, 0.5),
free = c(FALSE, TRUE), nrow = 2, name = "D")

M <- mxMatrix(type = "Zero"”, nrow = 1, ncol = 2, name = "M")
expectedCov <- mxAlgebra(A %*% t(A) + D, "expectedCov")
objective <- mxFIMLObjective("expectedCov", "M")

model <- mxModel(A, D, expectedCov, objective)

mxMatrix Create MxMatrix Object

Description

This function creates a new MxMatrix object.

Usage

mxMatrix(type = "Full”, nrow = NA, ncol = NA,
free = FALSE, values = NA, labels = NA, lbound = NA,
ubound = NA, byrow = getOption(’mxByrow’), dimnames = NA, name = NA)

Arguments

type a character string indicating the matrix type, where type indicates the range
of values and equalities in the matrix. Must be one of: ‘Diag’, ‘Full’, ‘Iden’,
‘Lower’, ‘Sdiag’, ‘Stand’, ‘Symm’, ‘Unit’, or ‘Zero’.

nrow the desired number of rows. One or both of ‘nrow’ and ‘ncol’ is required when
‘values’, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’ arguments are not matrices,
depending on the matrix type.

ncol the desired number of columns. One or both of ‘nrow’ and ‘ncol’ is required
when ‘values’, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’ arguments are not matri-
ces, depending on the matrix type.

free a vector or matrix of logicals for free parameter specification. A single ‘TRUE’

or ‘FALSE’ will set all allowable variables to free or fixed, respectively.

mxMatrix

29

values a vector or matrix of numeric starting values. By default, all values are set to
ZerO0.

labels a vector or matrix of characters for variable label specification.

1bound a vector or matrix of numeric lower bounds. Default bounds are specified with
an NA.

ubound a vector or matrix of numeric upper bounds. Default bounds are specified with
an NA.

byrow logical. If ‘FALSE’ (default), the ‘values’, ‘free’, ‘labels’, ‘Ibound’, and ‘ubound’
matrices are populated by column rather than by row.

dimnames list. The dimnames attribute for the matrix: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

name an optional character string indicating the name of the MxMatrix object created
by the mxModel function.

Details

The mxMatrix function creates MxMatrix objects, which consist of a pair of matrices and a ‘type’
argument. The ‘values’ matrix is made up of numeric elements whose usage and capabilities in other
functions are defined by the ‘free’ matrix. If an element is specified as a fixed parameter in the ‘free’
matrix, then the element in the ‘values’ matrix is treated as a constant value and cannot be altered
or updated by an objective function when included in an mxRun function. If an element is specified
as a free parameter in the ‘free’ matrix, the element in the ‘value’ matrix is considered a starting
value and can be changed by an objective function when included in an mxRun function. Free
parameters are specified with a character string, non-zero numeric value, or ‘NA’; fixed parameters
are specified with a numeric zero.

Objects created by the mxMatrix function are of a specific ‘type’, which specifies the number and
location of parameters in the ‘labels’ matrix and the starting values in the ‘values’ matrix. Input

‘values’

, ‘free’, and ‘labels’ matrices must be of appropriate shape and have appropriate values for

the matrix type requested. Nine types of matrices are supported:

‘Diag’
‘Full’
‘Iden’
‘Lower’
‘Sdiag’
‘Symm’
‘Stand’
‘Unit’
‘Zero’

matrices must be square, and only elements on the principle diagonal may be specified as free parameters or take n
matrices may be either rectangular or square, and all elements in the matrix may be freely estimated. This type is tt
matrices must be square, and consist of no free parameters. Matrices of this type have a value of 1 for all entries on
matrices must be square, with a value of O for all entries in the upper triangle and no free parameters in the upper tr
matrices must be square, with a value of O for all entries in the upper triangle and along the diagonal. No free paran
matrices must be square, and elements in the principle diagonal and lower triangular portion of the matrix may be f
matrices are symmetric matrices (see *Symm’) with 1’s along the main diagonal.

matrices may be either rectangular or square, and contain no free parameters. All elements in matrices of this type |
matrices may be either rectangular or square, and contain no free parameters. All elements in matrices of this type |

When ‘type’ is ‘Lower’ or ‘Symm’, then the arguments to ‘free’, ‘values’, ‘labels’, ‘Ibound’, or
‘ubound’ may be vectors of length N % (N + 1)/2, where N is the number of rows and columns
of the matrix. When ‘type’ is ‘Sdiag’ or ‘Stand’, then the arguments to ‘free’, ‘values’, ‘labels’,

30 MxMatrix-class

‘Ibound’, or ‘ubound’ may be vectors of length N * (N — 1)/2.

Value

Returns a new MxMatrix object, which consists of a ‘values’ matrix of numeric starting values,
a ‘free’ matrix describing free parameter specification, a ‘labels’ matrix of labels for the variable
names, and ‘Ibound’ and ‘ubound’ matrices of the lower and upper parameter bounds. This MxMa-
trix object can be used as an argument in the mxAlgebra, mxBounds, mxConstraint and mxModel
functions.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

MxMatrix for the S4 class created by mxMatrix. More information about the OpenMx package
may be found here.

Examples

Create a 3 x 3 identity matrix

idenMatrix <- mxMatrix(type = "Iden”, nrow = 3,
ncol = 3, name = "I")

Create a full 4 x 2 matrix from existing
value matrix with all free parameters

vals <- matrix(1:8, nrow = 4)
fullMatrix <- mxMatrix(type = "Full”, values = vals,
free = TRUE, name = "foo")

Create a 3 x 3 symmetric matrix with free off-
diagonal parameters and starting values

symmMatrix <- mxMatrix(type = "Symm”, nrow = 3, ncol = 3,
free = c(FALSE, TRUE, TRUE, FALSE, TRUE, FALSE),

values = c(1, .8, .8, 1, .8, 1),

labels = c(NA, "freel”, "free2", NA, "free3"”, NA),

name = "bar")

MxMatrix-class MxMatrix Class

Description

MxMatrix is an S4 class. An MxMatrix object is a named entity. New instances of this class can
be created using the function mxMatrix. MxMatrix objects may be used as arguments in other
functions from the OpenMx library, including mxAlgebra, mxConstraint, and mxModel.

mxMLObjective 31

Details

The MxMatrix class has the following slots:

name - the name of the object
free - the free matrix
values - the values matrix
labels - the labels matrix

The name’ slot is the name of the MxMatrix object. Use of MxMatrix objects in an mxAlgebra or
mxConstraint function requires reference by name.

The ’free’ slot takes a matrix which describes the location of free and fixed parameters. A variable
is a free parameter if-and-only-if the corresponding value in the ’free’ matrix is "TRUE’. Free
parameters are elements of an MxMatrix object whose values may be changed by an objective
function when that MxMatrix object is included in an MxModel object and evaluated using the
mxRun function.

The ’values’ slot takes a matrix of numeric values. If an element is specified as a fixed parameter
in the ’free’ matrix, then the element in the ’values’ matrix is treated as a constant value and cannot
be altered or updated by an objective function when included in an mxRun function. If an element
is specified as a free parameter in the ’free’ matrix, the element in the ’value’ matrix is considered
a starting value and can be changed by an objective function when included in an mxRun function.

The ’labels’ slot takes a matrix which describes the labels of free and fixed parameters. Fixed
parameters with identical labels must have identical values. Free parameters with identical labels
impose an equality constraint. The same label cannot be applied to a free parameter and a fixed
parameter. A free parameter with the label "NA’ implies a unique free parameter, that cannot be
constrained to equal any other free parameter.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also
mxMatrix for creating MxMatrix objects. More information about the OpenMx package may be
found here.
mxMLObjective Create MxMLObjective Object
Description

This function creates a new MxMLODbjective object.

Usage

mxMLObjective(covariance, means = NA, dimnames = NA, thresholds = NA)

32 mxMLObjective

Arguments
covariance A character string indicating the name of the expected covariance algebra.
means An optional character string indicating the name of the expected means algebra.
dimnames An optional character vector to be assigned to the dimnames of the covariance
and means algebras.
thresholds An optional character string indicating the name of the thresholds matrix.
Details

Objective functions are functions for which free parameter values are chosen such that the value of
the objective function is minimized. The mxMLObjective function uses full-information maximum
likelihood to provide maximum likelihood estimates of free parameters in the algebra defined by the
’covariance’ argument given the covariance of an MxData object. The *covariance’ argument takes
an MxAlgebra object, which defines the expected covariance of an associated MxData object. The
’dimnames’ arguments takes an optional character vector. If this argument is not a single NA, then
this vector be assigned to be the dimnames of the means vector, and the row and columns dimnames
of the covariance matrix.

mxMLObjective evaluates with respect to an MxData object. The MxData object need not be refer-
enced in the mxMLObjective function, but must be included in the MxModel object. mxMLObjec-
tive requires that the ’type’ argument in the associated MxData object be equal to cov’, "cov’, or
’sscp’. The ’covariance’ argument of this function evaluates with respect to the 'matrix’ argument
of the associated MxData object, while the 'means’ argument of this function evaluates with respect
to the "vector’ argument of the associated MxData object. The *'means’ and ’vector’ arguments are
optional in both functions. If the *'means’ argument is not specified (NA), the optional ’vector’ argu-
ment of the MxData object is ignored. If the 'means’ argument is specified, the associated MxData
object should specify a 'means’ argument of equivalent dimension as the 'means’ algebra.

dimnames must be supplied where the matrices referenced by the covariance and means algebras
are not themselves labeled. Failure to do so leads to an error noting that the covariance or means
matrix associated with the ML objective does not contain dimnames.

To evaluate, place MxXMLObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.
The results of the optimization can be found in the *output’ slot of the resulting model, or using the
mxEval function.

Value

Returns a new MxMLObjective object. MxMLObjective objects should be included with models
with referenced MxAlgebra, MxData and MxMatrix objects.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

mxModel 33

Examples

vars <- c(’x’,’y’")

A <- mxMatrix(values = 0.5, nrow = 2, ncol
free = TRUE, name = "A")

D <- mxMatrix(type = "Diag", values = c(0, 0.5),
free = c(FALSE, TRUE), nrow = 2, name = "D")

1 i

expectedCov <- mxAlgebra(A %*% t(A) + D, "expectedCov")
observedCov <- mxData(matrix(c(1.2, 0.8, 0.8, 1.3),
nrow = 2, ncol = 2, dimnames = list(vars,vars)), ’cov’, numObs = 150)

objective <- mxMLObjective(covariance = "expectedCov", dimnames = vars)

model <- mxModel("mxMLObjective example”, A, D, expectedCov, objective, observedCov)

Not run: summary(mxRun(model))

mxModel Create MxModel Object

Description

This function creates a new MxModel object.

Usage
mxModel(model = NA, ..., manifestVars = NA, latentVars = NA,
remove = FALSE, independent = NA, type = NA, name = NA)
Arguments
model This argument is either an MxModel object or a string. If 'model’ is an Mx-

Model object, then all elements of that model are placed in the resulting Mx-
Model object. If 'model’ is a string, then a new model is created with the string
as its name. If model’ is either unspecified or ‘'model’ is a named entity, data
source, or MxPath object, then a new model is created.

An arbitrary number of mxMatrix, mxPath, mxData, and other functions such
as mxConstraints and mxCI. These will all be added or removed from the model
as specified in the 'model’ argument, based on the 'remove’ argument.

manifestVars For RAM-type models, A list of manifest variables to be included in the model.
latentVars For RAM-type models, A list of latent variables to be included in the model.

remove logical. If TRUE, elements listed in this statement are removed from the original
model. If FALSE, elements listed in this statement are added to the original
model.

34

mxModel
independent logical. If TRUE then the model is evaluated independently of other models.
type character vector. The model type to assign to this model. Defaults to op-

tions("mxDefaultType"). See below for valid types

name An optional character vector indicating the name of the object.

Details

The mxModel function is used to create MxModel objects. Objects created by this function may be
new, or may be modified versions of existing MxModel objects. By default a new MxModel object
will be created: To create a modified version of an existing MxModel object, include this model in
the *'model’ argument.

Other named-entities may be added as arguments to the mxModel function, which are then added
to or removed from the model specified in the ‘model’ argument. Other functions you can use to
add objects to the model to this way are mxCI, mxAlgebra, mxBounds, mxConstraint, mxData,
and mxMatrix objects, as well as objective functions. You can also include MxModel objects as
sub-models of the output model, and may be estimated separately or jointly depending on shared
parameters and the ‘independent’ flag discussed below. Only one MxData object and one objective
function may be included per model, but there are no restrictions on the number of other named-
entities included in an mxModel statement.

All other arguments must be named (i.e. ‘latentVars = names’), or they will be interpreted as
elements of the ellipsis list. The ‘manifestVars’ and ‘latentVars’ arguments specify the names of
the manifest and latent variables, respectively, for use with the mxPath function. The ‘remove’
argument may be used when mxModel is used to create a modified version of an existing MxMatrix
object. When ‘remove’ is set to TRUE, the listed objects are removed from the model specified in
the ‘model’ argument. When ‘remove’ is set to FALSE, the listed objects are added to the model
specified in the ‘model’ argument.

Model independence may be specified with the ‘independent’ argument. If a model is independent
(‘independent = TRUE’), then the parameters of this model are not shared with any other model.
An independent model may be estimated with no dependency on any other model. If a model is not
independent (‘independent = FALSE’), then this model shares parameters with one or more other
models such that these models must be jointly estimated. These dependent models must be entered
as arguments in another model, so that they are simultaneously optimized.

The model type is determined by a character vector supplied to the ‘type’ argument. The type of a
model is a dynamic property, ie. it is allowed to change during the lifetype of the model. To see
a list of available types, use the mxTypes command. When a new model is created and no type is
specified, the type specified by options("mxDefaultType”) is used.

To be estimated, MxModel objects must include objective functions as arguments (mxAlgebraOb-
jective, mxFIMLODbjective, mxMLObjective or mxRAMODbjective) and executed using the mxRun
function. When MxData objects are included in models, the ’type’ argument of these objects may
require or exclude certain objective functions, or set an objective function as default.

Named entities in MxModel objects may be viewed and referenced by name using double brackets
(model[["matrixname”]]). Slots may be referenced with the @ symbol (model@data). See the
documentation for Classes and the examples in this document for more information.

mxModel 35

Value

Returns a new MxModel object. MxModel objects must include an objective function to be used as
arguments in mxRun functions.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

See mxCI for information about adding Confidence Interval calculations to a model. See mxPath for
information about adding paths to RAM-type models. See mxMatrix for information about adding
matrices to models. See mxData for specifying the data a model is to be evaluated against. See
MxModel for the S4 class created by mxMatrix. Many advanced options can be set via mxOption
(such as calculating the Hessian). More information about the OpenMx package may be found here.

Examples

Create an empy model, and place it in an object.
model <- mxModel()

Create a model named ’firstdraft’ with one matrix
model <- mxModel(’firstdraft’,
mxMatrix(’Full’, nrow = 3, ncol = 3, name = "A"))

Add other matrices to model ’firstdraft’, and rename that model ’finaldraft’
model <- mxModel(model,
mxMatrix(’Symm’, nrow = 3, ncol = 3, name = "S"),
mxMatrix(’Iden’, nrow = 3, name = "F"),
name= "finaldraft")

Add data to the model from an existing data frame in object ’data’
data <- data.frame()
model <- mxModel(model, mxData(data, type=’raw’))

#View the matrix named "A" in MxModel object ’model’
model[["A"]1]

#View the data associated with MxModel object ’model’
model$data

An example Using OpenMx’s Path Syntax
data(HS.fake.data) #load the data

non

Spatial <- c("visual”,"cubes”,"paper”) # the manifest variables loading on each proposed latent variable

" non

Verbal <- c("general”,"paragrap”, "sentence"”)

non

Math <- c("numeric”,"series”,"arithmet")

latents <= c("vis"”,"math”,"text")
manifests <- c(Spatial,Math,Verbal)

36 MxModel-class

model <- mxModel("Holzinger and Swineford (1939)", type="RAM",
manifestVars = manifests, # list the measured variables (boxes)
latentVars = latents, # list the latent variables (circles)
factor loadings from latents to manifests
mxPath(from="vis", to=Spatial),# factor loadings
mxPath(from="math", to=Math), # factor loadings
mxPath(from="text", to=Verbal), # factor loadings

Allow latent variables to covary

mxPath(from="vis" , to="math", arrows=2, free=TRUE),
mxPath(from="vis" , to="text", arrows=2, free=TRUE),
mxPath(from="math", to="text", arrows=2, free=TRUE),

Allow latent variables to have variance (first fixed @ 1)
mxPath(from=latents, arrows=2, free=c(FALSE,TRUE,TRUE), values=1.0),
Manifest have residual variance
mxPath(from=manifests, arrows=2),
the data to be analysed
mxData(cov(HS.fake.data[,manifests]), type="cov”, numObs=301))

fit <- mxRun(model) # run the model
summary (fit) # examine the output: Fits statistics and (unstandardized) path loadings

MxModel-class MxModel Class

Description

MxModel is an S4 class. An MxModel object is a named entity. New instances of this class can be
created using the function mxModel.

Details

The MxModel class has the following slots:

name - The name of the object
matrices - A list of MxMatrix objects
algebras - A list of MxAlgebra objects
submodels - A list of MxModel objects
constraints - A list of MxConstraint objects
intervals - A list of confidence intervals requested in MxCI objects
bounds - A list of MxBounds objects
latentVars - A list of latent variables
manifestVars - A list of manifest variables
data - A MxData object
objective - Either NULL or a MxObjective object
independent - TRUE if-and-only-if the model is independent
options - A list of optimizer options

output -

A list with optimization results

MxModel-class 37

The ‘name’ slot is the name of the MxModel object.

The ‘matrices’ slot contains a list of the MxMatrix objects included in the model. These objects
are listed by name. Two objects may not share the same name. If a new MxMatrix is added to
an MxModel object with the same name as an MxMatrix object in that model, the added version
replaces the previous version. There is no imposed limit on the number of MxMatrix objects that
may be added here.

The ‘algebras’ slot contains a list of the MxAlgebra objects included in the model. These objects
are listed by name. Two objects may not share the same name. If a new MxAlgebra is added to
an MxModel object with the same name as an MxAlgebra object in that model, the added version
replaces the previous version. All MxMatrix objects referenced in the included MxAlgebra objects
must be included in the ‘matrices’ slot prior to estimation. There is no imposed limit on the number
of MxAlgebra objects that may be added here.

The ‘submodels’ slot contains references to all of the MxModel objects included as submodels of
this MxModel object. Models held as arguments in other models are considered to be submodels.
These objects are listed by name. Two objects may not share the same name. If a new submodel
is added to an MxModel object with the same name as an existing submodel, the added version
replaces the previous version. When a model containing other models is executed using mxRun, all
included submodels are executed as well. If the submodels are dependent on one another, they are
treated as one larger model for purposes of estimation.

The ‘constraints’ slot contains a list of the MxConstraint objects included in the model. These ob-
jects are listed by name. Two objects may not share the same name. If a new MxConstraint is added
to an MxModel object with the same name as an MxConstraint object in that model, the added ver-
sion replaces the previous version. All MxMatrix objects referenced in the included MxConstraint
objects must be included in the ‘matrices’ slot prior to estimation. There is no imposed limit on the
number of MxAlgebra objects that may be added here.

The ‘intervals’ slot contains a list of the confidence intervals requested by included MxCI objects.
These objects are listed by the free parameters, MxMatrices and MxAlgebras referenced in the
MxCI objects, not the list of MxCI objects themselves. If a new MxCI object is added to an Mx-
Model object referencing one or more free parameters MxMatrices or MxAlgebras previously listed
in the ‘intervals’ slot, the new confidence interval(s) replace the existing ones. All listed confidence
intervals must refer to free parameters MxMatrices or MxAlgebras in the model.

The ‘bounds’ slot contains a list of the MxBounds objects included in the model. These objects
are listed by name. Two objects may not share the same name. If a new MxBounds is added to
an MxModel object with the same name as an MxBounds object in that model, the added version
replaces the previous version. All MxMatrix objects referenced in the included MxBounds objects
must be included in the ‘matrices’ slot prior to estimation. There is no imposed limit on the number
of MxAlgebra objects that may be added here.

The ‘latentVars’ slot contains a list of latent variable names, which may be referenced by MxPath
objects. This slot defaults to "NA’, and is only used when the mxPath function is used.

The ‘manifestVars’ slot contains a list of latent variable names, which may be referenced by MxPath
objects. This slot defaults to "NA’, and is only used when the mxPath function is used.

The ‘data’ slot contains an MxData object. This slot must be filled prior to execution when an
objective function referencing data is used. Only one MxData object may be included per model,
but submodels may have their own data in their own ‘data’ slots. If an MxData object is added to
an MxModel which already contains an MxData object, the new object replaces the existing one.

38

mxOption

The ‘objective’ slot contains an objective function. This slot must be filled prior to using the mxRun
function for model execution and optimization. MxAlgebra, MxData, and MxMatrix objects re-
quired by the included objective function must be included in the appropriate slot of the MxModel
prior to using mxRun.

The ‘independent’ slot contains a logical value indicating whether or not the model is independent.
If a model is independent (independent=TRUE), then the parameters of this model are not shared
with any other model. An independent model may be estimated with no dependency on any other
model. If a model is not independent (independent=FALSE), then this model shares parameters
with one or more other models such that these models must be jointly estimated. These dependent
models must be entered as submodels of another MxModel objects, so that they are simultaneously
optimized.

The ‘options’ slot contains a list of options for the optimizer. The name of each entry in the list is
the option name to be passed to the optimizer. The values in this list are the values of the optimizer
options. The standard interface for updating options is through the mxOption function.

The ‘output’ slot contains a list of output added to the model by the mxRun function. Output
includes parameter estimates, optimization information, model fit, and other information as dictated
by the objective function. If a model has not been optimized using the mxRun function, the ’output’
slot will be 'NULL'.

Named entities in MxModel objects may be viewed and referenced by name using double brackets
(model[["matrixname"]]). Slots may be referenced with the @ symbol (model@data). See the
documentation for Classes and the examples in mxModel for more information.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxModel for creating MxModel objects. More information about the OpenMx package may be
found here.

mxOption Set or Clear an Optimizer Option

Description

The function sets or clears an option that is specific to the optimizer in the back-end.

Usage

mxOption(model, key, value, reset = FALSE)

mxOption

Arguments
model
key
value

reset

Details

39

An MxModel object or NULL

The name of the option.

The value of the option.

If TRUE then reset all options to their defaults.

Sets an option that is specific to the particular optimizer used in the back-end. The name of the
option is the ‘key’ argument. Use value = NULL to remove an existing option. Before the model
is submitted to the back-end, all keys and values are converted into strings using the as.character
function. To reset all options to their default values, use reset = TRUE. If reset = TRUE, then ’key’
and ’value’ are ignored. To set the default optimizer options, use the value NULL for the ‘model’
argument. Use getOption(’mxOptions’) to see the default optimizer options.

OpenMXx options

Calculate Hessian [YesINo]
Standard Errors [YesINo]

CI Max Iterations

calculate the hessian explicitly after optimization.
return standard error estimates from the explicitly calculate hessian.

i the maximum number of retries when calculating confidence intervals.

NPSOL-specific options

Nolist

Print level

Minor print level
Print file

Summary file
Function precision
Infinite bound size
Feasibility tolerance
Major iterations
Verify level

Line search tolerance
Derivative level
Hessian

NN N e s e

i
[-1:31YesINo]
r
[0-3]
[YesINo]

Checkpointing options

Checkpoint Directory
Checkpoint Prefix
Checkpoint Units
Checkpoint Count
Socket Server

Socket Port

Socket Units

this option suppresses printing of the options

the value of i controls the amount of printout produced by the major iterations
the value of i controls the amount of printout produced by the minor iterations
for i > 0 a full log is sent to the file with logical unit number i.

for i > 0 a brief log will be output to file i.

a measure of accuracy with which f and c can be computed.

if r > 0 defines the "infinite" bound bigbnd.

the maximum acceptable absolute violations in linear and nonlinear constraints.
the maximum number of major iterations before termination.

see NPSOL manual.

controls the accuracy with which a step is taken.

see NPSOL manual.

return the transformed Hessian (if ‘No’) or the Hessian itself (if ‘Yes’).

the directory where to write checkpoint files

the string prefix to add to all checkpoint filenames

the type of units for checkpointing: minutes’ or ’iterations’
the number of units between checkpoint intervals

the server name for sending optimizer state information

the port on the server for sending optimizer state information
the type of units: *minutes’ or ’iterations’

40 mxPath

Socket Count the number of units between communication to the server

Model transformation options

Error Checking "Yes" or "No" on whether model consistency checks are performed in the OpenMx front-end
No Sort Data character vector of model names for which FIML data sorting is not performed
RAM Inverse Optimization "Yes" or "No" whether to enable solve(I - A) optimization
RAM Max Depth the maximum depth to be used when solve(I - A) optimization is enabled

Value

Returns the model with the optimizer option either set or cleared.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxModel all uses of mxOption are via an mxModel whose options are set or cleared.

Examples

model <- mxModel() # make a model to use for example
model@options # show the model options (none yet)
options()$mxOptions # list all mxOptions (global settings)

model <- mxOption(model, "Function precision”, 1e-5) # set the precision

model <- mxOption(model, "Function precision”, NULL) # clear model-specific precision (defaults to global setting)
model <- mxOption(model, "Calculate Hessian”, "No") # may optimize for speed

model <- mxOption(model, "Standard Errors” , "No") # may optimize for speed

model@options # see the list of options you set

mxPath Create List of Paths

Description

This function creates a list of paths.

Usage

mxPath(from, to = NA, connect = c(”"single"”, "all.pairs”, "unique.pairs”,
"all.bivariate”, "unique.bivariate"), arrows = 1,

free = TRUE, values = NA, labels = NA,

lbound = NA, ubound = NA, ...)

mxPath 41

Arguments
from character vector. These are the sources of the new paths.
to character vector. These are the sinks of the new paths.
connect String. Specifies the type of source to sink connection: "single", "all.pairs",
"all.bivariate", "unique.pairs", "unique.bivariate".
arrows numeric value. Must be either 1 (for single-headed) or 2 (for double-headed
arrows).
free boolean vector. Indicates whether paths are free or fixed.
values numeric vector. The starting values of the parameters.
labels character vector. The names of the paths.
1bound numeric vector. The lower bounds of free parameters.
ubound numeric vector. The upper bounds of free parameters.
Not used. Allows OpenMx to catch the use of the deprecated ‘all” argument.
Details

The mxPath function creates MxPath objects. These consist of a list of paths describing the relation-
ships between variables in a model using the RAM modeling approach (McArdle and MacDonald,
1984). Variables are referenced by name, and these names must appear in the ‘manifestVar’ and
‘latentVar’ arguments of the mxModel function.

Paths are specified as going "from" one variable (or set of variables) "to" another variable or set of
variables using the ‘from’ and ‘to’ arguments, respectively. If ‘to’ is left empty, it will be set to the
value of ‘from’.

non non non

‘connect’ has five possible connection types: "single", "all.pairs", "all.bivariate", "unique.pairs",
"unique.bivariate". Assuming the values c(‘a’,’b’,‘c’) for the ‘to’ and ‘from’ fields the paths pro-
duced by each connection type are as follows:

"all.pairs'': (a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c).
"unique.pairs'': (a,a), (a,b), (a,c), (b,b), (b,c), (c,c).
"all.bivariate'': (a,b), (a,c), (b,a), (b,c), (c,a), (c,b).
"unique.bivariate'': (a,b), (a,c), (b,c).

"single'': (a,a), (b,b), (c,c).

Multiple variables may be input as a vector of variable names. If the ‘connect’ argument is set to
"single", then paths are created going from each entry in the ‘from’ vector to the corresponding
entry in the ‘to’” vector. If the ‘to’ and ‘from’ vectors are of different lengths when the ‘connect’
argument is set to "single", the shorter vector is repeated to make the vectors of equal length.

The ‘free’ argument specifies whether the paths created by the mxPath function are free or fixed
parameters. This argument may take either TRUE for free parameters, FALSE for fixed parameters,
or a vector of TRUEs and FALSE:s to be applied in order to the created paths.

The ‘arrows’ argument specifies the type of paths created. A value of 1 indicates a one-headed
arrow representing regression. This path represents a regression of the ‘to’ variable on the ‘from’
variable, such that the arrow points to the ‘to’ variable in a path diagram. A value of 2 indicates a

42 mxPath

two-headed arrow, representing a covariance or variance. If multiple paths are created in the same
mxPath function, then the ‘arrows’ argument may take a vector of 1s and 2s to be applied to the set
of created paths.

The ‘values’ is a numeric vectors containing the starting values of the created paths. ‘values’ gives
a starting value for estimation. The ‘labels’ argument specifies the names of the resulting MxPath
object. The ‘Ibound’ and ‘ubound’ arguments specify lower and upper bounds for the created paths.

Value

Returns a list of paths.

Note

The previous implementation of ‘all’ had unsafe features. Its use is now deprecated, and has been
replaced by the new mechanism ‘connect’ which supports safe and controlled generation of desired
combinations of paths.

References

McArdle, J. J. and MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action
Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-
251.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

mxMatrix for a matrix-based approach to path specification; mxModel for the container in which
mxPaths are embedded. More information about the OpenMx package may be found here.

Examples

A simple Example: 1 factor Confirmatory Factor Analysis

require(OpenMx)

data(demoOneFactor)

manifests <- names(demoOneFactor)

latents <- c("G")

factorModel <- mxModel("One Factor”, type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from=latents, to=manifests),
mxPath(from=manifests, arrows=2),
mxPath(from=latents, arrows=2,free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov",numObs=500)

)

factorFit <-mxRun(factorModel)

summary (factorFit)

A more complex example using features of R to compress what would otherwise be a long and error-prone script

myManifest <- sprintf(”%02d", c(1:100)) # list of 100 variable names: "01" "02" "03"...
myLatent <- c("G1", "G2", "G3", "G4", "G5") # the latent variables for the model

mxRAMObjective 43

Start building the model: Define its type, and add the manifest and latent variable name lists
model <- mxModel(type = "RAM"”, manifestVars = myManifest, latentVars = mylLatent)

Create covariances between the latent variables and add to the model

Here we use combn to create the covariances

nb: To create the variances and covariances in one operation you could use
expand.grid(myLatent,myLatent) to specify from and to

uniquePairs <- combn(myLatent,?2)
covariances <- mxPath(from = uniquePairs[1,], to=uniquePairs[2,], arrows = 2, free = TRUE, values = 1)
model <- mxModel(model, covariances)

Create variances for the latent variables
variances <- mxPath(from = mylLatent, to=mylLatent, arrows = 2, free = TRUE, values = 1)
model <- mxModel(model, variances) # add variances to the model

Make a list of paths from each packet of 20 manifests to one of the 5 latent variables
nb: The first loading to each latent is fixed to 1 to scale its variance.
singles <- list()
for (i in 1:5) {
j <= ix20
singles <- append(singles, mxPath(
from = myLatent[i], to = myManifest[(j - 19):j1,
arrows = 1,
free = c(FALSE, rep(TRUE, 19)),
values = c(1, rep(0.75, 19))))
3

model <- mxModel(model, singles) # add single-headed paths to the model

mxRAMObjective Create MxRAMObjective Object

Description

This function creates a new MxRAMODbjective object.

Usage

mxRAMObjective(A, S, F, M= NA, dimnames = NA, thresholds = NA, vector = FALSE, threshnames = dimnames)

Arguments
A A character string indicating the name of the A’ matrix.
S A character string indicating the name of the ’S’ matrix.
F A character string indicating the name of the "F’ matrix.
M An optional character string indicating the name of the "M’ matrix.

44 mxRAMObjective
dimnames An optional character vector to be assigned to the column names of the 'F’ and
"M’ matrices.
thresholds An optional character string indicating the name of the thresholds matrix.
vector A logical value indicating whether the objective function result is the likelihood
vector.
threshnames An optional character vector to be assigned to the column names of the thresh-
olds matrix.
Details

Objective functions are functions for which free parameter values are chosen such that the value
of the objective function is minimized. The mxRAMODbjective provides maximum likelihood es-
timates of free parameters in a model of the covariance of a given MxData object. This model is
defined by reticular action modeling (McArdle and McDonald, 1984). The "A’, °’S’, and °'F’ argu-
ments must refer to MxMatrix objects with the associated properties of the A, S, and F matrices in
the RAM modeling approach.

The ’dimnames’ arguments takes an optional character vector. If this argument is not a single NA,
then this vector be assigned to be the column names of the '’F’ matrix and optionally to the "M’
matrix, if the "M’ matrix exists.

The ’A’ argument refers to the A or asymmetric matrix in the RAM approach. This matrix consists
of all of the asymmetric paths (one-headed arrows) in the model. A free parameter in any row
and column describes a regression of the variable represented by that row regressed on the variable
represented in that column.

The ’S’ argument refers to the S or symmetric matrix in the RAM approach, and as such must be
square. This matrix consists of all of the symmetric paths (two-headed arrows) in the model. A free
parameter in any row and column describes a covariance between the variable represented by that
row and the variable represented by that column. Variances are covariances between any variable at
itself, which occur on the diagonal of the specified matrix.

The "F’ argument refers to the F or filter matrix in the RAM approach. If no latent variables are
included in the model (i.e., the A and S matrices are of both of the same dimension as the data
matrix), then the 'F’ should refer to an identity matrix. If latent variables are included (i.e., the A
and S matrices are not of the same dimension as the data matrix), then the 'F’ argument should
consist of a horizontal adhesion of an identity matrix and a matrix of zeros.

The "M’ argument refers to the M or means matrix in the RAM approach. It is a 1 X n matrix,
where n is the number of manifest variables + the number of latent variables. The M matrix must
be specified if either the mxData type is “cov” or “cor” and a means vector is provided, or if the
mxData type is “raw”. Otherwise the M matrix is ignored.

The MxMatrix objects included as arguments may be of any type, but should have the properties
described above. The mxRAMObjective will not return an error for incorrect specification, but
incorrect specification will likely lead to estimation problems or errors in the mxRun function.

mxRAMObjective evaluates with respect to an MxData object. The MxData object need not
be referenced in the mxRAMObjective function, but must be included in the MxModel object.
mxRAMODbjective requires that the ’type’ argument in the associated MxData object be equal to
cov’, “cor’ or 'sscp’.

mxRename 45

To evaluate, place MxRAMObjective objects, the mxData object for which the expected covariance
approximates, referenced MxAlgebra and MxMatrix objects, and optional MxBounds and MxCon-
straint objects in an MxModel object. This model may then be evaluated using the mxRun function.
The results of the optimization can be found in the "output’ slot of the resulting model, and may be
obtained using the mxEval function..

Value

Returns a new MxRAMODbjective object. MxRAMODbjective objects should be included with mod-
els with referenced MxAlgebra, MxData and MxMatrix objects.

References

McAurdle, J. J. and MacDonald, R. P. (1984). Some algebraic properties of the Reticular Action
Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-
251.

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

matrixA <- mxMatrix("Full”, values=c(0,0.2,0,0), name="A", nrow=2, ncol=2)
matrixS <- mxMatrix("Full”, values=c(0.8,0,0,0.8), name="S", nrow=2, ncol=2, free=TRUE)
matrixF <- mxMatrix("Full”, values=c(1,0,0,1), name="F", nrow=2, ncol=2)

Create a RAM objective with default A, S, F matrix names
objective <- mxRAMObjective("A", "S", "F")

model <- mxModel(matrixA, matrixS, matrixF, objective)

mxRename Rename MxModel or a Submodel

Description
This functions renames either the top model or a submodel to a new name. All internal references
to the old model name are replaced with references to the new name.

Usage

mxRename (model, newname, oldname = NA)

Arguments
model a MxModel object.
newname the new name of the model.

oldname the name of the target model to rename. If NA then rename top model.

46 mxRestore

Value

Return a mxModel object with the target model renamed.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

modelA <- mxModel(’modelA’)
modelB <- mxModel(’modelB’)
modelC <- mxModel(’modelC’, modelA, modelB)

Rename modelC to modell
model1l <- mxRename(modelC, ’modell’)

Rename submodel modelB to model2

modell <- mxRename(modell, oldname = ’modelB’, newname = ’model2’)
mxRestore Restore From Checkpoint File
Description

The function loads the last saved state from a checkpoint file.

Usage

mxRestore(model, chkpt.directory = ".", chkpt.prefix = "")
Arguments

model MxModel object to be loaded.

chkpt.directory
character. Directory where the checkpoint file is located.

chkpt.prefix character. Prefix of the checkpoint file.

Details

In general, the arguments ‘chkpt.directory’ and ‘chkpt.prefix’ should be identical to the mxOption:
‘Checkpoint Directory’ and ‘Checkpoint Prefix’ that were specificed on the model before execution.

Alternatively, the checkpoint file can be manually loaded as a data.frame in R. Use read.table
with the options ‘header=TRUE’, ‘stringsAsFactors=FALSE’ and ‘check.names=FALSE’.

mxRObjective 47

Value

Returns an MxModel object with free parameters updated to the last saved values.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

#Create a model that includes data,

#matrices A, S and F, and an objective function

Not run:

data <- mxData(mydata, type="cov", numObs = 100)
objective <- mxRAMObjective(’A’, ’S’, ’F’)

model <- mxModel("mymodel”, A, S, F, data, objective)

#Use mxRun to optimize the free parameters in the matrices A and S
modelOut <- mxRun(model, checkpoint = TRUE)

#Use mxRestore to load the last saved state of the model
modelRestore <- mxRestore(model)

End(Not run)

mxRObjective Function to Create MxRObjective Object

Description

This function creates a new MxRObjective object.

Usage
mxRObjective(objfun, ...)
Arguments
objfun A function that accepts two arguments.
The initial state information to the objective function.
Details

The objfun argument must be a function that accepts two arguments. The first argument is the
mxModel that should be evaluated, and the second argument is some persistent state information
that can be stored between one iteration of optimization to the next iteration. It is valid for the
function to simply ignore the second argument.

The function must return either a single numeric value, or a list of exactly two elements. If the
function returns a list, the first argument must be a single numeric value and the second element

48 mxRowObjective

will be the new persistent state information to be passed into this function at the next iteration. The
single numeric value will be used by the optimizer to perform optimization.

The initial default value for the persistant state information is NA.

Value

Returns a new MxRObjective object.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.
Examples

A <- mxMatrix(nrow = 2, ncol = 2, values = c(1:4), free = TRUE, name = ’A’)
squared <- function(x) { x * 2 }

objFunction <- function(model, state) {

values <- model[[’A’]]@values

return(squared(values[1,1] - 4) + squared(values[1,2] - 3) +
squared(values[2,1] - 2) + squared(values[2,2] - 1))

3

objective <- mxRObjective(objFunction)

model <- mxModel(’model’, A, objective)

mxRowObjective Create MxRowObjective Object

Description

This function creates a new MxRowOQObjective object.

Usage

mxRowObjective(rowAlgebra, reduceAlgebra, dimnames,
rowResults = "rowResults”, filteredDataRow = "filteredDataRow",
existenceVector = "existenceVector”)

Arguments

rowAlgebra A character string indicating the name of the algebra to be evaluated row-wise.

reduceAlgebra A character string indicating the name of the algebra that collapses the row re-
sults into a single number which is then optimized.

mxRowObjective 49

dimnames A character vector of names corresponding to columns be extracted from the
data set.

rowResults The name of the auto-generated "rowResults" matrix. See details.
filteredDataRow

The name of the auto-generated "filteredDataRow" matrix. See details.
existenceVector

The name of the auto-generated "existenceVector" matrix. See details.

Details

Objective functions are functions for which free parameter values are chosen such that the value
of the objective function is minimized. The mxRowObjective function evaluates a user-defined
MxAlgebra object called the ‘rowAlgebra’ in a row-wise fashion. It then stores results of the row-
wise evaluation in another MxAlgebra object called the ‘rowResults’. Finally, the mxRowObjective
function collapses the row results into a single number which is then used for optimization. The
MxAlgebra object named by the ‘reduceAlgebra’ collapses the row results into a single number.

The ‘filteredDataRow’ is populated in a row-by-row fashion with all the non-missing data from the
current row. You cannot assume that the length of the filteredDataRow matrix remains constant
(unless you have no missing data). The ‘existenceVector’ is populated in a row-by-row fashion with
a value of 1.0 in column j if a non-missing value is present in the data set in column j, and a value of
0.0 otherwise. Use the functions omxSelectRows, omxSelectCols, and omxSelectRowsAndCols to
shrink other matrices so that their dimensions will be conformable to the size of ‘filteredDataRow’.

Value
Returns a new MxRowObjective object. MxRowObjective objects should be included with models
with referenced MxAlgebra objects.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Model that adds two data columns row-wise, then sums that column
Notice no optimization is performed here.
xdat <- data.frame(a=rnorm(10), b=1:10) # Make data set
amod <- mxModel (
mxData(observed=xdat, type=’raw’),

mxAlgebra(sum(filteredDataRow), name = ’rowAlgebra’),
mxAlgebra(sum(rowResults), name = ’reduceAlgebra’),
mxRowObjective(

rowAlgebra=’rowAlgebra’,
reduceAlgebra=’reduceAlgebra’,
dimnames=c(’a’,’b’))

)

Model that find the parameter that minimizes the sum of the
squared difference between the parameter and a data row.

50

bmod <- mxModel (

mxRun

mxData(observed=xdat, type=’raw’),

mxMatrix(values=.75, ncol=1, nrow=1, free=TRUE, name=’B’),
mxAlgebra((filteredDataRow - B) * 2, name=’rowAlgebra’),
mxAlgebra(sum(rowResults), name=’reduceAlgebra’),
mxRowObjective(

rowAlgebra=’rowAlgebra’,

reduceAlgebra=’reduceAlgebra’,

dimnames=c(’a’))

mxRun

Send a Model to the Optimizer

Description

This function begins optimization on the top-level model.

Usage

mxRun(model,

., intervals = FALSE, silent = FALSE, suppressWarnings = FALSE,

unsafe = FALSE, checkpoint = FALSE, useSocket = FALSE, onlyFrontend = FALSE,
useOptimizer = TRUE)

Arguments

model A MxModel object to be optimized.

Not used. Forces remaining arguments to be specified by name.
intervals A boolean indicating whether to compute the specified confidence intervals.
silent A boolean indicating whether to print status to terminal.
suppressWarnings

A boolean indicating whether to suppress warnings.
unsafe A boolean indicating whether to ignore errors.
checkpoint A boolean indicating whether to periodically write parameter values to a file.
useSocket A boolean indicating whether to periodically write parameter values to a socket.
onlyFrontend A boolean indicating whether to run only front-end model transformations.
useOptimizer A boolean indicating whether to run only the log-likelihood of the current free

parameter values but not move any of the free parameters.

mxRun 51

Details

The mxRun function is used to optimize free parameters in MxModel objects based on an objective
function. MxModel objects included in the mxRun function must include an appropriate objective
function.

If the ‘silent’ flag is TRUE, then model execution will not print any status messages to the terminal.

If the ‘suppressWarnings’ flag is TRUE, then model execution will not issue a warning if NPSOL
returns a non-zero status code.

If the ‘unsafe’ flag is TRUE, then any error conditions will throw a warning instead of an error. It
is strongly recommended to use this feature only for debugging purposes.

Free parameters are estimated or updated based on the objective function. These estimated values,
along with estimation information and model fit, can be found in the ’output’ slot of MxModel
objects after mxRun has been used.

If a model is dependent on or shares parameters with another model, both models must be included
as arguments in another MxModel object. This top-level MxModel object must include objective
functions in both submodels, as well as an additional objective function describing how the results
of the first two should be combined.

Value

Returns an MxModel object with free parameters updated to their final values. The return value
contains an "output” slot with the results of optimization.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

Create and run the 1-factor CFA on the openmx.psyc.virginia.edu front page
Not run:

require(OpenMx)

data(demoOneFactor) # load the demoOneFactor dataframe

manifests <- names(demoOneFactor) # set the manifest to the 5 demo variables
latents <- c("G") # define 1 latent variable

model <- mxModel("One Factor"”, type="RAM",

manifestVars = manifests,

latentVars = latents,

mxPath(from=latents , to=manifests),

mxPath(from=manifests, arrows=2),

mxPath(from=latents , arrows=2, free=FALSE, values=1.0),
mxData(cov(demoOneFactor), type="cov"”, numObs=500)

)

model <- mxRun(model) #run model, returning the result

summary (model) #show summary of the fitted model

#Create a model that includes data, matrices A, S and F, and an objective function
data <- mxData(mydata, type="cov", numObs = 100)

objective <- mxRAMObjective(’A’, ’S’, ’F’)

model <- mxModel("mymodel”, A, S, F, data, objective)

52

#Use mxRun to optimize the free parameters in the matrices A and S
model <- mxRun(model)

print the output

model@output #can be directly access by slot name instead of via summary()

End(Not run)

mx Version

mxTypes List Currently Available Model Types

Description

This function returns a vector of the currently available type names.

Usage
mxTypes()

Value

Returns a character vector of type names.

Examples

mxTypes()

mxVersion Returns Current Version String

Description

This function returns a string with the current version number of OpenMx.

Usage

mxVersion()

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

Examples

mxVersion()

Named-entity 53

Named-entity Named Entities

Description

A named entity is an S4 object that can be referenced by name.

Details

Every named entity is guaranteed to have a slot 'name’. Within a model, the named entities of that
model can be accessed using the model[[’name’]] notation. Access is limited to one nesting depth,
such that if B’ is a submodel of "A’, and 'C’ is a matrix of ’B’, then *C’ must be accessed using
A[’B’1I[[’C’]]. See the documentation for Extract for more information.

The following S4 classes are named entities in the OpenMx library: MxAlgebra, MxConstraint,
MxMatrix, MxModel, MxData, and MxObjective.

omxAllInt All Interval Multivariate Normal Integration

Description

omxAllInt computes the probabilities of a large number of cells of a multivariate normal distri-
bution that has been sliced by a varying number of thresholds in each dimension. While the same
functionality can be achieved by repeated calls to omxMnor, omxAllInt is more efficient for re-
peated operations on a single covariance matrix. omxAllInt returns an nx1 matrix of probabilities
cycling from lowest to highest thresholds in each column with the rightmost variable in covariance

changing most rapidly.
Usage
omxAllInt(covariance, means, ...)
Arguments
covariance the covariance matrix describing the multivariate normal distribution.
means a row vector containing means of the variables of the underlying distribution.

a matrix or set of matrices containing one column of thresholds for each column
of covariance. Each column must contain a strictly increasing set of thresholds
for the corresponding variable of the underlying distribution. NA values in these
thresholds indicate that the list of thresholds in that column has ended.

54 omxAlllnt

Details

covariance and means contain the covariances and means of the multivariate distribution from
which probabilities are to be calculated.

covariance must be a square covariance or correlation matrix with one row and column for each
variable.

means must be a vector of length nrows (covariance) that contains the mean for each correspond-
ing variable.

All further arguments are considered threshold matrices.

Threshold matrices contain locations of the hyperplanes delineating the intervals to be calculated.
The first column of the first matrix corresponds to the thresholds for the first variable represented
by the covariance matrix. Subsequent columns of the same matrix correspond to thresholds for
subsequent variables in the covariance matrix. If more variables exist in the covariance matrix than
in the first threshold matrix, the first column of the second threshold matrix will be used, and so
on. That is, if covariance is a 4x4 matrix, and the three threshold matrices are specified, one with
a single column and the others with two columns each, the first column of the first matrix will
contain thresholds for the first variable in covariance, the two columns of the second matrix will
correspond to the second and third variables of covariance, respectively, and the first column of the
third threshold matrix will correspond to the fourth variable. Any extra columns will be ignored.

Each column in the threshold matrices must contain some number of strictly increasing thresholds,
delineating the boundaries of a cell of integration. That is, if the integral from -1 to 0 and O to 1 are
required for a given variable, the corresponding threshold column should contain the values -1, 0,
and 1, in that order. Thresholds may be set to Inf or -Inf if a boundary at positive or negative infinity
is desired.

Within a threshold column, a value of +Inf, if it exists, is assumed to be the largest threshold, and
any rows after it are ignored in that column. A value of NA, if it exists, indicates that there are no
further thresholds in that column, and is otherwise ignored. A threshold column consisting of only
+Inf or NA values will cause an error.

For all i>1, the value in row i must be strictly larger than the value in row i-1 in the same column.

The return value of omxAllInt is a matrix consisting of a single column with one row for each
combination of threshold levels.

See Also

omxMnor

Examples

data(myFAData)

covariance <- cov(myFAData[,1:5])
means <- mean(myFAData[,1:5])

thresholdForColumn1 <- cbind(c(-Inf, 0, 1)) # Integrate from -Infinity to 0 and 0 to 1 on first variable
Note: The first variable will never be calculated from 1 to +Infinity.
thresholdsForColumn2 <- cbind(c(-Inf, -1, 0, 1, Inf)) # These columns will be integrated from -Inf to -1, -1 to (

thresholdsForColumns3and4 <- cbind(c(-Inf, 1.96, 2.326, Inf), c(-Inf, -1.96, 2.326, Inf))
omxAllInt(covariance, means, thresholdForColumnl, thresholdsForColumn2, thresholdsForColumns3and4, thresholdsFor

omxApply 55

Notice that columns 2 and 5 are assigned identical thresholds.

An alternative specification of the same calculation follows
covariance <- cov(myFAData[,1:5])
means <- mean(myFAData[,1:5])
thresholds <- cbind(c(-Inf, 0, 1, NA, NA), # Note NAs to indicate the end of the sequence of thresholds.
c(-Inf, -1, 0, 1, Inf),
c(-Inf, 1.96, 2.32, Inf, NA),
c(-Inf, -1.96, 2.32, Inf, NA),
c(-Inf, -1, 0, 1, Inf))
omxAllInt(covariance, means, thresholds)

omxApply On-Demand Parallel Apply

Description

If the snowfall library is loaded, then this function calls sfApply. Otherwise it invokes apply.

Usage
omxApply(x, margin, fun, ...)
Arguments
X a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.
margin a vector giving the subscripts which the function will be applied over.
fun the function to be applied to each element of x.
optional arguments to fun.
See Also

omxLapply, omxSapply

Examples

x <= cbind(x1 = 3, x2 = c(4:1, 2:5))
dimnames(x)[[1]] <- letters[1:8]
omxApply(x, 2, mean, trim = .2)

56 omxAssignFirstParameters

omxAssignFirstParameters
Assign First Available Values to Model Parameters

Description

Sometimes you may have a free parameter with two different starting values in your model. OpenMx
will not run a model until all instances of a free parameter have the same starting value. It is often
sufficient to arbitrarily select one of those starting values for optimization.

This function accomplishes that task of assigning valid starting values to the free parameters of a
model. It selects an arbitrary current value (the "first" value it finds, where "first" is not defined) for
each free parameter and uses that value for all instances of that parameter in the model.

Usage

omxAssignFirstParameters(model, indep = FALSE)

Arguments

model a MxModel object.

indep assign parameters to independent submodels.
See Also

omxGetParameters, omxSetParameters

Examples

A <- mxMatrix(’Full’, 3, 3, values =c(1:9), labels =c(’a’,’b’, NA), free = TRUE, name = ’A’)
model <- mxModel(A, name = ’model’)
model <- omxAssignFirstParameters(model)

Note: All cells with the same label now have the same start value. Note also that NAs are untouched.

model@matrices$A

@labels

[,11 [,2] [,3]
[1,] "a" "a" "a"
[2,]1 "b" "b" "b"
[3,] NA NA NA
#

@values

[,11 [,2] [,3]
#[1,] 1 1 1
#[2,] 2 2 2
[3,] 3 6 9

omxCheckCloseEnough 57

omxCheckCloseEnough Approximate Equality Testing Function

Description
This function tests whether two numeric vectors or matrixes are approximately equal to one another,
within a specified threshold.

Usage

omxCheckCloseEnough(a, b, epsilon = 10*(-15))

Arguments
a a numeric vector or matrix.
b a numeric vector or matrix.
epsilon a non-negative tolerance threshold.
Details

Arguments ‘a’ and ‘b’ must be of the same type, ie. they must be either vectors of equal dimension
or matrices of equal dimension. The two arguments are compared element-wise for approximate
equality. If the absolute value of the difference of any two values is greater than the threshold, then
an error will be thrown. If ‘a’ and ‘b’ are approximately equal to each other, by default the function
will print a statement informing the user the test has passed. To turn off these print statements use
options("mxPrintUnitTests” = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckWithinPercentError, omxCheckIdentical, omxCheckSetEquals, omxCheckTrue, omxCheckEquals

Examples

omxCheckCloseEnough(c(1, 2, 3), c(1.1, 1.9 ,3.0), epsilon = 0.5)
omxCheckCloseEnough(matrix(3, 3, 3), matrix(4, 3, 3), epsilon = 2)

Throws an error
try(omxCheckCloseEnough(c(1, 2, 3), c(1.1, 1.9 ,3.0), epsilon = 0.01))

58 omxCheckEquals

omxCheckEquals Equality Testing Function
Description
This function tests whether two objects are equal using the ‘==’ operator.
Usage

omxCheckEquals(a, b)

Arguments
a the first value to compare.
b the second value to compare.
Details
Performs the ‘=="comparison on the two arguments. If the two arguments are not equal, then an er-

ror will be thrown. If ‘a’ and ‘b’ are equal to each other, by default the function will print a statement
informing the user the test has passed. To turn off these print statements use options("mxPrintUnitTests”
= FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckSetEquals, omxCheckTrue, omxCheckIdentical

Examples

omxCheckEquals(c(1, 2, 3), c(1, 2, 3))
omxCheckEquals(FALSE, FALSE)

Throws an error
try(omxCheckEquals(c(1, 2, 3), c(2, 1, 3)))

omxCheckldentical 59

omxCheckIdentical Exact Equality Testing Function

Description

This function tests whether two objects are equal.

Usage

omxCheckIdentical(a, b)

Arguments

a the first value to compare.

b the second value to compare.
Details

Performs the ‘identical’ comparison on the two arguments. If the two arguments are not equal,
then an error will be thrown. If ‘a’ and ‘b’ are equal to each other, by default the function will
print a statement informing the user the test has passed. To turn off these print statements use
options("mxPrintUnitTests"” = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckSetEquals, omxCheckTrue, omxCheckEquals

Examples

omxCheckIdentical(c(1, 2, 3), c(1, 2, 3))
omxCheckIdentical (FALSE, FALSE)

Throws an error
try(omxCheckIdentical(c(1, 2, 3), c(2, 1, 3)))

60 omxCheckSetEquals

omxCheckSetEquals Set Equality Testing Function

Description

This function tests whether two vectors contain the same elements.

Usage

omxCheckSetEquals(a, b)

Arguments

a the first vector to compare.

b the second vector to compare.
Details

Performs the ‘setequal’ function on the two arguments. If the two arguments do not contain the
same elements, then an error will be thrown. If ‘a’ and ‘b’ contain the same elements, by default
the function will print a statement informing the user the test has passed. To turn off these print
statements use options("mxPrintUnitTests"” = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckIdentical, omxCheckTrue, omxCheckEquals

Examples

omxCheckSetEquals(c(1, 1, 2, 2, 3), c(3, 2, 1))
omxCheckSetEquals(matrix(1, 1, 1), matrix(1, 3, 3))

Throws an error
try(omxCheckSetEquals(c(1, 2, 3, 4), c(2, 1, 3)))

omxCheckTrue 61

omxCheckTrue Boolean Equality Testing Function

Description

This function tests whether an object is equal to TRUE.

Usage

omxCheckTrue(a)

Arguments

a the value to test.

Details

Checks element-wise whether an object is equal to TRUE. If any of the elements are false, then an
error will be thrown. If ‘a’ is TRUE, by default the function will print a statement informing the
user the test has passed. To turn off these print statements use options(”"mxPrintUnitTests"” =
FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also
omxCheckCloseEnough, omxCheckWithinPercentError, omxCheckIdentical, omxCheckSetEquals,

omxCheckEquals

Examples

omxCheckTrue(1 + 1 == 2)
omxCheckTrue(matrix(TRUE, 3, 3))

Throws an error
try(omxCheckTrue(FALSE))

62 omxCheckWithinPercentError

omxCheckWithinPercentError
Approximate Percent Equality Testing Function

Description
This function tests whether two numeric vectors or matrixes are approximately equal to one another,
within a specified percentage.

Usage

omxCheckWithinPercentError(a, b, percent = 0.1)

Arguments
a a numeric vector or matrix.
b a numeric vector or matrix.
percent a non-negative percentage.
Details

Arguments ‘a’ and ‘b’ must be of the same type, ie. they must be either vectors of equal dimension
or matrices of equal dimension. The two arguments are compared element-wise for approximate
equality. If the absolute value of the difference of any two values is greater than the percentage
difference of ‘a’, then an error will be thrown. If ‘a’ and ‘b’ are approximately equal to each other,
by default the function will print a statement informing the user the test has passed. To turn off
these print statements use options(”"mxPrintUnitTests” = FALSE).

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

See Also

omxCheckCloseEnough, omxCheckIdentical, omxCheckSetEquals, omxCheckTrue, omxCheckEquals

Examples

omxCheckWithinPercentError(c(1, 2, 3), c(1.1, 1.9 ,3.0), percent = 50)
omxCheckWithinPercentError(matrix(3, 3, 3), matrix(4, 3, 3), percent = 150)

Throws an error
try(omxCheckWithinPercentError(c(1, 2, 3), c(1.1, 1.9 ,3.0), percent

0.01))

omxGetParameters 63

omxGetParameters Fetch Model Parameters

Description

Return a vector of the free parameters in the model.

Usage
omxGetParameters(model, indep = FALSE, free = c(TRUE, FALSE, NA))

Arguments

model a MxModel object

indep fetch parameters from independent submodels.

free fetch either free parameters or fixed parameters or both types.
Details

The argument ‘free’ dictates whether to return only free parameters or only fixed parameters or both
free and fixed parameters. The function will return free parameters that have a label of NA. But it
will never return fixed parameters that have a label of NA. No distinction is made between ordinary
labels, and definition variables, and square bracket constraints in labels.

See Also

omxSetParameters, omxAssignFirstParameters

Examples

A <- mxMatrix(’Full’, 2, 2, labels = c("A11", "A12", "A21", NA), values= 1:4, free = c(TRUE,TRUE,FALSE,TRUE), byrow:
model <- mxModel(A, name = ’model’)

Request all free paraemters in model
omxGetParameters(model)

A11 A12 <NA>
1 2 4

Request fixed paraemters from model
omxGetParameters(model, free=FALSE)

A21

3

A@labels

[,11 [,2]

01,1 "A11" "A12"
02,1 "A21" NA

64 omxGraphviz

A@free

[,11[,2]
[1,] TRUE TRUE
[2,] FALSE TRUE

A@labels

[,11 [,2]
[1,]1 "A11" "A12"
[2,] "A21" NA

omxGraphviz Show RAM Model in Graphviz Format

Description

The function accepts a RAM style model and outputs a visual representation of the model in
Graphviz format. The function will output either to a file or to the console. The recommended
file extension for an output file is ".dot".

Usage

omxGraphviz(model, dotFilename = "")
Arguments

model An RAM-type model.

dotFilename The name of the output file. Use "" to write to console.
Value

Invisibly returns a string containing the model description in graphviz format.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

omxLapply 65

omxLapply On-Demand Parallel Lapply

Description

If the snowfall library is loaded, then this function calls sfLapply. Otherwise it invokes lapply.

Usage
omxLapply(x, fun, ...)
Arguments
X a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.
fun the function to be applied to each element of x.
optional arguments to fun.
See Also

omxApply, omxSapply

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
omxLapply(x,mean)

omxLogical Logical mxAlgebra() operators

Description

omxNot computes the unary negation of the values of a matrix. omxAnd computes the binary and
of two matrices. omxOr computes the binary or of two matrices. omxGreaterThan computes a
binary greater than of two matrices. omxLessThan computes the binary less than of two matrices.
omxApproxEquals computes a binary equals within a specified epsilon of two matrices.

Usage
omxNot (x)
omxAnd(x, y)
omxOr(x, y)

omxGreaterThan(x, y)
omxLessThan(x, y)
omxApproxEquals(x, y, epsilon)

66 omxMnor

Arguments
X the first argument, the matrix which the logical operation will be applied to.
y the second argument, applicable to binary functions.
epsilon the third argument, specifies the error threshold for omx ApproxEquals. Abs(x[i][j]-
y[i][j]) must be less than epsilon[i][j].
Examples

A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name A
B <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = ’B’)
EPSILON <- mxMatrix(values = 0.04x1:25, nrow = 5, ncol = 5, name = "EPSILON")

model <- mxModel(A, B, EPSILON, name = ’model’)

mxEval (omxNot(A), model)

mxEval (omxGreaterThan(A,B), model)

mxEval (omxLessThan(B,A), model)

mxEval (omxOr (omxNot(A),B), model)

mxEval (omxAnd(omxNot(B), A), model)

mxEval (omxApproxEquals(A,B, EPSILON), model)

omxMnor Multivariate Normal Integration

Description

Given a covariance matrix, a means vector, and vectors of lower and upper bounds, returns the
multivariate normal integral across the space between bounds.

Usage

omxMnor (covariance, means, lbound, ubound)

Arguments
covariance the covariance matrix describing the multivariate normal distribution.
means a row vector containing means of the variables of the underlying distribution.
1bound a row vector containing the lower bounds of the integration in each variable.

ubound a row vector containing the upper bounds of the integration in each variable.

omxSapply 67

Details

The order of columns in the ‘means’, ‘Ibound’, and ‘ubound’ vectors are assumed to be the same as
that of the covariance matrix. That is, means|[i] is considered to be the mean of the variable whose
variance is in covariance[i,i]. That variable will be integrated from Ibound[i] to ubound[i] as part of
the integration.

The value of ubound[i] or Ibound[i] may be set to Inf or -Inf if a boundary at positive or negative
infinity is desired.

For all i, ubound[i] must be strictly greater than lbound[i].

Examples

data(myFAData)

covariance <- cov(myFAData[,1:3])

means <- mean(myFAData[,1:3])

lbound <- c(-Inf, 0, 1) # Integrate from -Infinity to 0 on first variable

ubound <- c(0, Inf, 2.5) # From 0 to +Infinity on second, and from 1 to 2.5 on third
omxMnor (covariance, means, lbound, ubound)

omxSapply On-Demand Parallel Sapply

Description

If the snowfall library is loaded, then this function calls sfSapply. Otherwise it invokes sapply.

Usage
omxSapply(x, fun, ..., simplify = TRUE, USE.NAMES = TRUE)
Arguments
X a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.
fun the function to be applied to each element of x.
optional arguments to fun.
simplify logical; should the result be simplified to a vector or matrix if possible?
USE . NAMES logical; if TRUE and if x is a character, use x as names for the result unless it had
names already.
See Also

omxApply, omxLapply

68 omxSelectRowsAndCols

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
omxSapply(x, quantile)

omxSelectRowsAndCols Filter rows and columns from an mxMatrix

Description
This function filters rows and columns from a matrix using a single row or column R matrix as a
selector.

Usage

omxSelectRowsAndCols(x, selector)
omxSelectRows(x, selector)
omxSelectCols(x, selector)

Arguments
X the matrix to be filtered
selector A single row or single column R matrix indicating which values should be fil-
tered from the mxMatrix.
Details

omxSelectRowsAndCols, omxSelectRows, and omxSelectCols returns the filtered entries in a target
matrix specified by a single row or single column selector matrix. Each entry in the selector matrix is
treated as a logical data indicating if the corresponding entry in the target matrix should be excluded
(0 or FALSE) or included (not 0 or TRUE). Typically the function is used to filter data from a target
matrix using an existence vector which specifies what data entries are missing. This can be seen in
the demo: RowObjectiveFIMLBivariateSaturated.

Value

Returns a new matrix with the filtered data.

References

The function is most often used when filtering data for missingness. This can be seen in the demo:
RowObjectiveFIMLBivariateSaturated. The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documen
The omxSelect* functions share some similarity to the Extract function in the R programming lan-

guage.

omxSetParameters 69

Examples

loadings <- c(1, -0.625, 0.1953125, 1, -0.375, 0.0703125, 1, -0.375, 0.0703125)
loadings <- matrix(loadings, 3, 3, byrow= TRUE)

existencelist <- c(1, 0, 1)

existencelList <- matrix(existencelList, 1, 3, byrow= TRUE)

rowsAndCols <- omxSelectRowsAndCols(loadings, existencelist)

rows <- omxSelectRows(loadings, existencelList)

cols <- omxSelectCols(loadings, existencelist)

omxSetParameters Assign Model Parameters

Description
Modify the attributes of parameters in a model. This function cannot modify parameters that have
NA Iabels.

Usage

omxSetParameters(model, labels, free = NULL, values = NULL,
newlabels = NULL, lbound = NULL, ubound = NULL, indep = FALSE,
strict = TRUE)

Arguments
model a MxModel object.
labels a character vector of target parameter names.
free a boolean vector of parameter free/fixed designations.
values a numeric vector of parameter values.
newlabels a character vector of new parameter names.
1bound a numeric vector of lower bound values.
ubound a numeric vector of upper bound values.
indep boolean. set parameters in independent submodels.
strict boolean. if TRUE then throw an error when a label does not appear in the model.
See Also

omxGetParameters, omxAssignFirstParameters

Examples

A <- mxMatrix(’Full’, 3, 3, labels = c(’a’,’b’, NA), free = TRUE, name = ’A’)

model <- mxModel(A, name = ’model’)

model <- omxSetParameters(model, c(’a’, ’b’), values = c(1, 2)) # set value of cells labelled "a"” and "b"” to 1 and 2 1
model <- omxSetParameters(model, c(’a’, ’b’), newlabels = c(’b’, ’a’)) # set label of cell labelled "a" to "b" and v:

70

rvectorize

OpenMx OpenMx: Package for Matrix Algebra Optimization

Description

OpenMx is a package for structural equation modeling, matrix algebra optimization and other sta-
tistical estimation problems.

Details

OpenMzx is a package for algebra optimization and statistical estimation problems using matrix al-
gebra. The OpenMx library defines a set of S4 classes and functions used to create them. The
majority of these classes are used as arguments in models, which may include data, matrices, alge-
bras, bounds and constraints. These models are then paired with objective functions, either existing
(maximum likelihood, FIML) or user-defined with included algebra functions. These models can
then be optimized, resulting in parameter estimation, algebra evaluation, and output for additional
models.

Objects used or created by OpenMx may be of the following classes: MxAlgebra, MxBounds,
MxCI, MxConstraint, MxData, MxMatrix, MxModel, and MxPath. Objects of these classes may
be created by the following OpenMx functions: mxAlgebra, mxBounds, mxCI, mxConstraint, mx-
Data, mxMatrix, mxModel, and mxPath. The functions mxAlgebraObjective, mxFIMLObjective,
mxMLObjective and mxRAMODbjective create objective functions for model estimation. Models
which include objective functions may be estimated using the mxRun function.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

rvectorize Vectorize By Row

Description

This function returns the vectorization of an input matrix in a row by row traversal of the matrix.
The output is returned as a column vector.

Usage

rvectorize(x)

Arguments

X an input matrix.

summary-MxModel 71

See Also

cvectorize, vech, vechs

Examples

rvectorize(matrix(1:9, 3, 3))
rvectorize(matrix(1:12, 3, 4))

summary-MxModel Model Summary

Description

This function returns summary statistics of a model. It is usually invoked after a model has been
run through the optimizer.

Usage
summary (object, ...)
Arguments
object A MxModel object.
Any number of named arguments (see below).
Details

The following named arguments are supported by the summary method:

numObs Numeric. Specify the total number of observations for the model.
numStats Numeric. Specify the total number of observed statistics for the model.
SaturatedLikelihood Numeric or MxModel object. Specify a saturated likelihood for testing.

indep Logical. Set to FALSE to ignore independent submodels in summary.

References

The OpenMx User’s guide can be found at http://openmx.psyc.virginia.edu/documentation.

72 twinData

Examples

model <- mxModel()

modelOut <- mxRun(model)

compute a summary and store in variable "statistics”
statistics <- summary(modelOut)

specify a saturated likelihood for testing
summary (modelOut, SaturatedLikelihood=300)

twinData Australian twin sample biometric data.

Description

Australian data on body mass index (BMI) which saved in the text file twinData.txt. It is a wide
dataset, with two individuals per line. It also contains both MZ and DZ twins, along with heights,
weights and the calculated variable body mass index (BMI) for each subject. Ago of course occurs
only once, as the two twins of each pair share a common age. fam is a family identifier.

Usage

data(twinData)

Format
A data frame with 3808 observations on the following 12 variables.

fam a numeric vector
age anumeric vector
Zyg a numeric vector
part anumeric vector
wt1 a numeric vector
wt2 a numeric vector
ht1 a numeric vector
ht2 a numeric vector
htwt1 a numeric vector
htwt2 a numeric vector
bmi1 a numeric vector

bmi2 a numeric vector

Details

Zygosity is coded as follows 1 == MZ females 2 == MZ males 3 == DZ females 4 == DZ males 5
== DZ opposite sex pairs

vec2diag 73

Examples

data(twinData)

str(twinData)

plot(wt1~wt2, data=twinData)

mzData <- as.matrix(subset(myTwinData, zyg==1, c(bmil,bmi2)))
dzData <- as.matrix(subset(myTwinData, zyg==3, c(bmil,bmi2)))

vec2diag Create Diagonal Matrix From Vector

Description

Given an input row or column vector, vec2diag returns a diagonal matrix with the input argument
along the diagonal.

Usage

vec2diag(x)

Arguments

X a row or column vector.

Details

Similar to the function diag, except that the input argument is always treated as a vector of elements
to place along the diagonal.

See Also

diag2vec

Examples

vec2diag(matrix(1:4, 1, 4))
vec2diag(matrix(1:4, 4, 1))

74 vechs

vech Half-vectorization

Description

This function returns the half-vectorization of an input matrix as a column vector.

Usage

vech(x)

Arguments

X an input matrix.

Details

The half-vectorization of an input matrix consists of the elements in the lower triangle of the matrix,
including the elements along the diagonal of the matrix, as a column vector. The column vector is
created by traversing the matrix in column-major order.

See Also

vechs, rvectorize, cvectorize

Examples

vech(matrix(1:9, 3, 3))
vech(matrix(1:12, 3, 4))

vechs Strict Half-vectorization

Description

This function returns the strict half-vectorization of an input matrix as a column vector.

Usage

vechs(x)

Arguments

X an input matrix.

vechs 75

Details

The half-vectorization of an input matrix consists of the elements in the lower triangle of the matrix,
excluding the elements along the diagonal of the matrix, as a column vector. The column vector is
created by traversing the matrix in column-major order.

See Also

vech, rvectorize, cvectorize

Examples

vechs(matrix(1:9, 3, 3))
vechs(matrix(1:12, 3, 4))

Index

+Topic datasets
twinData, 72

apply, 55
as.character, 39
as.list, 55,65, 67

Classes, 9, 12, 19, 34, 38
cvectorize, 3,7,71,74, 75

data.frame, 21, 23
diag, 4,73
diag2vec,4,7,73

eigen, 5

eigenval, 7

eigenval (eigenvec), 5
eigenvec, 5
Extract, 14, 15,27, 53

factor, 25, 26

here, 8, 10, 12, 14, 16, 21, 23, 30, 31, 35, 38,
42

ieigenval (eigenvec), 5
ieigenvec (eigenvec), 5

lapply, 65

matrix, 21, 23
Mod, 5
MxAlgebra, 6, 8, 10, 12, 18, 21, 23,27, 32,
36-38, 45,49, 53, 70
MxAlgebra (MxAlgebra-class), 9
mxAlgebra, 6, 9, 10, 21, 23, 25, 30, 31, 34, 70
MxAlgebra-class, 9
mxAlgebraObjective, 8,9, 21, 23, 34, 70
MxAlgebras, 14, 15, 37
MxBounds, 10-12, 27, 32, 37, 45, 70
MxBounds (MxBounds-class), 12

76

mxBounds, 11, 12, 30, 34, 70

MxBounds-class, 12

MxCI, 13, 14, 37,70

MxCI (MxCI-class), 15

mxCI, 13, 14-16, 33-35, 70

MxCI’s, 14

MxCI-class, 15

mxCompare, 16

MxConstraint, 10, 17, 18, 27, 32, 37,45, 53,
70

MxConstraint (MxConstraint-class), 19

mxConstraint, 9, 17, 19, 20, 30, 31, 33, 34, 70

MxConstraint-class, 19

MxData, 20, 21, 27, 32, 34, 36-38, 44, 45, 53,
70

MxData (MxData-class), 22

mxData, 20, 22, 23, 27, 32-35,45, 70

MxData-class, 22

mxErrorPool, 23

mxEval, 10, 24, 32,45

mxFactor, 25

mxFIMLObjective, 20, 22, 26, 34, 70

MxMatrices, 14, 15,37

MxMatrix, 6, 8—12, 14, 18, 24, 27-30, 32, 34,
36-38, 44, 45, 53, 70

MxMatrix (MxMatrix-class), 30

mxMatrix, 8, 9, 12, 14, 21, 23, 28, 30, 31,
33-35,42,70

MxMatrix-class, 30

mxMLObjective, 20-23, 31, 34, 70

MxModel, 6, 10-15, 18, 20, 24, 27, 31-35, 38,
39, 44-46, 50, 51, 53, 70

MxModel (MxModel-class), 36

mxModel, 15, 17,21, 23, 25, 30, 33, 36, 38,
4042, 46, 70

MxModel-class, 36

mxOption, 35, 38, 38, 46

MxPath, 21, 23, 37,41, 42, 70

MxPath (mxPath), 40

INDEX

mxPath, 33-35, 37, 40, 70

mxRAMObjective, 20-23, 34, 43, 70

mxRename, 45

mxRestore, 46

mxRObjective, 47

mxRowObjective, 48

mxRun, 10, 13, 16, 24, 27, 29, 31, 32, 34, 35,
37, 38, 44, 45, 50, 70

mxTypes, 34, 52

mxVersion, 52

Named entities, 34, 38

named entity, 9, 15, 19, 22, 30, 36
Named-entities (Named-entity), 53
named-entities, 34
named-entities (Named-entity), 53
Named-entity, 53

named-entity (Named-entity), 53
names, 67

NULL, 22

omxAllInt, 7, 53

omxAnd, 7

omxAnd (omxLogical), 65
omxApply, 55, 65, 67
omxApproxEquals, 7
omxApproxEquals (omxLogical), 65
omxAssignFirstParameters, 56, 63, 69
omxCheckCloseEnough, 57, 58-62
omxCheckEquals, 57, 58, 59-62
omxCheckIdentical, 57, 58, 59, 60-62
omxCheckSetEquals, 57-59, 60, 61, 62
omxCheckTrue, 57-60, 61, 62
omxCheckWithinPercentError, 57-61, 62
omxGetParameters, 56, 63, 69
omxGraphviz, 64

omxGreaterThan, 7

omxGreaterThan (omxLogical), 65
omxLapply, 55, 65, 67
omxLessThan, 7

omxLessThan (omxLogical), 65
omxLogical, 65

omxMnor, 7, 53, 54, 66

omxNot, 7

omxNot (omxLogical), 65

omxO0r, 7

omxOr (omxLogical), 65
omxSapply, 55, 65, 67
omxSelectCols, 49

omxSelectCols (omxSelectRowsAndCols), 68

omxSelectRows, 49

omxSelectRows (omxSelectRowsAndCols), 68

omxSelectRowsAndCols, 49, 68
omxSetParameters, 56, 63, 69
OpenMx, 19,70

options, 17

read. table, 46
rvectorize, 3, 7,70, 74, 75

sapply, 67

sfApply, 55

sfLapply, 65

sfSapply, 67

summary, 13

summary (summary-MxModel), 71

summary ,MxModel-method
(summary-MxModel), 71

summary-MxModel, 71

twinData, 72

vec2diag, 4, 7,73
vech, 3,7,71,74,75
vechs, 3,7,71,74, 74

	cvectorize
	diag2vec
	eigenvec
	mxAlgebra
	MxAlgebra-class
	mxAlgebraObjective
	mxBounds
	MxBounds-class
	mxCI
	MxCI-class
	mxCompare
	mxConstraint
	MxConstraint-class
	mxData
	MxData-class
	mxErrorPool
	mxEval
	mxFactor
	mxFIMLObjective
	mxMatrix
	MxMatrix-class
	mxMLObjective
	mxModel
	MxModel-class
	mxOption
	mxPath
	mxRAMObjective
	mxRename
	mxRestore
	mxRObjective
	mxRowObjective
	mxRun
	mxTypes
	mxVersion
	Named-entity
	omxAllInt
	omxApply
	omxAssignFirstParameters
	omxCheckCloseEnough
	omxCheckEquals
	omxCheckIdentical
	omxCheckSetEquals
	omxCheckTrue
	omxCheckWithinPercentError
	omxGetParameters
	omxGraphviz
	omxLapply
	omxLogical
	omxMnor
	omxSapply
	omxSelectRowsAndCols
	omxSetParameters
	OpenMx
	rvectorize
	summary-MxModel
	twinData
	vec2diag
	vech
	vechs
	Index

