
OpenMx Documentation
Release 0.2.6-1114

OpenMx Development Team

March 04, 2010

CONTENTS

1 Introduction 3
1.1 Beginners Guide to OpenMx . 3
1.2 Quick Overview . 8
1.3 Two Model Styles - Two Data Styles . 19

2 Examples, Path Specification 29
2.1 Regression, Path Specification . 29
2.2 Factor Analysis, Path Specification . 38
2.3 Time Series, Path Specification . 45
2.4 Multiple Groups, Path Specification . 50
2.5 Genetic Epidemiology, Path Specification . 55
2.6 Definition Variables, Path Specification . 63

3 Examples, Matrix Specification 69
3.1 Regression, Matrix Specification . 69
3.2 Factor Analysis, Matrix Specification . 79
3.3 Time Series, Matrix Specification . 89
3.4 Multiple Groups, Matrix Specification . 95
3.5 Genetic Epidemiology, Matrix Specification . 100
3.6 Definition Variables, Matrix Specification . 106
3.7 ABO Blood Groups, Matrix Specification . 109

4 Changes in OpenMx 113
4.1 Release 0.2.9-1147 . 113
4.2 Release 0.2.8-1133 . 113
4.3 Release 0.2.7-1125 . 113
4.4 Release 0.2.6-1114 . 113
4.5 Release 0.2.5-1050 . 114
4.6 Release 0.2.4-1038 . 114
4.7 Release 0.2.3-1006 . 115
4.8 Release 0.2.2-951 . 115
4.9 Release 0.2.1-922 . 115
4.10 Release 0.2.0-905 . 116
4.11 Release 0.1.5-851 . 116
4.12 Release 0.1.4-827 . 116
4.13 Release 0.1.3-776 . 117
4.14 Release 0.1.2-708 . 117
4.15 Release 0.1 (August 3, 2009) . 118

i

5 Reference 119

6 Indices and tables 121

ii

OpenMx Documentation, Release 0.2.6-1114

Contents:

CONTENTS 1

OpenMx Documentation, Release 0.2.6-1114

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 Beginners Guide to OpenMx

This document will walk the reader through the basic concepts used in the OpenMx library. It will assume that
you have successfully installed the R statistical programming language [http://www.r-project.org/] and the OpenMx
library for R [http://openmx.psyc.virginia.edu]. Before we begin, let us start with a mini-lecture on the R programming
language. Our experience has found that this exercise will greatly increase your understanding of subsequent sections
of the introduction. Detailed introductions to R can be found on the internet.

The OpenMx scripts for the examples in this guide are available in the following files:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorPathDemo.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorMatrixDemo.R

1.1.1 Pass By Value

1 addone <- function(number) {
2 number <- number + 1
3 return(number)
4 }
5

6 avariable <- 5
7

8 print(addone(avariable))
9 print(avariable)

In the previous code block, the variables addone and avariable are defined. The value assigned to addone is a
function, while the value assigned to avariable is the number 5. The function addone takes a single argument,
adds one to the argument, and returns the argument back to the user. What is the result of executing this code block?
Try it. The correct result is 6 and 5. But why is the variable avariable still 5, even after the addone function was
called? The answer to this question is that R uses pass-by-value function call semantics.

In order to understand pass-by-value semantics, we must understand the difference between variables and values. The
variables declared in this example are addone, avariable, and number. The values refer to the things that are
stored by the variables. In programming languages that use pass-by-value semantics, at the beginning of a function
call it is the values of the argument list that are passed to the function. The variable avariable cannot be modified
by the function addone. If I wanted to update the value stored in the variable, I would have needed to replace line 8
with the expression print(avariable <- addone(avariable)). Try it. The updated example prints out 6

3

http://www.r-project.org/
http://openmx.psyc.virginia.edu
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorPathDemo.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorMatrixDemo.R

OpenMx Documentation, Release 0.2.6-1114

and 6. The lesson from this exercise is that the only way to update a variable in a function call is to capture the result
of the function call 1. This lesson is sooo important that we’ll repeat it:

• the only way to update a variable in a function call is to capture the result of the function call.

R has several built-in types of values that you are familiar with: numerics, integers, booleans, characters, lists, vectors,
and matrices. In addition, R supports S4 object values to facilitate object-oriented programming. Most of the functions
in the OpenMx library return S4 object values. You must always remember that R does not discriminate between built-
in types and S4 object types in its call semantics. Both built-in types and S4 object types are passed by value in R
(unlike many other languages).

1.1.2 Path Model Specification

Below is a figure of a one factor model with five indicators. The script reads data from disk, creates the one factor
model, fits the model to the observed covariances, and prints a summary of the results. Let’s break down what is
happening in each section of this example.

1 require(OpenMx)
2

3 data(demoOneFactor)
4 manifests <- names(demoOneFactor)
5 latents <- c("G")
6

7 factorModel <- mxModel(name="One Factor",
8 type="RAM",
9 manifestVars = manifests,

10 latentVars = latents,
11 mxPath(from=latents, to=manifests),
12 mxPath(from=manifests, arrows=2),
13 mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
14 mxData(observed=cov(demoOneFactor), type="cov", numObs=500)
15)
16

17 factorFit <- (mxRun(factorModel)
18 summary(factorFit)

This example uses a RAM-style specification technique. Let’s break down what is happening in each section of this
example.

1 There are a few exceptions to this rule, but you can be assured such trickery is not used in the OpenMx library.

4 Chapter 1. Introduction

OpenMx Documentation, Release 0.2.6-1114

Preamble

Every OpenMx script must begin with either library(OpenMx) or require(OpenMx). These commands will
load the OpenMx library.

Reading Data

The data function can be used to read sample data that has been pre-packaged into the R library. In order to read
your own data, you will most likely use the read.table, read.csv, read.delim functions, or other specialized
functions available from CRAN to read from 3rd party sources.

Model Creation

The mxModel function is used to create a model. By specifying the type argument to equal ‘RAM’, we create a
path style model. A RAM style model must include a vector of manifest variables (manifestVars=) and a vector
for latent variables (latentVars=). In this case the manifest variables are c("x1", "x2", "x3", "x4",
"x5") and the latent variable is c("G").

Path Creation

Paths are created using the mxPath function. Multiple paths can be created with a single invocation of the mxPath
function. The from argument specifies the path sources, and the to argument specifies the path sinks. If the to
argument is missing, then it is assumed to be identical to the ‘from’ argument. By default, the ith element of the
‘from’ argument is matched with the ith element of the ‘to’ argument, in order to create a path. The arrows argument
specifies whether the path is unidirectional (single-headed arrow, 1) or bidirectional (double-headed arrow, 2). The
next three arguments are vectors: free, is a boolean vector that specifies whether a path is free or fixed; values is
a numeric vector that specifies the starting value of the path; labels is a character vector that assigns a label to each
free or fixed parameter.

Objective Function Creation

When using a path specification of the model, the objective function is RAM.

Data Source Creation

A mxData function is used to construct a data source for the model. In this example, we are specifying a covariance
matrix. In addition to reading in the actual covariance matrix as the first (observed) argument, we specify the type
and if required the number of observations (numObs).

Model Population

The mxModel function is somewhat of a swiss-army knife. The first argument to the mxModel function can be
a name or previously defined model. An mxModel can contain mxPath, mxData, mxObjective and other
mxModel statements as arguments.

1.1. Beginners Guide to OpenMx 5

OpenMx Documentation, Release 0.2.6-1114

Model Execution

The mxRun function will run a model through the optimizer. The return value of this function is an identical model,
with all the free parameters in the cells of the matrices of the model assigned to their final values. The summary
function is a convenient method for displaying the highlights of a model after it has been executed.

1.1.3 Matrix Model Specification

1 require(OpenMx)
2

3 data(demoOneFactor)
4

5 factorModel <- mxModel(name="One Factor",
6 mxMatrix(type="Full", nrow=5, ncol=1, free=TRUE, values=0.2, name="A"),
7 mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
8 mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U"),
9 mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),

10 mxMLObjective(covariance="R", dimnames = names(demoOneFactor)),
11 mxData(observed=cov(demoOneFactor), type="cov", numObs=500)
12)
13

14 factorFit <- mxRun(factorModel)
15 summary(factorFit)

We will now re-create the model from the previous section, but this time we will use a matrix specification technique.
The script reads data from disk, creates the one factor model, fits the model to the observed covariances, and prints a
summary of the results. Let’s break down what is happening in each section of this example.

Preamble

Every OpenMx script must begin with either library(OpenMx) or require(OpenMx). These commands will
load the OpenMx library.

Reading Data

The data function can be used to read sample data that has been pre-packaged into the R library. In order to read
your own data, you will most likely use the read.table, read.csv, read.delim functions, or other specialized
functions available from CRAN to read from 3rd party sources.

Model Creation

The basic unit of abstraction in the OpenMx library is the model. A model serves as a container for a collection of
matrices, algebras, objective functions, data sources, and nested sub-models. In the parlance of R, a model is a value
that belongs to the class MxModel that has been defined by the OpenMx library. The following table indicates what
classes are defined by the OpenMx library.

entity S4 class
model MxModel
algebra MxAlgebra
objective function MxObjectiveFunction
constraint MxConstraint
data source MxData

6 Chapter 1. Introduction

OpenMx Documentation, Release 0.2.6-1114

All of the entities listed in the table are identified by the OpenMx library by the name assigned to them. A name
is any character string that does not contain the “.” character. In the parlance of the OpenMx library, a model is a
container of named entities. The name of an OpenMx entity bears no relation to the R variable that is used to identify
the entity. In our example, the variable factorModel is created with the mxModel function and stores a value that
is a “MxModel” object with the name One Factor.

Matrix Creation

The next three lines create three “MxMatrix” objects, using the mxMatrix function. The first argument declares the
type of the matrix, the second argument declares the number of rows in the matrix (nrow), and the third argument
declares the number of columns (ncol). The free argument specifies whether a cell is a free or fixed parameter.
The values argument specifies the starting values in the matrix. and the name argument specifies the name of the
matrix.

Each “MxMatrix” object is a container that stores five matrices of equal dimensions. The five matrices stored in a
“MxMatrix” object are: ‘values, ‘free’, ‘labels’, ‘lbound’, and ‘ubound’. ‘Values’ stores the current values of each cell
in the matrix. ‘Free’ stores a boolean that determines whether a cell is free or fixed. ‘Labels’ stores a character label
for each cell in the matrix. And ‘lbound’ and ‘ubound’ store the lower and upper bounds, respectively, for each cell
that is a free parameter. If a cell has no label, lower bound, or upper bound, then an NA value is stored in the cell of
the respective matrix.

Algebra Creation

An mxAlgebra function is used to construct an expression for the expected covariance algebra. The first argument is
the algebra expression that will be evaluated by the numerical optimizer. The matrix operations and functions that are
permitted in an MxAlgebra expression are listed in the help for the mxAlgebra function (?mxAlgebra). The algebra
expression refers to entities according to their names.

Objective Function Creation

MxObjective constructs an objective function for the model. For this example, we are using a maximum likelihood
objective function and specifying an expected covariance algebra and omitting an expected means algebra. The ex-
pected covariance algebra is referenced according to its name. The objective function for a particular model is given
the name “objective”. Consequently there is no need to specify a name for objective function objects. We need to
assign dimnames for the rows and columns of the covariance matrix, such that a correspondence can be determined
between the expected covariance matrix and the observed covariance matrix.

Data Source Creation

An mxData function provides a data source for the model. In this example, we are specifying a covariance matrix.
The data source for a particular model is given the name “data”. Consequently there is no need to specify a name for
data objects.

Model Population

The mxModel function is somewhat of a swiss-army knife. If the first argument to the mxModel function is an
existing model, then the result of the function call is a new model with the remaining arguments to the function call
added or removed from the model (depending on the ‘remove’ argument, which defaults to FALSE). Alternatively, we
can give it a name and populate the model with three matrices, an algebra, an objective function, and a data source,
which are all arguments of the mxModel.

1.1. Beginners Guide to OpenMx 7

OpenMx Documentation, Release 0.2.6-1114

Model Execution

The mxRun function will run a model through the optimizer. The return value of this function is an identical model,
with all the free parameters in the cells of the matrices of the model assigned to their final values. The summary
function is a convenient method for displaying the highlights of a model after it has been executed.

Alternative Formulation

Rather than adding the paths/matrices/algebras, objective function and data as arguments to the mxModel, which we
will use primarily throughout the documentation, we can also create separate objects for each of the parts of the model,
which can then be combined in an mxModel statement at the end. To repeat ourselves, the name of an OpenMx entity
bears no relation to the R variable that is used to identify the entity. In our example, the variable matrixA stores a
value that is a MxMatrix object with the name “A”.

1 require(OpenMx)
2

3 data(demoOneFactor)
4

5 factorModel <- mxModel(name="One Factor")
6

7 matrixA <- mxMatrix(type="Full", nrow=5, ncol=1, free=TRUE, values=0.2, name="A")
8 matrixL <- mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L")
9 matrixU <- mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U")

10

11 algebraR <- mxAlgebra(expression=A %*% L %*% t(A) + U, name="R")
12

13 objective <- mxMLObjective(covariance="R", dimnames = names(demoOneFactor))
14 data <- mxData(observed=cov(demoOneFactor), type="cov", numObs=500)
15

16 factorModel <- mxModel(factorModel, matrixA, matrixL, matrixU, algebraR, objective, data)
17

18 factorFit <- mxRun(factorModel)
19 summary(factorFit)

Note that lines 5 and 17 could have been combined with the following call: factorModel <-
mxModel(matrixA, matrixL, matrixU, algebraR, objective, data, name="One
Factor").

1.2 Quick Overview

This document provides a quick overview of the capabilities of OpenMx in handling everything from simple calcu-
lations to optimization of complex multiple group models. Note that this overview focuses on matrix specification
of OpenMx models, and that all these models can equally well be developed using path specification. We start with
a matrix algebra example, followed by an optimization example. We end this quick overview with a twin analysis
example, as the majority of prior Mx users will be familiar with this type of analysis. We plan to expand this overview
with examples more relevant to other applications of structural equation modeling. While we provide the scripts here,
we will not discuss every detail, as that is done more systematically in the next example shown in two model styles and
two data styles. Then we describe in detail a series of models using path specification, followed by the same examples
in matrix specification.

The OpenMx scripts for the examples in this overview are available in the following files:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MatrixAlgebra.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateCorrelation.R

8 Chapter 1. Introduction

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MatrixAlgebra.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateCorrelation.R

OpenMx Documentation, Release 0.2.6-1114

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis.R

1.2.1 Simple OpenMx Script

We will start by showing some of the main features of OpenMx using simple examples. For those familiar with Mx, it
is basically a matrix interpreter combined with a numerical optimizer to allow fitting statistical models. Of course you
do not need OpenMx to perform matrix algebra as that can already be done in R. However, to accommodate flexible
statistical modeling of the type of models typically fit in Mx, Mplus or other SEM packages, special kinds of matrices
and functions are required which are bundled in OpenMx. We will introduce key features of OpenMx using a matrix
algebra example. Remember that R is object-oriented, such that the results of operations are objects, rather than just
matrices, with various properties/characteristics attached to them. We will describe the script line by line; a link to the
complete script is here.

Say, we want to create two matrices, A and B, each of them a ‘Full’ matrix with 3 rows and 1 column and with the
values 1, 2 and 3, as follows:

A =

 1
2
3

 B =

 1
2
3

we use the mxMatrix command, and define the type of the matrix (type=), number of rows (nrow=) and
columns (ncol=), its specifications (free=) and starting values (values=), optionally labels (labels=), up-
per (ubound=) and lower (lbound=) bounds>, and a name (name=). The matrix A will be stored as the object
‘A’.

mxMatrix(
type="Full",
nrow=3,
ncol=1,
values=c(1,2,3),
name=’A’

)

mxMatrix(
type="Full",
nrow=3,
ncol=1,
values=c(1,2,3),
name=’B’

)

Assume we want to calculate the (1) the sum of the matrices A and B, (2) the element by element multiplication (Dot
product) of A and B, (3) the transpose of matrix A, and the (4) outer and (5) inner products of the matrix A, using
regular matrix multiplication, i.e.:

q1 = A+B (1.1)
q2 = A.A (1.2)
q3 = t(A) (1.3)
q4 = A ∗ t(A) (1.4)
q5 = t(A) ∗A (1.5)

we invoke the mxAlgebra command which performs an algebra operation between previously defined matrices.
Note that in R, transpose is represented by t(), regular matrix multiplication \%*\% and dot multiplication as *. We
also assign the algebras a name to refer back to them later:

1.2. Quick Overview 9

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MatrixAlgebra.R

OpenMx Documentation, Release 0.2.6-1114

mxAlgebra(
expression=A + B,
name=’q1’

)

mxAlgebra(
expression=A * A,
name=’q2’

)

mxAlgebra(
expression=t(A),
name=’q3’

)

mxAlgebra(
expression=A %*% t(A),
name=’q4’

)

mxAlgebra(
expression=t(A) %*% A,
name=’q5’

)

For the algebras to be evaluated, they become arguments of the mxModel command, as do the defined matrices, each
separated by comma’s. The model, which is here given the name ‘algebraExercises’, is then executed by the mxRun
command, as shown in the full code below:

require(OpenMx)

algebraExercises <- mxModel(
mxMatrix(type="Full", nrow=3, ncol=1, values=c(1,2,3), name=’A’),
mxMatrix(type="Full", nrow=3, ncol=1, values=c(1,2,3), name=’B’),
mxAlgebra(expression=A+B, name=’q1’),
mxAlgebra(expression=A*A, name=’q2’),
mxAlgebra(expression=t(A), name=’q3’),
mxAlgebra(expression=A%*%t(A), name=’q4’),
mxAlgebra(expression=t(A)%*%A, name=’q5’)

)

answers <- mxRun(algebraExercises)
answers@algebras
result <- mxEval(list(q1,q2,q3,q4,q5),answers)

As you notice, we added some lines at the end to generate the desired output. The resulting matrices and algebras
are stored in answers; we can refer back to them by specifying answers@matrices or answers@algebras.
We can also calculate any additional quantities or perform extra matrix operations on the results using the mxEval
command. For example, if we want to see all the answers to the questions in matrixAlgebra.R, the results would look
like this:

[[1]]
[,1]

[1,] 2
[2,] 4
[3,] 6

10 Chapter 1. Introduction

OpenMx Documentation, Release 0.2.6-1114

[[2]]
[,1]

[1,] 1
[2,] 4
[3,] 9

[[3]]
[,1] [,2] [,3]

[1,] 1 2 3

[[4]]
[,1] [,2] [,3]

[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9

[[5]]
[,1]

[1,] 14

So far, we have introduced five new commands: mxMatrix, mxAlgebra, mxModel, mxRun and mxEval. These
commands allow us to run a wide range of jobs, from simple matrix algebra to rather complicated SEM models. Let’s
move to an example involving optimizing the likelihood of observed data.

1.2.2 Optimization Script

When collecting data to test a specific hypothesis, one of the first things one typically does is checking the basic
descriptive statistics, such as the means, variances and covariances/correlations. We could of course use basic functions
in R, i.e., meanCol(Data) or cov(Data) to perform these operations. However, if we want to test specific hypotheses
about the data, for example, test whether the correlation between two variables is significantly different from zero, we
need to compare the likelihood of the data when the correlation is freely estimated with the likelihood of the data when
the correlation is fixed to zero. Let’s work through a specific example.

Say, we have collected data on two variables X and Y in 1000 individuals, and R descriptive statistics has shown that
the correlation between them is 0.5. For the sake of this example, we used another built-in function in the R package
MASS, namely mvrnorm, to generate multivariate normal data for 1000 individuals with means of 0.0, variances of
1.0 and a correlation (rs) of 0.5 between X and Y. Note the that first argument of mvrnorm is the sample size, the
second the vector of means, and the third the covariance matrix to be simulated. We save the data in the object xy and
create a vector of labels for the two variables in selVars which is used in the dimnames statement later on. The R
functions summary() and cov() are used to verify that the simulations appear OK.

#Simulate Data
require(MASS)
set.seed(200)
rs=.5
xy <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
testData <- xy
selVars <- c(’X’,’Y’)
dimnames(testData) <- list(NULL, selVars)
summary(testData)
cov(testData)

To evaluate the likelihood of the data using SEM, we estimate a saturated model with free means, free variances and
a covariance. Let’s start with specifying the mean vector. We use the mxMatrix command, provide the type, here

1.2. Quick Overview 11

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateCorrelation.R

OpenMx Documentation, Release 0.2.6-1114

Full, the number of rows and columns, respectively 1 and 2, the specification of free/fixed parameters, the starting
values, the dimnames and a name. Given all the elements of this 1x2 matrix are free, we can use free=True. The
starting values are provided using a list, i.e. c(0,0). The dimnames are a type of label that is required to recognize
the expected mean vector and expected covariance matrix and match up the model with the data. For a mean vector,
the first element is NULL given mean vectors always have one row. The second element of the list should have the
labels for the two variables c(’X’,’Y’) which we have previously assigned to the object selVars. Finally, we
are explicit in naming this matrix expMean. Thus the matrix command looks like this. Note the soft tabs to improve
readability.

bivCorModel <- mxModel("bivCor",
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=TRUE,
values=c(0,0),
name="expMean"

),

Next, we need to specify the expected covariance matrix. As this matrix is symmetric, we could estimate it directly as
a symmetric matrix. However, to avoid solutions that are not positive definite, we will use a Cholesky decomposition.
Thus, we specify a lower triangular matrix (matrix with free elements on the diagonal and below the diagonal, and
zero’s above the diagonal), and multiply it with its transpose to generate a symmetric matrix. We will use a mxMatrix
command to specify the lower triangular matrix and a mxAlgebra command to set up the symmetric matrix. The
matrix is a 2x2 free lower matrix with c(’X’,’Y’) (previously defined as selVars) as dimnames for the rows
and columns, and the name “Chol”. We can now refer back to this matrix by its name in the mxAlgebra statement.
We use a regular multiplication of Chol with its transpose t(Chol), and name this as “expCov”.

mxMatrix(
type="Lower",
nrow=2,
ncol=2,
free=TRUE,
values=.5,
name="Chol"

),
mxAlgebra(

expression=Chol %*% t(Chol),
name="expCov"

),

Now that we have specified our ‘model’, we need to supply the data. This is done with the mxData command. The
first argument includes the actual data, in the type given by the second argument. Type can be a covariance matrix
(cov), a correlation matrix (cor), a matrix of cross-products (sscp) or raw data (raw). We will use the latter option and
read in the raw data directly from the simulated dataset testData.

mxData(
observed=testData,
type="raw"

),

Next, we specify which objective function we wish to use to obtain the likelihood of the data. Given we fit to the raw
data, we use the full information maximum likelihood (FIML) objective function mxFIMLObjective. Its arguments
are the expected covariance matrix, generated using the mxMatrix and mxAlgebra commands as “expCov”, and
the expected means vectors, generated using the mxMatrix command as “expMeans”.

12 Chapter 1. Introduction

OpenMx Documentation, Release 0.2.6-1114

mxFIMLObjective(
covariance="expCov",
means="expMean",
dimnames=selVars)

)

All these elements become arguments of the mxModel command, seperated by comma’s. The first argument can be
a name, as in this case “bivCor” or another model (see below). The model is saved in an object ‘bivCorModel’. This
object becomes the argument of the mxRun command, which evaluates the model and provides output - if the model
ran successfully - using the following command.

bivCorModel <- mxModel("bivCor",
mxMatrix(type="Full", nrow=1, ncol=2, free=TRUE, values=c(0,0), name="expMean"),
mxMatrix(type="Lower", nrow=2, ncol=2, free=TRUE, values=.5, name="Chol"),
mxAlgebra(expression=Chol %*% t(Chol), name="expCov",),
mxData(observed=testData, type="raw"),
mxFIMLObjective(covariance="expCov", means="expMean", dimnames=selVars)

)

bivCorFit <- mxRun(bivCorModel)

We can request various parts of the output to inspect by referring to them by the name of the object resulting from
the mxRun command, i.e. bivCorFit, followed by the name of the objects corresponding to the expected mean
vector, i.e. [[’ExpMean’]], and covariance matrix, i.e. [[’ExpCov’]], in quotes and double square brackets,
followed by @values. The command mxEval can also be used to extract relevant information, such as the like-
lihood, (objective) where the first argument of the command is the object of interest and the second the object
obtaining the results.

EM <- bivCorFit[[’expMean’]]@values
EC <- bivCorFit[[’expCov’]]@values
LL <- mxEval(objective,bivCorFit);

These commands generate the following output:

EM
X Y

[1,] 0.03211646 -0.004883803

EC
X Y

X 1.0092847 0.4813501
Y 0.4813501 0.9935387

LL
[,1]

[1,] 5415.772

Standard lists of parameter estimates and goodness-of-fit statistics can also be obtained with the summary command.

> summary(bivCorFit)
X Y

Min. :-2.942561 Min. :-3.296159
1st Qu.:-0.633711 1st Qu.:-0.596177
Median :-0.004139 Median :-0.010538
Mean : 0.032116 Mean :-0.004884
3rd Qu.: 0.739236 3rd Qu.: 0.598326

1.2. Quick Overview 13

OpenMx Documentation, Release 0.2.6-1114

Max. : 4.173841 Max. : 4.006771

name matrix row col parameter estimate error estimate
1 <NA> expMean 1 1 0.032116456 0.02228409
2 <NA> expMean 1 2 -0.004883803 0.02235021
3 <NA> Chol 1 1 1.004631642 0.01575904
4 <NA> Chol 2 1 0.479130899 0.02099642
5 <NA> Chol 2 2 0.874055066 0.01376876

Observed statistics: 2000
Estimated parameters: 5
Degrees of freedom: 1995
-2 log likelihood: 5415.772
Saturated -2 log likelihood:
Chi-Square:
p:
AIC (Mx): 1425.772
BIC (Mx): -4182.6
adjusted BIC:
RMSEA: 0

If we want to test whether the covariance/correlation is significantly different from zero, we could fit a submodel and
compare it with the previous saturated model. Given that this model is essentially the same as the original, except for
the covariance, we create a new mxModel (named bivCorModelSub) with as first argument the old model (named
bivCorModel). Then we only have to specify the matrix that needs to be changed, in this case the lower triangular
matrix becomes essentially a diagonal matrix, obtained by fixing the off-diagonal elements to zero in the free and
values arguments

#Test for Covariance=Zero
bivCorModelSub <-mxModel(bivCorModel,

mxMatrix(
type="Diag",
nrow=2,
ncol=2,
free=TRUE,
name="Chol"

)

Or we can write it more succintly as follows:

bivCorModelSub <-mxModel(bivCorModel,
mxMatrix(type="Diag", nrow=2, ncol=2, free=TRUE, name="Chol")

bivCorFitSub <- mxRun(bivCorModelSub)

We can output the same information as for the saturated job, namely the expected means and covariance matrix and
the likelihood, and then use R to calculate other statistics, such as the Chi-square goodness-of-fit.

EMs <- mxEval(expMean, bivCorFitSub)
ECs <- mxEval(expCov, bivCorFitSub)
LLs <- mxEval(objective, bivCorFitSub)
Chi= LLs-LL;
LRT= rbind(LL,LLs,Chi); LRT

14 Chapter 1. Introduction

OpenMx Documentation, Release 0.2.6-1114

1.2.3 More in-depth Example

Now that you have seen the basics of OpenMx, let us walk through an example in more detail. We decided to use
a twin model example for several reasons. Even though you may not have any background in behavior genetics or
genetic epidemiology, the example illustrates a number of features you are likely to encounter at some stage. We will
present the example in two ways: (i) path analysis representation, and (ii) matrix algebra representation. Both give
exactly the same answer, so you can choose either one or both to get some familiarity with the two approaches.

We will not go into detail about the theory of this model, as that has been done elsewhere (refs). Briefly, twin studies
rely on comparing the similarity of identical (monozygotic, MZ) and fraternal (dizygotic, DZ) twins to infer the role
of genetic and environmental factors on individual differences. As MZ twins have identical genotypes, similarity
between MZ twins is a function of shared genes, and shared environmental factors. Similarity between DZ twins is a
function of some shared genes (on average they share 50% of their genes) and shared environmental factors. A basic
assumption of the classical twin design is that the MZ and DZ twins shared environmental factors to the same extent.

The basic model typically fit to twin data from MZ and DZ twins reared together includes three sources of latent
variables: additive genetic factors (A), shared environmental influences (C) and unique environmental factors (E), We
can estimate these three sources of variance from the observed variances, the MZ and the DZ covariance. The expected
variance is the sum of the three variance components (A + C + E). The expected covariance for MZ twins is (A + C)
and that of DZ twins is (.5A + C). As MZ and DZ twins have different expected covariances, we have a multiple group
model.

It has been standard in twin modeling to fit models to the raw data, as often data are missing on some co-twins. When
using FIML, we also need to specify the expected means. There is no reason to expect that the variances are different
for twin 1 and twin 2, neither are the means for twin 1 and twin 2 expected to differ. This can easily be verified by
fitting submodels to the saturated model, prior to fitting the *ACE* model.

Let us start by simulating the data following by fitting a series of models. The code. includes both the twin data
simulation and several OpenMx scripts to analyze the data. We will describe each of the parts in turn and include the
code for the specific part in the code blocks.

First, we simulate twin data using the mvrnorm R function. If the additive genetic factors (A) account for 50% of the
total variance and the shared environmental factors (C) for 30%, thus leaving 20% explained by specific environmental
factors (E), then the expected MZ twin correlation is a^2 + c^2 or 0.8 in this case, and the expected DZ twin
correlation is 0.65, calculated as .5*a^2 + c^2. We simulate 1000 pairs of MZ and DZ twins each with zero
means and a correlation matrix according to the values listed above. We run some basic descriptive statistics on the
simulated data, using regular R functions.

require(OpenMx)

require(MASS)
set.seed(200)
a2<-0.5 #Additive genetic variance component (a squared)
c2<-0.3 #Common environment variance component (c squared)
e2<-0.2 #Specific environment variance component (e squared)
rMZ <- a2+c2
rDZ <- .5*a2+c2
MZ <- mvrnorm (1000, c(0,0), matrix(c(1,rMZ,rMZ,1),2,2))
DZ <- mvrnorm (1000, c(0,0), matrix(c(1,rDZ,rDZ,1),2,2))

selVars <- c(’t1’,’t2’)
dimnames(DataMZ) <- list(NULL,selVars)
dimnames(DataDZ) <- list(NULL,selVars)
summary(DataMZ)
summary(DataDZ)
colMeans(DataMZ,na.rm=TRUE)
colMeans(DataDZ,na.rm=TRUE)

1.2. Quick Overview 15

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis.R

OpenMx Documentation, Release 0.2.6-1114

cov(DataMZ,use="complete")
cov(DataDZ,use="complete")

We typically start with fitting a saturated model, estimating means, variances and covariances separately by order
of the twins (twin 1 vs twin 2) and by zygosity (MZ vs DZ pairs), to establish the likelihood of the data. This is
essentially similar to the optimization script discussed above, except that we now have two variables (same variable
for twin 1 and twin 2) and two groups (MZ and DZ). Thus, the saturated model will have two matrices for the expected
means of MZs and DZs, and two for the expected covariances, generated from multiplying a lower triangular matrix
with its transpose. The raw data are read in using the mxData command, and the corresponding objective function
mxFIMLObjective applied.

mxModel("MZ",
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=TRUE,
values=c(0,0),
name="expMeanMZ"),

mxMatrix(
type="Lower",
nrow=2,
ncol=2,
free=TRUE
values=.5,
name="CholMZ"),

mxAlgebra(
expression=CholMZ %*% t(CholMZ),
name="expCovMZ",

mxData(
observed=DataMZ,
type="raw"),

mxFIMLObjective(
covariance="expCovMZ",
means="expMeanMZ")

)

Note that the mxModel statement for the DZ twins is almost identical to that for MZ twins, except for the names of
the objects and data. If the arguments to the OpenMx command are given in the default order (see i.e. ?mxMatrix to
go to the help/reference page for that command), then it is not necessary to include the name of the argument. Given
we skip a few optional arguments, the argument name name= is included to refer to the right arguments. For didactic
purposes, we prefer the formatting used for the MZ group, with soft tabs and each argument on a separate line, etc.
(see list of formatting rules). However, the experienced user may want to use a more compact form, as the one used
for the DZ group.

mxModel("DZ",
mxMatrix("Full", 1, 2, T, c(0,0), name="expMeanDZ"),
mxMatrix("Lower", 2, 2, T, .5, name="CholDZ"),
mxAlgebra(CholDZ %*% t(CholDZ), name="expCovDZ"),
mxData(DataDZ, type="raw"),
mxFIMLObjective("expCovDZ", "expMeanDZ", selVars)),

The two models are then combined in a ‘super’model which includes them as arguments. Additional arguments are
an mxAlgebra statement to add the objective funtions/likelihood of the two submodels. To evaluate them simultane-
ously, we use the mxAlgebraObjective with the previous algebra as its argument. The mxRun command is used
to start optimization.

16 Chapter 1. Introduction

OpenMx Documentation, Release 0.2.6-1114

twinSatModel <- mxModel("twinSat",
mxModel("MZ",

mxMatrix("Full", 1, 2, T, c(0,0), name="expMeanMZ"),
mxMatrix("Lower", 2, 2, T, .5, name="CholMZ"),
mxAlgebra(CholMZ %*% t(CholMZ), name="expCovMZ"),
mxData(DataMZ, type="raw"),
mxFIMLObjective("expCovMZ", "expMeanMZ", selVars)),

mxModel("DZ",
mxMatrix("Full", 1, 2, T, c(0,0), name="expMeanDZ"),
mxMatrix("Lower", 2, 2, T, .5, name="CholDZ"),
mxAlgebra(CholDZ %*% t(CholDZ), name="expCovDZ"),
mxData(DataDZ, type="raw"),
mxFIMLObjective("expCovDZ", "expMeanDZ", selVars)),

mxAlgebra(MZ.objective + DZ.objective, name="twin"),
mxAlgebraObjective("twin")

)
twinSatFit <- mxRun(twinSatModel)

It is always helpful/advised to check the model specifications before interpreting the output. Here we are interested
in the values for the expected mean vectors and covariance matrices, and the goodness-of-fit statistics, including the
likelihood, degrees of freedom, and any other derived indices.

ExpMeanMZ <- mxEval(MZ.expMeanMZ, twinSatFit)
ExpCovMZ <- mxEval(MZ.expCovMZ, twinSatFit)
ExpMeanDZ <- mxEval(DZ.expMeanDZ, twinSatFit)
ExpCovDZ <- mxEval(DZ.expCovDZ, twinSatFit)
LL_Sat <- mxEval(objective, twinSatFit)

Before we move on to fit the ACE model to the same data, we may want to test some of the assumptions of the twin
model, i.e. that the means and variances are the same for twin 1 and twin 2, and that they are the same for MZ and DZ
twins. This can be done as an omnibus test, or stepwise. Let us start by equating the means for both twins, separately
in the two groups. We accomplish this by using the same label (just one label which will be reused by R) for the two
free parameters for the means per group. As the majority of the previous script stays the same, we start by copying the
old model into a new one. We then include the arguments of the model that require a change.

twinSatModelSub1 <- mxModel(twinSatModel,
mxModel("MZ",

mxMatrix("Full", 1, 2, T, 0, "mMZ", name="expMeanMZ"),
mxModel("DZ",

mxMatrix("Full", 1, 2, T, 0, "mDZ", name="expMeanDZ")
)
twinSatFitSub1 <- mxModel(twinSatModelSub1)

If we want to test if we can equate both means and variances across twin order and zygosity at once, we will end up
with the following specification. Note that we use the same label across models for elements that need to be equated.

twinSatModelSub2 <- mxModel(twinSatModelSub1,
mxModel("MZ",

mxMatrix("Full", 1, 2, T, 0, "mean", name="expMeanMZ"),
mxMatrix("Lower", 2, 2, T, .5, labels= c("var","MZcov","var"), name="CholMZ"),

mxModel("DZ",
mxMatrix("Full", 1, 2, T, 0, "mean", name="expMeanDZ"),
mxMatrix("Lower", 2, 2, T, .5, labels= c("var","DZcov","var"), name="CholDZ")

)
twinSatFitSub2 <- mxRun(twinSatModelSub2)

1.2. Quick Overview 17

OpenMx Documentation, Release 0.2.6-1114

We can compare the likelihood of this submodel to that of the fully saturated model or the previous submodel using
the results from mxEval commands with regular R algebra. A summary of the model parameters, estimates and
goodness-of-fit statistics can also be obtained using summary(twinSatFit).

LL_Sat <- mxEval(objective, twinSatFit)
LL_Sub1 <- mxEval(objective, twinSatFitSub1)
LRT1= LL_Sub1 - LL_Sat
LL_Sub2 <- mxEval(objective, twinSatFitSub1)
LRT2= LL_Sub2 - LL_Sat

Now, we are ready to specify the ACE model to test which sources of variance significantly contribute to the phenotype
and estimate their best value. The structure of this script is going to mimic that of the saturated model. The main
difference is that we no longer estimate the variance-covariance matrix directly, but express it as a function of the three
sources of variance, A, C and E. As the same sources are used for the MZ and the DZ group, the matrices which will
represent them are part of the ‘super’model. As these sources are variances, which need to be positive, we typically
use a Cholesky decomposition of the standard deviations (and effectively estimate a rather then a^2, see later for more
in depth coverage). Thus, we specify three separate matrices for the three sources of variance using the mxMatrix
command and ‘calculate’ the variance components with the mxAlgebra command. Note that there are a variety of
ways to specify this model, we have picked one that corresponds well to previous Mx code, and has some intuitive
appeal.

#Specify ACE Model
twinACEModel <- mxModel("twinACE",
Matrix expMean for expected mean vector for MZ and DZ twins

mxMatrix(type="Full", nrow=1, nrow=2, free=TRUE, values=20, label="mean", name="expMean"),
Matrices X, Y, and Z to store the a, c, and e path coefficients

mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="a", name="X"),
mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="c", name="Y"),
mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="e", name="Z"),

Matrixes A, C, and E to compute A, C, and E variance components
mxAlgebra(expression=X * t(X), name="A"),
mxAlgebra(expression=Y * t(Y), name="C"),
mxAlgebra(expression=Z * t(Z), name="E"),

Matrix expCovMZ for expected covariance matrix for MZ twins
mxAlgebra(expression=rbind(cbind(A+C+E, A+C), cbind(A+C, A+C+E)), name="expCovMZ"),
mxModel("MZ",

mxData(observed=DataMZ, type="raw"),
mxFIMLObjective(covariance="twinACE.expCovMZ", means="twinACE.expMean", dimnames=selVars)

),
Matrix expCovMZ for expected covariance matrix for DZ twins

mxAlgebra(expression=rbind(cbind(A+C+E, .5%x%A+C), cbind(.5%x%A+C , A+C+E)), name="expCovDZ"),
mxModel("DZ",

mxData(observed=DataDZ, type="raw"),
mxFIMLObjective(covariance="twinACE.expCovDZ", means="twinACE.expMean", dimnames=selVars)

),
Algebra to combine objective function of MZ and DZ groups

mxAlgebra(MZ.objective + DZ.objective, name="twin"),
mxAlgebraObjective("twin")

)
twinACEFit <- mxRun(twinACEModel)

Relevant output can be generate with print or summary statements or specific output can be requested using the
mxEval command. Typically we would compare this model back to the saturated model to interpret its goodness-
of-fit. Parameter estimates are obtained and can easily be standardized. A typical analysis would likely include the
following output.

18 Chapter 1. Introduction

OpenMx Documentation, Release 0.2.6-1114

LL_ACE <- mxEval(objective, twinACEFit)
LRT_ACE= LL_ACE - LL_Sat

#Retrieve expected mean vector and expected covariance matrices
MZc <- mxEval(expCovMZ, twinACEFit)
DZc <- mxEval(expCovDZ, twinACEFit)
M <- mxEval(expMean, twinACEFit)

#Retrieve the A, C, and E variance components
A <- mxEval(A, twinACEFit)
C <- mxEval(C, twinACEFit)
E <- mxEval(E, twinACEFit)

#Calculate standardized variance components
V <- (A+C+E)
a2 <- A/V
c2 <- C/V
e2 <- E/V

#Build and print reporting table with row and column names
ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
ACEest <- data.frame(ACEest, row.names=c("Variance Components","Standardized VC"))
names(ACEest)<-c("A", "C", "E")
ACEest; LL_ACE; LRT_ACE

Similarly to fitting submodels from the saturated model, we typically fit submodels of the ACE model to test the
significance of the sources of variance. One example is testing the significance of shared environmental factors by
dropping the free parameter for c (fixing it to zero). We call up the previous model and include the new specification
for the matrix to be changed, and rerun.

twinAEModel <- mxModel(twinACEModel,
mxMatrix("Full", nrow=1, ncol=1, free=F, values=0, label="c", name="Y")

)
twinAEFit <- mxRun(twinAEModel)

We discuss twin analysis examples in more detail in the detailed example code. We hope we have given you some idea
of the features of OpenMx.

1.3 Two Model Styles - Two Data Styles

In this first detailed example, we introduce the different styles available to specify models and data, which were briefly
discussed in the ‘Beginners Guide’. There are currently two supported approaches to specifying models: (i) path
specification and (ii) matrix specification. Each example is presented using both approaches, so you can get a sense of
their advantage/disadvantages, and see which best fits your style. In the ‘path specification’ model style you specify
a model in terms of paths; the ‘matrix specification’ model style relies on matrices and matrix algebra to produce
OpenMx code. For either approach you must specify data, and the two supported styles are (a) summary format, i.e.
covariance matrices and possibly means, and (b) raw data format. We will illustrate both, as arguments of functions
may differ. Thus, we will describe each example four ways:

• i.a Path Specification - Covariance Matrices (optionally including means)

• i.b Path Specification - Raw Data

• ii.a Matrix Specification - Covariance Matrices (optionally including means)

• ii.b Matrix Specification - Raw Data

1.3. Two Model Styles - Two Data Styles 19

OpenMx Documentation, Release 0.2.6-1114

Our first example fits a simple model to one variable, estimating its variance and then both the mean and the variance
- a so called saturated model. We start with a univariate example, and also work through a more general bivariate
example which forms the basis for later examples.

1.3.1 Univariate Saturated Model

The four univariate examples are available here, and you may wish to access them while working through this manual.
The last file includes all four example in one.

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateSaturated_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateSaturated_PathRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateSaturated_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateSaturated_MatrixRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateSaturated.R

The bivariate examples are available in the following files:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_PathRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_MatrixRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_MatrixCovCholesky.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_MatrixRawCholesky.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated.R

Note that we have additional versions of these matrix-style examples which use a Cholesky decomposition to estimate
the expected covariance matrices, which is preferable to directly estimating the symmetric matrices as it avoids the
possibility of non positive-definite matrices.

Data

To avoid reading in data from an external file, we simulate a simple dataset directly in R, and use some of its great
capabilities. As this is not an R manual, we just provide the code here with minimal explanation. There are several
helpful sites for learning R, for instance http://www.statmethods.net/

#Simulate Data
set.seed(100)
x <- rnorm (1000, 0, 1)
testData <- as.matrix(x)
selVars <- c("X")
dimnames(testData) <- list(NULL, selVars)
summary(testData)
mean(testData)
var(testData)

The first line is a comment (starting with a #). We set a seed for the simulation so that we generate the same data each
time and get a reproducible answer. We then create a variable x for 1000 subjects, with mean of 0 and a variance of 1,
using R’s normal distribution function rnorm. We read the data in as a matrix into an object testData and give the
variable a name "X" using the dimnames command. We can easily produce some descriptive statistics in R using

20 Chapter 1. Introduction

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateSaturated_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateSaturated_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateSaturated_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateSaturated_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateSaturated.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_MatrixCovCholesky.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated_MatrixRawCholesky.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateSaturated.R
http://www.statmethods.net/

OpenMx Documentation, Release 0.2.6-1114

built-in functions summary, mean and var, just to make sure the data look like what we expect. We also define
selVars here with the names of the variable(s) to be analyzed.

1.3.2 Covariance Matrices and Path-style Input

Model Specification

The model estimates the mean and the variance of the variable X. We call this model saturated because there is a free
parameter corresponding to each and every observed statistic. Here we have covariance matrix input only, so we can
estimate one variance. Below is the path diagram and the complete script:

#example 1: Saturated Model with Cov Matrices and Path-Style Input
univSatModel1 <- mxModel("univSat1",

manifestVars= selVars,
mxPath(

from=c("X"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels="vX"

),
mxData(

observed=var(testData),
type="cov",
numObs=1000

),
type="RAM"

)

Each of of the commands are discussed separately beside excerpts of the OpenMx code. We use the mxModel
command to specify the model. Its first argument is a name. All arguments are separated by commas.

univSatModel1 <- mxModel("univSat1",

When using the path specification, it is easiest to work from an existing path diagram. Assuming you are familiar
with path analysis (for those who are not, there are several excellent introductions, see refs), we have a box for
the observed/manifest variable x, specified with the manifestVars argument, and one double arrow on the box
to represent its variance, specified with the mxPath command. The mxPath command indicates where the path
originates: from= and where it ends: to. If the to= argument is omitted, the path ends at the same variable where it
started. The arrows argument distinguishes one-head arrows (if arrows=1) or two-headed arrows (if arrows=2).
The free command is used to specify which elements are free or fixed with a TRUE or FALSE option. If the mxPath
command creates more than one path, a single T implies that all paths created here are free. If some of the paths are
free and others fixed, a list is expected. The same applies for values command which is used to assign starting
values or fixed final values, depending on the corresponding ‘free’ status. Optionally, lower and upper bounds can be

1.3. Two Model Styles - Two Data Styles 21

OpenMx Documentation, Release 0.2.6-1114

specified (using lbound and ubound, again generally for all the paths or specifically for each path). Labels can also
be assigned using the labels command which expects as many labels (in quotes) as there are elements.

manifestVars=selVars ,

mxPath(
from=c("X"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels="vX"

),

We specify which data the model is fitted to with the mxData command. Its first argument, observed=, reads in
the data from an R matrix or data.frame, with the type= given in the second argument. Given we read a covariance
matrix here, we use the var() function (as there is no covariance for a single variable). When summary statistics are
used as input, the number of observations (numObs=) needs to be supplied.

mxData(
observed=var(testData),
type="cov",
numObs=1000

),

With the path specification, the ‘RAM’ objective function is used by default, as indicated by the type argument.
Internally, OpenMx translates the paths into RAM notation in the form of the matrices A, S, and F [see refs].

type="RAM"
)

Model Fitting

So far, we have specified the model, but nothing has been evaluated. We have ‘saved’ the specification in the object
univSatModel1. This object is evaluated when we invoke the mxRun command with the object as its argument.

univSatFit1 <- mxRun(univSatModel1)

There are a variety of ways to generate output. We will promote the use of the mxEval command, which takes two
arguments: an expression and a model name. The expression can be a matrix or algebra name defined in the
model, new calculations using any of these matrices/algebras, the objective function, etc. We can then use any regular
R function to generate derived fit statistics, some of which will be built in as standard. When fitting to covariance
matrices, the saturated likelihood can be easily obtained and subtracted from the likelihood of the data to obtain a
Chi-square goodness-of-fit.

EC1 <- mxEval(S, univSatFit1) #univSatFit1[[’S’]]@values
LL1 <- mxEval(objective, univSatFit1)
SL1 <- univSatFit1@output$other$Saturated
Chi1 <- LL1-SL1

The output of these objects like as follows:

22 Chapter 1. Introduction

OpenMx Documentation, Release 0.2.6-1114

> EC1
[,1]

[1,] 1.062112
> LL1

[,1]
[1,] 1.060259

> SL1
[1] 1.060259

> Chi1
[,1]

[1,] 2.220446e-16

In addition to providing a covariance matrix as input data, we could add a means vector. As this requires a few minor
changes, lets highlight those. We have one additional mxPath command for the means. In the path diagram, the
means are specified by a triangle which as a fixed value of one, reflected in the from="one" argument, with the to=
argument referring to the variable which mean is estimated.

mxPath(
from="one",
to="X",
arrows=1,
free=T,
values=0,
labels="mX"

),

The other required change is in the mxData command, which now takes a fourth argument means for the vector of
observed means from the data calculated using the R mean command.

mxData(
observed=matrix(var(testData),1,1),
type="cov",
numObs=1000,
means=mean(testData)

),

When a mean vector is supplied and a parameter added for the estimated mean, the RAM matrices A, S and F are
augmented with an M matrix which can be referred to in the output in a similar was as the expected variance before.

EM1m <- mxEval(M, univSatFit1m)

1.3.3 Raw Data and Path-style Input

Instead of fitting models to summary statistics, it is now popular to fit models directly to the raw data and using full
information maximum likelihood (FIML). Doing so requires specifying not only a model for the covariances, but also
one for the means, just as in the case of fitting to covariance matrices and mean vectors described above. The path
diagram for this model, now including means (path from triangle of value 1) is as follows:

1.3. Two Model Styles - Two Data Styles 23

OpenMx Documentation, Release 0.2.6-1114

The only change required is in the mxData command, which now takes either an R matrix or a data.frame with the
observed data as first argument, and the type="raw" as the second argument.

mxData(
observed=testData,
type="raw"

)

A nice feature of OpenMx is that an existing model can be easily modified. So univSatModel1 can be modified as
follows:

univRawModel1 <- mxModel(univSatModel1,
mxData(

observed=testData,
type="raw"

)
)

The resulting model can be run as usual using mxRun:

univRawFit1 <- mxRun(univSatModel1)

Note that the output now includes the expected means, as well as the expected covariance matrix and -2 x log-likelihood
of the data.

> EM2
[,1]

[1,] 0.01680498
> EC2

[,1]
[1,] 1.061049

> LL2
[,1]

[1,] 2897.135

1.3.4 Covariance Matrices and Matrix-style Input

The next example replicates these models using matrix-style coding. The code to specify the model includes four
commands, (i) mxModel, (ii) mxMatrix, (iii) mxData and (iv) mxMLObjective.

Starting with the model fitted to the summary covariance matrix, we need to create a matrix for the expected covariance
matrix using the mxMatrix command. The first argument is its type: symmetric for a covariance matrix. The
second and third arguments are the number of rows (nrow) and columns (ncol) – one for a univariate model. The
free and values parameters work as in the path specification. If only one element is given, it is applied to all
elements of the matrix. Alternatively, each element can be assigned its free/fixed status and starting value with a
list command. Note that in the current example, the matrix is a simple 1x1 matrix, but that will change rapidly in

24 Chapter 1. Introduction

OpenMx Documentation, Release 0.2.6-1114

the following examples. The mxData is identical to that used in path stlye models. A different objective function
is used, however, namely the mxMLObjective command which takes two arguments, covariance to hold the
expected covariance matrix (which we specified above using mxMatrix as expCov), and dimnames which allow
the mapping of the observed data to the expected covariance matrix, i.e. the model.

univSatModel3 <- mxModel("univSat3",
mxMatrix(

type="Symm",
nrow=1,
ncol=1,
free=T,
values=1,
name="expCov"

),
mxData(

observed=var(testData),
type="cov",
numObs=1000

),
mxMLObjective(

covariance="expCov",
dimnames=selVars

),
)

univSatFit3 <- mxRun(univSatModel3)

A means vector can also be added as the fourth argument of the mxData command. When means are requested to
be modeled, a second mxMatrix command is also required to specify the vector of expected means. In this case a
matrix of type=’Full’, with 1 row and column, is assigned free=T with start value 0, and the name expMean.
The second change is an additional argument mean to the mxMLObjective function for the expected mean, here
expMean.

....
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=T,
values=0,
name="expMean"

),
mxData(

observed=var(testData),
type="cov",
numObs=1000,
means=mean(testData)

),
mxMLObjective(

covariance="expCov",
means="expMean",
dimnames=selVars

)
)

1.3. Two Model Styles - Two Data Styles 25

OpenMx Documentation, Release 0.2.6-1114

1.3.5 Raw Data and Matrix-style Input

Finally, if we want to use the matrix specification with raw data, we again specify matrices for the means and covari-
ances using mxMatrix(). The mxData command now, however takes a matrix (or data.frame) of raw data and the
mxFIMLObjective function replaces mxMLObjective to evaluate the likelihood of the data using FIML (Full in-
formation, maximum likelihood). This function takes three arguments: the expected covariance matrix covariance;
the expected mean, means; and a third for the dimnames.

univSatModel4 <- mxModel("univSat4",
mxMatrix(

type="Symm",
nrow=1,
ncol=1,
free=T,
values=1,
name="expCov"

),
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=T,
values=0,
name="expMean"

),
mxData(

observed=testData,
type="raw"

),
mxFIMLObjective(

covariance="expCov",
means="expMean",
dimnames=selVars

)
)

Note that the output generated for the paths and matrices specification are completely equivalent.

1.3.6 Bivariate Saturated Model

Rarely will we analyze a single variable. As soon as a second variable is added, not only can we estimate both means
and variances, but also a covariance between the two variables, as shown in the following path diagram:

The path diagram for our bivariate example includes two boxes for the observed variables ‘X’ and ‘Y’, each with a
two-headed arrow for the variance of each variables. We also estimate a covariance between the two variables with
the two-headed arrow connecting the two boxes. The optional means are represented as single-headed arrows from a
triangle to the two boxes.

26 Chapter 1. Introduction

OpenMx Documentation, Release 0.2.6-1114

Data

The data used for the example were generated using the multivariate normal function (mvrnorm in the R package
MASS). We have simulated data on two variables named ‘X’ and ‘Y’ with means of zero, variances of one and a
covariance of .5 using the following R code, and saved is as testData. Note that we can now use the R function
cov to generate the observed covariance matrix.

#Simulate Data
require(MASS)
set.seed(200)
rs=.5
xy <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
testData <- xy
selVars <- c(’X’,’Y’)
dimnames(testData) <- list(NULL, selVars)
summary(testData)
cov(testData)

Model Specification

The mxPath commands look as follows. The first one specifies two-headed arrows from X and Y to themselves. This
command now generates two free parameters, each with start value of 1 and lower bound of .01, but with a different
label indicating that these are separate free parameters. Note that we could test whether the variances are equal by
specifying a model with the same label for the two variances and comparing it with the current one. The second
mxPath command specifies a two-headed arrow from X to Y, which is also assigned ‘free’ and given a start value of
.2 and a label.

....
mxPath(

from=c("X", "Y"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels=c("varX","varY")

)
mxPath(

from="X",
to="Y",
arrows=2,
free=T,
values=.2,
lbound=.01,
labels="covXY"

)

When observed means are included in addition to the observed covariance matrix, we add an mxPath command with
single-headed arrows from one to the variables to represent the two means.

....
mxPath(

from="one",
to=c("X", "Y"),
arrows=1,
free=T,
values=.01,

1.3. Two Model Styles - Two Data Styles 27

OpenMx Documentation, Release 0.2.6-1114

labels=c("meanX","meanY")
)

Changes for fitting to raw data just require the mxData command to read in the data directly with type=raw.

Using matrices instead of paths, our mxMatrix command for the expected covariance matrix now specifies a 2x2
matrix with all elements free. Start values have to be given only for the unique elements (diagonal elements plus upper
or lower diagonal elements), in this case we provide a list with values of 1 for the variances and .5 for the covariance

....
mxMatrix(

type="Symm",
nrow=2,
ncol=2,
free=T,
values=c(1,.5,1),
name="expCov"

)

The optional expected means command specifies a 1x2 row vector with two free parameters, each given a 0 start value.

....
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=T,
values=c(0,0),
name="expMean"

)

Combining these two mxMatrix commands with the raw data, specified in the mxData command and the
mxFIMLObjective command with the appropriate arguments is all that’s need to fit a saturated bivariate model.
So far, we have specified the expected covariance matrix directly as a symmetric matrix. However, this may cause
optimization problems as the matrix could become not positive-definite which would prevent the likelihood to be eval-
uated. To overcome this problem, we can use a Cholesky decomposition of the expected covariance matrix instead, by
multiplying a lower triangular matrix with its transpose. To obtain this, we use a mxMatrix command and specify
type="Lower". We then use an mxAlgebra command to multiply this matrix, named Chol with its transpose (R
function t()).

....
mxMatrix(

type="Lower",
nrow=2,
ncol=2,
free=T,
values=.5,
name="Chol"

)
mxAlgebra(

Chol %*% t(Chol),
name="expCov",

)

The following sections describe OpenMx examples in detail beginning with regression, factor analysis, time series
analysis, multiple group models, including twin models, and analysis using definition variables. Again each is pre-
sented in both path and matrix styles and where relevant, contrasting data from covariance matrices versus raw data
input are also illustrated. Additional examples will be added as they are implemented in OpenMx.

28 Chapter 1. Introduction

CHAPTER

TWO

EXAMPLES, PATH SPECIFICATION

2.1 Regression, Path Specification

This example will show how regression can be carried out from a path-centric structural modeling perspective. This
example is in three parts; a simple regression, a multiple regression, and multivariate regression. There are two
versions of each example are available; one with raw data, and one where the data is supplied as a covariance matrix
and vector of means. These examples are available in the following files:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_PathRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_PathRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_PathRaw.R

Parallel versions of this example, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_MatrixRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_MatrixRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_MatrixRaw.R

2.1.1 Simple Regression

We begin with a single dependent variable (y) and a single independent variable (x). The relationship between these
variables takes the following form:

y = β0 + β1 ∗ x+ ε

29

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_MatrixRaw.R

OpenMx Documentation, Release 0.2.6-1114

In this model, the mean of y is dependent on both regression coefficients (and by extension, the mean of x). The
variance of y depends on both the residual variance and the product of the regression slope and the variance of x. This
model contains five parameters from a structural modeling perspective β0, β1, σ2

ε , and the mean and variance of x).
We are modeling a covariance matrix with three degrees of freedom (two variances and one covariance) and a means
vector with two degrees of freedom (two means). Because the model has as many parameters (5) as the data have
degrees of freedom, this model is fully saturated.

Data

Our first step to running this model is to include the data to be analyzed. The data must first be placed in a variable or
object. For raw data, this can be done with the read.table function. The data provided has a header row, indicating the
names of the variables.

myRegDataRaw <- read.table("myRegData.txt",header=TRUE)

The names of the variables provided by the header row can be displayed with the names() function.

> names(myRegDataRaw)
[1] "w" "x" "y" "z"

As you can see, our data has four variables in it. However, our model only contains two variables, x and y. To use only
them, we’ll select only the variables we want and place them back into our data object. That can be done with the R
code below.

SimpleDataRaw <- myRegDataRaw[,c("x","y")]

For covariance data, we do something very similar. We create an object to house our data. Instead of reading in raw
data from an external file, we can include a covariance matrix. This requires the matrix() function, which needs to
know what values are in the covariance matrix, how big it is, and what the row and column names are. As our model
also references means, we’ll include a vector of means in a separate object. Data is selected in the same way as before.

myRegDataCov <- matrix(
c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),

nrow=4,
dimnames=list(

30 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

c("w","x","y","z"),
c("w","x","y","z"))

)

SimpleDataCov <- myRegDataCov[c("x","y"),c("x","y")]

myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)

SimpleDataMeans <- myRegDataMeans[c(2,3)]

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require() or library() function. All objects required for estimation (data,
paths, and a model type) are included in their own arguments or functions. This code uses the mxModel function to
create an MxModel object, which we’ll then run.

require(OpenMx)

uniRegModel <- mxModel("Simple Regression -- Path Specification",
type="RAM",
mxData(

observed=SimpleDataRaw,
type="raw"

),
manifestVars=c("x", "y"),
variance paths
mxPath(

from=c("x", "y"),
arrows=2,
free=TRUE,
values = c(1, 1),
labels=c("varx", "residual")

),
regression weights
mxPath(

from="x",
to="y",
arrows=1,
free=TRUE,
values=1,
labels="beta1"

),
means and intercepts
mxPath(

from="one",
to=c("x", "y"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("meanx", "beta0")

)
) # close model

This mxModel function can be split into several parts. First, we give the model a title. The first argument in an
mxModel function has a special function. If an object or variable containing an MxModel object is placed here, then

2.1. Regression, Path Specification 31

OpenMx Documentation, Release 0.2.6-1114

mxModel adds to or removes pieces from that model. If a character string (as indicated by double quotes) is placed
first, then that becomes the name of the model. Models may also be named by including a name argument. This
model is named Simple Regression -- Path Specification.

The next part of our code is the type argument. By setting type="RAM", we tell OpenMx that we are specifying
a RAM model for covariances and means, and that we are doing so using the mxPath function. With this setting,
OpenMx uses the specified paths to define the expected covariance and means of our data.

The third component of our code creates an MxData object. The example above, reproduced here, first references the
object where our data is, then uses the type argument to specify that this is raw data.

mxData(
observed=SimpleDataRaw,
type="raw"
),

If we were to use a covariance matrix and vector of means as data, we would replace the existing mxData function
with this one:

mxData(
observed=SimpleDataCov,
type="cov",
numObs=100,
means=SimpleRegMeans

),

We must also specify the list of observed variables using the manifestVars argument. In the code below, we
include a list of both observed variables, x and y.

manifestVars=c("x", "y"),

The last features of our code are three mxPath functions, which describe the relationships between variables. Each
function first describes the variables involved in any path. Paths go from the variables listed in the from argument,
and to the variables listed in the to argument. When arrows is set to 1, then one-headed arrows (regressions) are
drawn from the from variables to the to variables. When arrows is set to 2, two headed arrows (variances or
covariances) are drawn from the the from variables to the to variables. If arrows is set to 2, then the to argument
may be omitted to draw paths both to and from the list of from variables.

The variance terms of our model (that is, the variance of x and the residual variance of y) are created with the following
mxPath function. We want two headed arrows from x to x, and from y to y. These paths should be freely estimated
(free=TRUE), have starting values of 1, and be labeled "varx" and "residual", respectively.

variance paths
mxPath(

from=c("x", "y"),
arrows=2,
free=TRUE,
values = c(1, 1),
labels=c("varx", "residual")

),

The regression term of our model (that is, the regression of y on x) is created with the following mxPath function.
We want a single one-headed arrow from x to y. This path should be freely estimated (free=TRUE), have a starting
value of 1, and be labeled "beta1".

32 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

regression weights
mxPath(

from="x",
to="y",
arrows=1,
free=TRUE,
values=1,
labels="beta1"

),

We also need means and intercepts in our model. Exogenous or independent variables have means, while endogenous
or dependent variables have intercepts. These can be included by regressing both x and y on a constant, which
can be refered to in OpenMx by "one". The intercept terms of our model are created with the following mxPath
function. We want single one-headed arrows from the constant to both x and y. These paths should be freely estimated
(free=TRUE), have a starting value of 1, and be labeled meanx and "beta1", respectively.

means and intercepts
mxPath(

from="one",
to=c("x", "y"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("meanx", "beta0")

),

Our model is now complete!

Model Fitting

We’ve created an MxModel object, and placed it into an object or variable named uniRegModel. We can run this
model by using the mxRun function, which is placed in the object uniRegFit in the code below. We then view the
output by referencing the output slot, as shown here.

uniRegFit <- mxRun(uniRegModel)

The output slot contains a great deal of information, including parameter estimates and information about the matrix
operations underlying our model. A more parsimonious report on the results of our model can be viewed using the
summary function, as shown here.

uniRegFit@output
summary(uniRegFit)

2.1.2 Multiple Regression

In the next part of this demonstration, we move to multiple regression. The regression equation for our model looks
like this:

y = β0 + βx ∗ x+ βz ∗ z + ε

2.1. Regression, Path Specification 33

OpenMx Documentation, Release 0.2.6-1114

Our dependent variable y is now predicted from two independent variables, x and z. Our model includes 3 regression
parameters (β0, βx, βz), a residual variance (σ2

ε) and the observed means, variances and covariance of x and z, for a
total of 9 parameters. Just as with our simple regression, this model is fully saturated.

We prepare our data the same way as before, selecting three variables instead of two.

MultipleDataRaw <- myRegDataRaw[,c("x","y","z")]

MultipleDataCov <- myRegDataCov[c("x","y","z"),c("x","y","z")]

MultipleDataMeans <- myRegDataMeans[c(2,3,4)]

Now, we can move on to our code. It is identical in structure to our simple regression code, but contains additional
paths for the new parts of our model.

require(OpenMx)

multiRegModel <- mxModel("Multiple Regression -- Path Specification",
type="RAM",
mxData(

observed=MultipleDataRaw,
type="raw"

),
manifestVars=c("x", "y", "z"),
variance paths
mxPath(

from=c("x", "y", "z"),
arrows=2,
free=TRUE,
values = c(1, 1, 1),
labels=c("varx", "residual", "varz")

),
covariance of x and z
mxPath(

from="x",
to="y",
arrows=2,
free=TRUE,
values=0.5,
labels="covxz"

),

34 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

regression weights
mxPath(

from=c("x","z"),
to="y",
arrows=1,
free=TRUE,
values=1,
labels=c("betax","betaz")
),

means and intercepts
mxPath(

from="one",
to=c("x", "y", "z"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("meanx", "beta0", "meanz")

)
) # close model

multiRegFit <- mxRun(multiRegModel)

multiRegFit@output
summary(multiRegFit)

The first bit of our code should look very familiar. require(OpenMx) makes sure the OpenMx library is loaded
into R. This only needs to be done at the first model of any R session. The type="RAM" argument is identical.
The mxData function references our multiple regression data, which contains one more variable than our simple
regression data. Similarly, our manifestVars list contains an extra label, "z".

The mxPath functions work just as before. Our first function defines the variances of our variables. Whereas our
simple regression included just the variance of x and the residual variance of y, our multiple regression includes the
variance of z as well.

Our second mxPath function specifies a two-headed arrow (covariance) between x and z. We’ve omitted the to
argument from two-headed arrows up until now, as we have only required variances. Covariances may be specified
by using both the from and to arguments. This path is freely estimated, has a starting value of 0.5, and is labeled
"covxz.

covariance of x and z
mxPath(

from="x",
to="y",
arrows=2,
free=TRUE,
values=0.5,
labels="covxz"

),

The third and fourth mxPath functions mirror the second and third mxPath functions from our simple regression,
defining the regressions of y on both x and z as well as the means and intercepts of our model.

The model is run and output is viewed just as before, using the mxRun function, @output and the summary function
to run, view and summarize the completed model.

2.1. Regression, Path Specification 35

OpenMx Documentation, Release 0.2.6-1114

2.1.3 Multivariate Regression

The structural modeling approach allows for the inclusion of not only multiple independent variables (i.e., multiple
regression), but multiple dependent variables as well (i.e., multivariate regression). Versions of multivariate regression
are sometimes fit under the heading of path analysis. This model will extend the simple and multiple regression
frameworks we’ve discussed above, adding a second dependent variable w.

y = βy + βyx ∗ x+ βyz ∗ z + εy

w = βw + βwx ∗ x+ βwz ∗ z + εw

We now have twice as many regression parameters, a second residual variance, and the same means, variances and
covariances of our independent variables. As with all of our other examples, this is a fully saturated model.

Data import for this analysis will actually be slightly simpler than before. The data we imported for the previous
examples contains only the four variables we need for this model. We can use myRegDataRaw, myRegDataCov,
and myRegDataMeans in our models.

myRegDataRaw<-read.table("myRegData.txt",header=TRUE)

myRegDataCov <- matrix(
c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),

nrow=4,
dimnames=list(

c("w","x","y","z"),
c("w","x","y","z"))

)

myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)

Our code should look very similar to our previous two models. It includes the same type argument, mxData function,
and manifestVars argument as previous models, with a different version of the data and additional variables in the
latter two components.

multivariateRegModel <- mxModel("MultiVariate Regression -- Path Specification",
type="RAM",
mxData(

observed=myRegDataRaw,

36 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

type="raw"
),
manifestVars=c("w", "x", "y", "z"),
variance paths
mxPath(

from=c("w", "x", "y", "z"),
arrows=2,
free=TRUE,
values = c(1, 1, 1),
labels=c("residualw", "varx", "residualy", "varz")

),
covariance of x and z
mxPath(

from="x",
to="y",
arrows=2,
free=TRUE,
values=0.5,
labels="covxz"

),
regression weights for y
mxPath(

from=c("x","z"),
to="y",
arrows=1,
free=TRUE,
values=1,
labels=c("betayx","betayz")

),
regression weights for w
mxPath(

from=c("x","z"),
to="w",
arrows=1,
free=TRUE,
values=1,
labels=c("betawx","betawz")

),
means and intercepts
mxPath(

from="one",
to=c("w", "x", "y", "z"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("betaw", "meanx", "betay", "meanz")

)
) # close model

multivariateRegFit <- mxRun(multivariateRegModel)

multivariateRegFit@output
summary(multivariateRegFit)

The only additional components to our mxPath functions are the inclusion of the w variable and the additional set of
regression coefficients for w. Running the model and viewing output works exactly as before.

These models may also be specified using matrices instead of paths. See Regression, Matrix Specification for matrix

2.1. Regression, Path Specification 37

OpenMx Documentation, Release 0.2.6-1114

specification of these models.

2.2 Factor Analysis, Path Specification

This example will demonstrate latent variable modeling via the common factor model using path-centric model spec-
ification. We’ll walk through two applications of this approach: one with a single latent variable, and one with two
latent variables. As with previous examples, these two applications are split into four files, with each application
represented separately with raw and covariance data. These examples can be found in the following files:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_PathRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_PathRaw.R

Parallel versions of this example, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_MatrixRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_MatrixRaw.R

2.2.1 Common Factor Model

The common factor model is a method for modeling the relationships between observed variables believed to measure
or indicate the same latent variable. While there are a number of exploratory approaches to extracting latent factor(s),
this example uses structural modeling to fit confirmatory factor models. The model for any person and path diagram
of the common factor model for a set of variables x1-x6 are given below.

xij = µj + λj ∗ ηi + εij

While 19 parameters are displayed in the equation and path diagram above (6 manifest variances, six manifest means,
six factor loadings and one factor variance), we must constrain either the factor variance or one factor loading to a
constant to identify the model and scale the latent variable. As such, this model contains 18 parameters. Unlike the
manifest variable examples we’ve run up until now, this model is not fully saturated. The means and covariance matrix
for six observed variables contain 27 degrees of freedom, and thus our model contains 9 degrees of freedom.

38 Chapter 2. Examples, Path Specification

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_MatrixRaw.R

OpenMx Documentation, Release 0.2.6-1114

Data

Our first step to running this model is to include the data to be analyzed. The data for this example contain nine
variables. We’ll select the six we want for this model using the selection operators used in previous examples. Both
raw and covariance data are included below, but only one is required for any model.

myFADataRaw <- read.table("myFAData.txt",header=TRUE)

> names(myFADataRaw)
[1] "x1" "x2" "x3" "x4" "x5" "x6" "y1" "y2" "y3"

oneFactorRaw <- myFADataRaw[,c("x1", "x2", "x3", "x4", "x5", "x6")]

myFADataCov <- matrix(
c(0.997, 0.642, 0.611, 0.672, 0.637, 0.677, 0.342, 0.299, 0.337,

0.642, 1.025, 0.608, 0.668, 0.643, 0.676, 0.273, 0.282, 0.287,
0.611, 0.608, 0.984, 0.633, 0.657, 0.626, 0.286, 0.287, 0.264,
0.672, 0.668, 0.633, 1.003, 0.676, 0.665, 0.330, 0.290, 0.274,
0.637, 0.643, 0.657, 0.676, 1.028, 0.654, 0.328, 0.317, 0.331,
0.677, 0.676, 0.626, 0.665, 0.654, 1.020, 0.323, 0.341, 0.349,
0.342, 0.273, 0.286, 0.330, 0.328, 0.323, 0.993, 0.472, 0.467,
0.299, 0.282, 0.287, 0.290, 0.317, 0.341, 0.472, 0.978, 0.507,
0.337, 0.287, 0.264, 0.274, 0.331, 0.349, 0.467, 0.507, 1.059),

nrow=9,
dimnames=list(

c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3"),
c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3")),

)

oneFactorCov <- myFADataCov[c("x1","x2","x3","x4","x5","x6"),c("x1","x2","x3","x4","x5","x6")]

myFADataMeans <- c(2.988, 3.011, 2.986, 3.053, 3.016, 3.010, 2.955, 2.956, 2.967)

oneFactorMeans <- myFADataMeans[1:6]

Model Specification

Creating a path-centric factor model will use many of the same functions and arguments used in previous path-centric
examples. However, the inclusion of latent variables adds a few extra pieces to our model. Before running a model, the
OpenMx library must be loaded into R using either the require() or library() function. All objects required
for estimation (data, paths, and a model type) are included in their own arguments or functions. This code uses the
mxModel function to create an MxModel object, which we’ll then run.

require(OpenMx)

oneFactorModel <- mxModel("Common Factor Model -- Path Specification",
type="RAM",
mxData(

observed=oneFactorRaw,
type="raw"

),
manifestVars=c("x1","x2","x3","x4","x5","x6"),
latentVars="F1",
residual variances
mxPath(

from=c("x1","x2","x3","x4","x5","x6"),

2.2. Factor Analysis, Path Specification 39

OpenMx Documentation, Release 0.2.6-1114

arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c("e1","e2","e3","e4","e5","e6")

),
latent variance
mxPath(

from="F1",
arrows=2,
free=TRUE,
values=1,
labels ="varF1"

),
factor loadings
mxPath(

from="F1",
to=c("x1","x2","x3","x4","x5","x6"),
arrows=1,
free=c(FALSE,TRUE,TRUE,TRUE,TRUE,TRUE),
values=c(1,1,1,1,1,1),
labels =c("l1","l2","l3","l4","l5","l6")

),
means
mxPath(

from="one",
to=c("x1","x2","x3","x4","x5","x6","F1"),
arrows=1,
free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE),
values=c(1,1,1,1,1,1,0),
labels =c("meanx1","meanx2","meanx3","meanx4","meanx5","meanx6",NA)

)
) # close model

As with previous examples, this model begins with a name for the model and a type="RAM" argument. The name
for the model may be omitted, or may be specified in any other place in the model using the name argument. Including
type="RAM" allows the mxModel function to interpret the mxPath functions that follow and turn those paths into
an expected covariance matrix and means vector for the ensuing data. The mxData function works just as in previous
examples, and the raw data specification included in the code:

mxData(
observed=oneFactorRaw,
type="raw"

),

can be replaced with a covariance matrix and means, like so:

oneFactorModel<-mxModel("Common Factor Model -- Path Specification",
type="RAM",
mxData(

observed=oneFactorCov,
type="cov",
numObs=500,
means=oneFactorMeans

),

The first departure from our previous examples can be found in the addition of the latentVars argument after the
manifestVars argument. The manifestVars argument includes the six variables in our observed data. The

40 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

latentVars argument provides a name for the latent variable, so that it may be referenced in mxPath functions.

manifestVars=c("x1","x2","x3","x4","x5","x6"),
latentVars="F1",

Our model is defined by four mxPath functions. The first defines the residual variance terms for our six observed
variables. The to argument is not required, as we are specifiying two headed arrows both from and to the same
variables, as specified in the from argument. These six variances are all freely estimated, have starting values of 1,
and are labeled e1 through e6.

residual variances
mxPath(

from=c("x1","x2","x3","x4","x5","x6"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c("e1","e2","e3","e4","e5","e6")

),

We also must specify the variance of our latent variable. This code is identical to our residual variance code above,
with the latent variable "F1" replacing our six manifest variables.

latent variance
mxPath(

from="F1",
arrows=2,
free=TRUE,
values=1,
labels ="varF1"

),

Next come the factor loadings. These are specified as asymmetric paths (regressions) of the manifest variables on the
latent variable "F1". As we have to scale the latent variable, the first factor loading has been given a fixed value of
one by setting the first elements of the free and values arguments to FALSE and 1, respectively. Alternatively, the
latent variable could have been scaled by fixing the factor variance to 1 in the previous mxPath function and freely
estimating all factor loadings. The five factor loadings that are freely estimated are all given starting values of 1 and
labels l2 through l6.

factor loadings
mxPath(

from="F1",
to=c("x1","x2","x3","x4","x5","x6"),
arrows=1,
free=c(FALSE,TRUE,TRUE,TRUE,TRUE,TRUE),
values=c(1,1,1,1,1,1),
labels =c("l1","l2","l3","l4","l5","l6")

),

Lastly, we must specify the mean structure for this model. As there are a total of seven variables in this model (six
manifest and one latent), we have the potential for seven means. However, we must constrain at least one mean to a
constant value, as there is not sufficient information to yield seven mean and intercept estimates from the six observed
means. The six observed variables receive freely estimated intercepts, while the factor mean is fixed to a value of zero
in the code below.

means
mxPath(

2.2. Factor Analysis, Path Specification 41

OpenMx Documentation, Release 0.2.6-1114

from="one",
to=c("x1","x2","x3","x4","x5","x6","F1"),
arrows=1,
free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE),
values=c(1,1,1,1,1,1,0),
labels =c("meanx1","meanx2","meanx3","meanx4","meanx5","meanx6",NA)

),

The model can now be run using the mxRun function, and the output of the model can be accessed from the output
slot of the resulting model. A summary of the output can be reached using summary().

oneFactorFit <- mxRun(oneFactorModel)

oneFactorFit@output
summary(oneFactorFit)

2.2.2 Two Factor Model

The common factor model can be extended to include multiple latent variables. The model for any person and path
diagram of the common factor model for a set of variables x1-x3 and y1-y3 are given below.

xij = µj + λj ∗ η1i + εij

yij = µj + λj ∗ η2i + εij

Our model contains 21 parameters (6 manifest variances, six manifest means, six factor loadings, two factor variances
and one factor covariance), but each factor requires one identification constraint. Like in the common factor model
above, we’ll constrain one factor loading for each factor to a value of one. As such, this model contains 19 parameters.
The means and covariance matrix for six observed variables contain 27 degrees of freedom, and thus our model
contains 8 degrees of freedom.

The data for the two factor model can be found in the myFAData files introduced in the common factor model. For
this model, we’ll select three x variables (x1-x3) and three y variables (y1-y3).

twoFactorRaw <- myFADataRaw[,c("x1","x2","x3","y1","y2","y3")]

twoFactorCov <- myFADataCov[c("x1","x2","x3","y1","y2","y3"),c("x1","x2","x3","y1","y2","y3")]

twoFactorMeans <- myFADataMeans[c(1:3,7:9)]

Specifying the two factor model is virtually identical to the single factor case. The last three variables of our
manifestVars argument have changed from "x4","x5","x6" to “y1”,”y2”,”y3”, which is carried through ref-
erences to the variables in later mxPath functions.

42 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

twofactorModel<-mxModel("Two Factor Model -- Path Specification",
type="RAM",
mxData(

observed=twoFactorRaw,
type="raw"

),
manifestVars=c("x1","x2","x3","y1","y2","y3"),
latentVars=c("F1","F2"),
residual variances
mxPath(

from=c("x1","x2","x3","y1","y2","y3"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c("e1","e2","e3","e4","e5","e6")

),
latent variances and covariance
mxPath(

from=c("F1","F2"),
arrows=2,
all=TRUE,
free=TRUE,
values=c(1, .5,.5, 1),
labels=c("varF1","cov","cov","varF2")

),
factor loadings for x variables
mxPath(

from="F1",
to=c("x1","x2","x3"),
arrows=1,
free=c(FALSE,TRUE,TRUE),
values=c(1,1,1),
labels=c("l1","l2","l3")

),
#factor loadings for y variables
mxPath(

from="F2",
to=c("y1","y2","y3"),
arrows=1,
free=c(FALSE,TRUE,TRUE),
values=c(1,1,1),
labels=c("l4","l5","l6")

),
#means
mxPath(

from="one",
to=c("x1","x2","x3","y1","y2","y3","F1","F2"),
arrows=1,
free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE),
values=c(1,1,1,1,1,1,0,0),
labels=c("meanx1","meanx2","meanx3","meany1","meany2","meany3",NA,NA)

)
)

We’ve covered the type argument, mxData function and manifestVars and latentVars arguments previ-
ously, so now we’ll focus on the changes this model makes to the mxPath functions. The first and last mxPath
functions, which detail residual variances and intercepts, accomodate the changes in manifest and latent variables but

2.2. Factor Analysis, Path Specification 43

OpenMx Documentation, Release 0.2.6-1114

carry out identical functions to the common factor model.

residual variances
mxPath(

from=c("x1","x2","x3","y1","y2","y3"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c("e1","e2","e3","e4","e5","e6")

),
#means
mxPath(

from="one",
to=c("x1","x2","x3","y1","y2","y3","F1","F2"),
arrows=1,
free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE),
values=c(1,1,1,1,1,1,0,0),
labels=c("meanx1", "meanx2", "meanx3", "meany1","meany2","meany3",NA,NA)

),

The second, third and fourth mxPath functions provide some changes to the model. The second mxPath function
specifies the variances and covariance of the two latent variables. Like previous examples, we’ve omitted the to
argument for this set of two-headed paths. Unlike previous examples, we’ve set the all argument to TRUE, which
creates all possible paths between the variables. As omitting the to argument is identical to putting identical variables
in the from and to arguments, we are creating all possible paths from and to our two latent variables. This results in
four paths: from F1 to F1 (the variance of F1), from F1 to F2 (the covariance of the latent variables), from F2 to F1
(again, the covariance), and from F2 to F2 (the variance of F2). As the covariance is both the second and third path on
this list, the second and third elements of both the values argument (.5) and the labels argument ("cov") are the
same.

latent variances and covariance
mxPath(

from=c("F1","F2"),
arrows=2,
all=TRUE,
free=TRUE,
values=c(1, .5,.5, 1),
labels=c("varF1","cov","cov","varF2")

),

The third and fourth mxPath functions define the factor loadings for each of the latent variables. We’ve split these
loadings into two functions, one for each latent variable. The first loading for each latent variable is fixed to a value of
one, just as in the previous example.

factor loadings for x variables
mxPath(

from="F1",
to=c("x1","x2","x3"),
arrows=1,
free=c(FALSE,TRUE,TRUE),
values=c(1,1,1),
labels=c("l1","l2","l3")

),
#factor loadings for y variables
mxPath(

from="F2",
to=c("y1","y2","y3"),

44 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

arrows=1,
free=c(FALSE,TRUE,TRUE),
values=c(1,1,1),
labels=c("l4","l5","l6")

),

The model can now be run using the mxRun function, and the output of the model can be accessed from the @output
slot of the resulting model. A summary of the output can be reached using summary().

oneFactorFit <- mxRun(oneFactorModel)

oneFactorFit@output
summary(oneFactorFit)

These models may also be specified using matrices instead of paths. See Factor Analysis, Matrix Specification for
matrix specification of these models.

2.3 Time Series, Path Specification

This example will demonstrate a growth curve model using path-centric specification. As with previous examples, this
application is split into two files, one each raw and covariance data. These examples can be found in the following
files:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_PathRaw.R

Parallel versions of this example, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_MatrixRaw.R

2.3.1 Latent Growth Curve Model

The latent growth curve model is a variation of the factor model for repeated measurements. For a set of manifest
variables xi1 - xi5 measured at five discrete times for people indexed by the letter i, the growth curve model can be
expressed both algebraically and via a path diagram as shown here:

xij = Intercepti + λj ∗ Slopei + εi

2.3. Time Series, Path Specification 45

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_MatrixRaw.R

OpenMx Documentation, Release 0.2.6-1114

The values and specification of the λ parameters allow for alterations to the growth curve model. This example will
utilize a linear growth curve model, so we will specify λ to increase linearly with time. If the observations occur at
regular intervals in time, then λ can be specified with any values increasing at a constant rate. For this example, we’ll
use [0, 1, 2, 3, 4] so that the intercept represents scores at the first measurement occasion, and the slope represents
the rate of change per measurement occasion. Any linear transformation of these values can be used for linear growth
curve models.

Our model for any number of variables contains 6 free parameters; two factor means, two factor variances, a factor
covariance and a (constant) residual variance for the manifest variables. Our data contains five manifest variables, and
so the covariance matrix and means vector contain 20 degrees of freedom. Thus, the linear growth curve model fit to
these data has 14 degrees of freedom.

Data

The first step to running our model is to import data. The code below is used to import both raw data and a covariance
matrix and means vector, either of which can be used for our growth curve model. This data contains five variables,
which are repeated measurements of the same variable "x". As growth curve models make specific hypotheses about
the variances of the manifest variables, correlation matrices generally aren’t used as data for this model.

myLongitudinalData <- read.table("myLongitudinalData.txt",header=T)

myLongitudinalDataCov<-matrix(
c(6.362, 4.344, 4.915, 5.045, 5.966,

4.344, 7.241, 5.825, 6.181, 7.252,
4.915, 5.825, 9.348, 7.727, 8.968,
5.045, 6.181, 7.727, 10.821, 10.135,
5.966, 7.252, 8.968, 10.135, 14.220),

nrow=5,
dimnames=list(

c("x1","x2","x3","x4","x5"),
c("x1","x2","x3","x4","x5"))

)

myLongitudinalDataMean <- c(9.864, 11.812, 13.612, 15.317, 17.178)

46 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

Model Specification

We’ll create a path-centric factor model with the same functions and arguments used in previous path-centric examples.
This model is a special type of two-factor model, with fixed factor loadings, constant residual variance and manifest
means dependent on latent means.

Before running a model, the OpenMx library must be loaded into R using either the require() or library()
function. This code uses the mxModel function to create an MxModel object, which we’ll then run.

require(OpenMx)

growthCurveModel <- mxModel("Linear Growth Curve Model -- Path Specification",
type="RAM",
mxData(

myLongitudinalData,
type="raw"

),
manifestVars=c("x1","x2","x3","x4","x5"),
latentVars=c("intercept","slope"),
residual variances
mxPath(

from=c("x1","x2","x3","x4","x5"),
arrows=2,
free=TRUE,
values = c(1, 1, 1, 1, 1),
labels=c("residual","residual","residual","residual","residual")

),
latent variances and covariance
mxPath(

from=c("intercept","slope"),
arrows=2,
all=TRUE,
free=TRUE,
values=c(1, 1, 1, 1),
labels=c("vari", "cov", "cov", "vars")

),
intercept loadings
mxPath(

from="intercept",
to=c("x1","x2","x3","x4","x5"),
arrows=1,
free=FALSE,
values=c(1, 1, 1, 1, 1)

),
slope loadings
mxPath(

from="slope",
to=c("x1","x2","x3","x4","x5"),
arrows=1,
free=FALSE,
values=c(0, 1, 2, 3, 4

),
manifest means
mxPath(

from="one",
to=c("x1", "x2", "x3", "x4", "x5"),
arrows=1,
free=FALSE,

2.3. Time Series, Path Specification 47

OpenMx Documentation, Release 0.2.6-1114

values=c(0, 0, 0, 0, 0)
),
latent means
mxPath(

from="one",
to=c("intercept", "slope"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("meani", "means")

)
) # close model

The model begins with a name, in this case “Linear Growth Curve Model – Path Specification”. If the first argument
is an object containing an MxModel object, then the model created by the mxModel function will contain all of the
named entities in the referenced model object. The type="RAM" argument specifies a RAM model, allowing the
mxModel to define an expected covariance matrix from the paths we supply.

Data is supplied with the mxData function. This example uses raw data, but the mxData function in the code above
could be replaced with the function below to include covariance data.

mxData(
myLongitudinalDataCov,
type="cov",
numObs=500,
means=myLongitudinalDataMeans

),

Next, the manifest and latent variables are specified with the manifestVars and latentVars arguments. The
two latent variables in this model are named "Intercept" and "Slope".

There are six mxPath functions in this model. The first two specify the variances of the manifest and latent variables,
respectively. The manifest variables are specified below, which take the form of residual variances. The to argument
is omitted, as it is not required to specify two-headed arrows. The residual variances are freely estimated, but held to
a constant value across the five measurement occasions by giving all five variances the same label, residual.

residual variances
mxPath(

from=c("x1","x2","x3","x4","x5"),
arrows=2,
free=TRUE,
values = c(1, 1, 1, 1, 1),
labels=c("residual","residual","residual","residual","residual")

),

Next are the variances and covariance of the two latent variables. Like the last function, we’ve omitted the to argument
for this set of two-headed paths. However, we’ve set the all argument to TRUE, which creates all possible paths
between the variables. As omitting the to argument is identical to putting identical variables in the from and to
arguments, we are creating all possible paths from and to our two latent variables. This results in four paths: from
intercept to intercept (the variance of the interecpts), from intercept to slope (the covariance of the latent variables),
from slope to intercept (again, the covariance), and from slope to slope (the variance of the slopes). As the covariance
is both the second and third path on this list, the second and third elements of both the values argument (.5) and the
labels argument ("cov") are the same.

latent variances and covariance
mxPath(

from=c("intercept","slope"),

48 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

arrows=2,
all=TRUE,
free=TRUE,
values=c(1, 1, 1, 1),
labels=c("vari", "cov", "cov", "vars")

),

The third and fourth mxPath functions specify the factor loadings. As these are defined to be a constant value of 1
for the intercept factor and the set [0, 1, 2, 3, 4] for the slope factor, these functions have no free parameters.

intercept loadings
mxPath(

from="intercept",
to=c("x1","x2","x3","x4","x5"),
arrows=1,
free=FALSE,
values=c(1, 1, 1, 1, 1)

),
slope loadings
mxPath(

from="slope",
to=c("x1","x2","x3","x4","x5"),
arrows=1,
free=FALSE,
values=c(0, 1, 2, 3, 4)

),

The last two mxPath functions specify the means. The manifest variables are not regressed on the constant, and
thus have intercepts of zero. The observed means are entirely functions of the means of the intercept and slope. To
specify this, the manifest variables are regressed on the constant (denoted "one") with a fixed value of zero, and the
regressions of the latent variables on the constant are estimated as free parameters.

manifest means
mxPath(

from="one",
to=c("x1", "x2", "x3", "x4", "x5"),
arrows=1,
free=FALSE,
values=c(0, 0, 0, 0, 0)

),
latent means
mxPath(

from="one",
to=c("intercept", "slope"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("meani", "means")

),

The model is now ready to run using the mxRun function, and the output of the model can be accessed from the
output slot of the resulting model. A summary of the output can be reached using summary().

growthCurveFit <- mxRun(growthCurveModel)

growthCurveFit@output summary(growthCurveFit)

2.3. Time Series, Path Specification 49

mailto:growthCurveFit@output

OpenMx Documentation, Release 0.2.6-1114

These models may also be specified using matrices instead of paths. See Time Series, Matrix Specification for matrix
specification of these models.

2.4 Multiple Groups, Path Specification

An important aspect of structural equation modeling is the use of multiple groups to compare means and covariances
structures between any two (or more) data groups, for example males and females, different ethnic groups, ages etc.
Other examples include groups which have different expected covariances matrices as a function of parameters in the
model, and need to be evaluated together to estimated together for the parameters to be identified.

The example includes the heterogeneity model as well as its submodel, the homogeneity model, and is available in the
following file:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateHeterogeneity_PathRaw.R

A parallel version of this example, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateHeterogeneity_MatrixRaw.R

2.4.1 Heterogeneity Model

We will start with a basic example here, building on modeling means and variances in a saturated model. Assume we
have two groups and we want to test whether they have the same mean and covariance structure.

The path diagram of the heterogeneity model for a set of variables x and y are given below.

Data

For this example we simulated two datasets (‘xy1’ and ‘xy2’) each with zero means and unit variances, one with a
correlation of .5, and the other with a correlation of .4 with 1000 subjects each. We use the mvrnorm function in
the MASS package, which takes three arguments: Sample Size, Means, Covariance Matrix). We check the
means and covariance matrix in R and provide dimnames for the dataframe. See attached R code for simulation and
data summary.

50 Chapter 2. Examples, Path Specification

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateHeterogeneity_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateHeterogeneity_MatrixRaw.R

OpenMx Documentation, Release 0.2.6-1114

#Simulate Data
require(MASS)
#group 1
set.seed(200)
rs=.5
xy1 <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
set.seed(200)
#group 2
rs=.4
xy2 <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))

#Print Descriptive Statistics
selVars <- c(’X’,’Y’)
summary(xy1)
cov(xy1)
dimnames(xy1) <- list(NULL, selVars)
summary(xy2)
cov(xy2)
dimnames(xy2) <- list(NULL, selVars)

Model Specification

As before, we include the OpenMx package using a require statement. We first fit a heterogeneity model, allowing
differences in both the mean and covariance structure of the two groups. As we are interested whether the two
structures can be equated, we have to specify the models for the two groups, named group1 and group2 within
another model, named bivHet. The structure of the job thus look as follows, with two mxModel commands as
arguments of another mxModel command. mxModel commands are unlimited in the number of arguments.

require(OpenMx)

bivHetModel <- mxModel("bivHet",
mxModel("group1",
....
mxModel("group2",
....
mxAlgebra(group1.objective + group2.objective, name="h12"),
mxAlgebraObjective("h12")

)

For each of the groups, we fit a saturated model, by specifying free parameters for the variances and the covariance
using two-headed arrows to generate the expected covariance matrix. Single-headed arrows from the constant one to
the manifest variables contain the free parameters for the expected means. Note that we have specified different labels
for all the free elements, in the two mxModel statements. For more details, see example 1.

#Fit Heterogeneity Model
bivHetModel <- mxModel("bivHet",

mxModel("group1",
manifestVars= selVars,
variances
mxPath(

from=c("X", "Y"),
arrows=2,
free=T,
values=1,
lbound=.01,

2.4. Multiple Groups, Path Specification 51

OpenMx Documentation, Release 0.2.6-1114

labels=c("vX1","vY1")
),
covariance
mxPath(

from="X",
to="Y",
arrows=2,
free=T,
values=.2,
lbound=.01,
labels="cXY1"

),
means

mxPath(
from="one",
to=c("X", "Y"),
arrows=1,
free=T,
values=0,
labels=c("mX1", "mY1")

),
mxData(

observed=xy1,
type="raw",

),
type="RAM"

),
mxModel("group2",

manifestVars= selVars,
variances
mxPath(

from=c("X", "Y"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels=c("vX2","vY2")

),
covariance
mxPath(

from="X",
to="Y",
arrows=2,
free=T,
values=.2,
lbound=.01,
labels="cXY2"

),
means
mxPath(

from="one",
to=c("X", "Y"),
arrows=1,
free=T,
values=0,
labels=c("mX2", "mY2")

),
mxData(

52 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

observed=xy2,
type="raw",

),
type="RAM"

),

As a result, we estimate five parameters (two means, two variances, one covariance) per group for a
total of 10 free parameters. We cut the Labels matrix: parts from the output generated with
bivHetModel$group1@matrices and bivHetModel$group2@matrices

in group1
$S

X Y
X "vX1" NA
Y "cXY1" "vY1"

$M
X Y

[1,] "mX1" "mY1"

in group2
$S

X Y
X "vX2" NA
Y "cXY2" "vY2"

$M
X Y

[1,] "mX2" "mY2"

To evaluate both models together, we use an mxAlgebra command that adds up the values of the objective functions
of the two groups, and assigns a name. The objective function to be used here is the mxAlgebraObjective which
uses as its argument the sum of the function values of the two groups, referred to by the name of the previously defined
mxAlgebra object h12.

mxAlgebra(
group1.objective + group2.objective,
name="h12"

),
mxAlgebraObjective("h12")

)

Model Fitting

The mxRun command is required to actually evaluate the model. Note that we have adopted the following notation of
the objects. The result of the mxModel command ends in ‘Model’; the result of the mxRun command ends in ‘Fit’.
Of course, these are just suggested naming conventions.

bivHetFit <- mxRun(bivHetModel)

A variety of output can be printed. We chose here to print the expected means and covariance matrices, which the RAM
objective function generates based on the path specification, respectively in the matrices M and S for the two groups.
OpenMx also puts the values for the expected means and covariances in the means and covariance objects. We
also print the likelihood of data given the model. The mxEval command takes any R expression, followed by the

2.4. Multiple Groups, Path Specification 53

OpenMx Documentation, Release 0.2.6-1114

fitted model name. Given that the model bivHetFit included two models (group1 and group2), we need to use the
two level names, i.e. group1.means to refer to the objects in the correct model.

EM1Het <- mxEval(group1.means, bivHetFit)
EM2Het <- mxEval(group2.means, bivHetFit)
EC1Het <- mxEval(group1.covariance, bivHetFit)
EC2Het <- mxEval(group2.covariance, bivHetFit)
LLHet <- mxEval(objective, bivHetFit)

2.4.2 Homogeneity Model: a Submodel

Next, we fit a model in which the mean and covariance structure of the two groups are equated to one another, to test
whether there are significant differences between the groups. As this model is nested within the previous one, the data
are the same.

Model Specification

Rather than having to specify the entire model again, we copy the previous model bivHetModel into a new model
bivHomModel to represent homogeneous structures.

#Fit Homogeneity Model
bivHomModel <- bivHetModel

As the free parameters of the paths are translated into RAM matrices, and matrix elements can be equated by assigning
the same label, we now have to equate the labels of the free parameters in group1 to the labels of the corresponding ele-
ments in group2. This can be done by referring to the relevant matrices using the ModelName[[’MatrixName’]]
syntax, followed by @labels. Note that in the same way, one can refer to other arguments of the objects in the model.
Here we assign the labels from group1 to the labels of group2, separately for the ‘covariance’ matrices (in S) used for
the expected covariance matrices and the ‘means’ matrices (in S) for the expected means vectors.

bivHomModel[[’group2.S’]]@labels <- bivHomModel[[’group1.S’]]@labels
bivHomModel[[’group2.M’]]@labels <- bivHomModel[[’group1.M’]]@labels

The specification for the submodel is reflected in the names of the labels which are now equal for the corresponding
elements of the mean and covariance matrices, as below.

in group1
$S

X Y
X "vX1" NA
Y "cXY1" "vY1"

$M
X Y

[1,] "mX1" "mY1"

in group2
$S

X Y
X "vX1" NA
Y "cXY1" "vY1"

$M

54 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

X Y
[1,] "mX1" "mY1"

Model Fitting

We can produce similar output for the submodel, i.e. expected means and covariances and likelihood, the only differ-
ence in the code being the model name. Note that as a result of equating the labels, the expected means and covariances
of the two groups should be the same, and a total of 5 parameters is estimated.

bivHomFit <- mxRun(bivHomModel)
EM1Hom <- mxEval(group1.means, bivHomFit)
EM2Hom <- mxEval(group2.means, bivHomFit)
EC1Hom <- mxEval(group1.covariance, bivHomFit)
EC2Hom <- mxEval(group2.covariance, bivHomFit)
LLHom <- mxEval(objective, bivHomFit)

Finally, to evaluate which model fits the data best, we generate a likelihood ratio test as the difference between -2 times
the log-likelihood of the homogeneity model and -2 times the log-likelihood of the heterogeneity model. This statistic
is asymptotically distributed as a Chi-square, which can be interpreted with the difference in degrees of freedom of the
two models, in this case 5 df.

Chi= LLHom-LLHet
LRT= rbind(LLHet,LLHom,Chi)
LRT

These models may also be specified using matrices instead of paths. See Multiple Groups, Matrix Specification for
matrix specification of these models.

2.5 Genetic Epidemiology, Path Specification

Mx is probably most popular in the behavior genetics field, as it was conceived with genetic models in mind, which
rely heavily on multiple groups. We introduce here an OpenMx script for the basic genetic model in genetic epi-
demiologic research, the ACE model. This model assumes that the variability in a phenotype, or observed variable,
can be explained by differences in genetic and environmental factors, with A representing additive genetic factors,
C shared/common environmental factors and E unique/specific environmental factors (see Neale & Cardon 1992, for
a detailed treatment). To estimate these three sources of variance, data have to be collected on relatives with differ-
ent levels of genetic and environmental similarity to provide sufficient information to identify the parameters. One
such design is the classical twin study, which compares the similarity of identical (monozygotic, MZ) and fraternal
(dizygotic, DZ) twins to infer the role of A, C and E.

The example starts with the ACE model and includes one submodel, the AE model. It is available in the following file:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis_PathRaw.R

A parallel version of this example, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis_MatrixRaw.R

2.5. Genetic Epidemiology, Path Specification 55

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis_MatrixRaw.R

OpenMx Documentation, Release 0.2.6-1114

2.5.1 ACE Model: a Twin Analysis

A twin analysis is a typical example of multiple groups, in this case MZ twins and DZ twins, with different expectations
for the covariance structure (and possibly means). We illustrate the model here with the corresponding two path
diagrams:

Data

Let us assume you have collected data on a large sample of twin pairs for your phenotype of interest. For illustration
purposes, we use Australian data on body mass index (BMI) which are saved in a text file ‘myTwinData.txt’. We
use R to read the data into a data.frame and to create two subsets of the data for MZ females (mzfData) and DZ
females (dzfData) respectively with the code below. We also define the objects selVars for the variables selected
for analysis, and aceVars for the latent variables to simplify the OpenMx code.

require(OpenMx)

#Prepare Data
twinData <- read.table("myTwinData.txt", header=T, na.strings=".")
twinVars <- c(’fam’,’age’,’zyg’,’part’,’wt1’,’wt2’,’ht1’,’ht2’,’htwt1’,’htwt2’,’bmi1’,’bmi2’)
summary(twinData)
selVars <- c(’bmi1’,’bmi2’)
aceVars <- c("A1","C1","E1","A2","C2","E2")

56 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

mzfData <- as.matrix(subset(twinData, zyg==1, c(bmi1,bmi2)))
dzfData <- as.matrix(subset(twinData, zyg==3, c(bmi1,bmi2)))
colMeans(mzfData,na.rm=TRUE)
colMeans(dzfData,na.rm=TRUE)
cov(mzfData,use="complete")
cov(dzfData,use="complete")

Model Specification

There are different ways to draw a path diagram of the ACE model. The most commonly used approach is with the
three latent variables in circles at the top, separately for twin 1 and twin 2 respectively called A1, C1, E1 and A2, C2,
E2. The latent variables are connected to the observed variables in boxes at the bottom, representing the measures for
twin 1 and twin 2: T1 and T2, by single-headed arrows from the latent to the manifest variables. Path coefficients a, c
and e are estimated but constrained to be the same for twin 1 and twin 2, as well as for MZ and DZ twins. As MZ twins
share all their genotypes, the double-headed path connecting A1 and A2 is fixed to one. DZ twins share on average
half their genes, as a result the corresponding path is fixed to 0.5 in the DZ diagram. As environmental factors that are
shared between twins are assumed to increase similarity between twins to the same extent in MZ and DZ twins (equal
environments assumption), the double-headed path connecting C1 and C2 is fixed to one in both diagrams above. The
unique environmental factors are by definition uncorrelated between twins.

Let’s go through the paths specification step by step. First, we include the require(OpenMx) statement. We include
the full code here. All specification form arguments of the mxModel, specified as follows. Given the diagrams for the
MZ and the DZ group look rather similar, we start by specifying all the common elements which will then be shared
with the two submodels for each of the twin types, defined in separate mxModel commands which are also arguments
of the twinACE model.

#Fit ACE Model with RawData and Path-Style Input
ACEModel <- mxModel("ACE",

type="RAM",
manifestVars=selVars,
latentVars=aceVars,
mxPath(

from=aceVars,
arrows=2,
free=FALSE,
values=1

),
mxPath(

from="one",
to=aceVars,
arrows=1,
free=FALSE,
values=0

),
mxPath(

from="one",
to=selVars,
arrows=1,
free=TRUE,
values=20,
labels="mean",

),
mxPath(

from=c("A1","C1","E1"),
to="bmi1",

2.5. Genetic Epidemiology, Path Specification 57

OpenMx Documentation, Release 0.2.6-1114

arrows=1,
free=TRUE,
values=.6,
label=c("a","c","e")

),
mxPath(

from=c("A2","C2","E2"),
to="bmi2",
arrows=1,
free=TRUE,
values=.6,
label=c("a","c","e")

),
mxPath(

from="C1",
to="C2",
arrows=2,
free=FALSE,
values=1

)
)
mzModel <- mxModel(ACEModel, name="MZ",

mxPath(
from="A1",
to="A2",
arrows=2,
free=FALSE,
values=1

),
mxData(

observed=mzfData,
type="raw"

)
)
dzModel <- mxModel(ACEModel, name="DZ",

mxPath(
from="A1",
to="A2",
arrows=2,
free=FALSE,
values=.5

),
mxData(

observed=dzfData,
type="raw"

)
)
twinACEModel <- mxModel("twinACE", mzModel, dzModel,

mxAlgebra(
expression=MZ.objective + DZ.objective,
name="twin"

),
mxAlgebraObjective("twin")

)

Models specifying paths are translated into ‘RAM’ specifications for optimization, indicated by using the
type="RAM". For further details on RAM, see ref. Note that we left the comma’s at the end of the lines which
are necessary when all the arguments are combined prior to running the model. Each line can be pasted into R, and

58 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

then evaluated together once the whole model is specified. We start the path diagram specification by providing the
names for the manifest variables in manifestVars and the latent variables in latentVars. We use here the
‘selVars’ and ‘aceVars’ objects that we created before when preparing the data.

type="RAM",
manifestVars=selVars,
latentVars=aceVars,

We start by specifying paths for the variances and means of the latent variables. These includes double-headed arrows
from each latent variable back to itself, fixed at one, and single-headed arrows from the triangle (with a fixed value of
one) to each of the latent variables, fixed at zero. Next we specify paths for the means of the observed variables using
single-headed arrows from ‘one’ to each of the manifest variables. These are set to be free and given a start value of
20. As we use the same label (mean) for the two means, they are constrained to be equal. Remember that R ‘recycles’.
The main paths of interest are those from each of the latent variables to the respective observed variable. These are
also estimated (thus all are set free), get a start value of .6 and appropriate labels. As the common environmental
factors are by definition the same for both twins, we fix the correlation between C1 and C2 to one.

variances of latent variables
mxPath(

from=aceVars,
arrows=2,
free=FALSE,
values=1

),
means of latent variables
mxPath(

from="one",
to=aceVars,
arrows=1,
free=FALSE,
values=0

),
means of observed variables
mxPath(

from="one",
to=selVars,
arrows=1, free=TRUE,
values=20,
labels="mean"

),
path coefficients for twin 1
mxPath(

from=c("A1","C1","E1"),
to="bmi1",
arrows=1,
free=TRUE,
values=.6,
label=c("a","c","e")

),
path coefficients for twin 2
mxPath(

from=c("A2","C2","E2"),
to="bmi2",
arrows=1,
free=TRUE,
values=.6,
label=c("a","c","e")

2.5. Genetic Epidemiology, Path Specification 59

OpenMx Documentation, Release 0.2.6-1114

),
covariance between C1 & C2
mxPath(

from="C1",
to="C2",
arrows=2,
free=FALSE,
values=1

)

We add the paths that are specific to the MZ group or the DZ group into the respective models, ‘mzModel’ and ‘dz-
Model’, which are combined in ‘twinACEModel’. So we have two mxModel statements following the ‘ACEModel’
model statement. Each of the two models have access to all the paths already defined given ACEModel is the first
argument of mxModel. In the MZ model we add the path for the correlation between A1 and A2 which is fixed to
one. That concludes the specification of the model for the MZ’s, thus we move to the mxData command that calls up
the data.frame with the MZ raw data, mzfData, with the type specified explicitly. We also gave the model a name,
MZ, to refer back to it later when we need to add the objective functions. The mxModel command for the DZ group
is very similar, except that the the correlation between A1 and A2 is fixed to 0.5 and the DZ data, dzfData are read
in. Note that OpenMx can handle constants in algebra.

mzModel <- mxModel(ACEModel, name="MZ",
covariance between A1 & A2 in MZ’s
mxPath(

from="A1",
to="A2",
arrows=2,
free=FALSE,
values=1

),
mxData(

observed=mzfData,
type="raw"

)
)
dzModel <- mxModel(ACEModel, name="DZ",

covariance between A1 & A2 in DZ’s
mxPath(

from="A1",
to="A2",
arrows=2,
free=FALSE,
values=.5

),
mxData(

observed=dzfData,
type="raw"

)
)

Finally, both models need to be evaluated simultaneously. We specify a new mxModel which has the mzModel and
dzModel as its arguments. We then generate the sum of the objective functions for the two groups, using mxAlgebra,
and use the result (twin) as argument of the mxAlgebraObjective command.

twinACEModel <- mxModel("twinACE", mzModel, dzModel,
mxAlgebra(

expression=MZ.objective + DZ.objective,

60 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

name="twin"
),
mxAlgebraObjective("twin")

)

Model Fitting

We need to invoke the mxRun command to start the model evaluation and optimization. Detailed output will be
available in the resulting object, which can be obtained by a print() statement.

#Run ACE model
twinACEFit <- mxRun(twinACEModel)

Often, however, one is interested in specific parts of the output. In the case of twin modeling, we typically will
inspect the likelihood, the expected covariance matrices and mean vectors, the parameter estimates, and possibly some
derived quantities, such as the standardized variance components, obtained by dividing each of the components by
the total variance. Note in the code below that the mxEval command allows easy extraction of the values in the
various matrices/algebras which form the first argument, with the model name as second argument. Once these values
have been put in new objects, we can use any regular R expression to derive further quantities or organize them in
a convenient format for including in tables. Note that helper functions could easily (and will likely) be written for
standard models to produce ‘standard’ output.

MZc <- mxEval(MZ.covariance, twinACEFit) # expected covariance matrix for MZ’s
DZc <- mxEval(DZ.covariance, twinACEFit) # expected covariance matrix for DZ’s
M <- mxEval(MZ.means, twinACEFit) # expected mean
A <- mxEval(a*a, twinACEFit) # additive genetic variance, a^2
C <- mxEval(c*c, twinACEFit) # shared environmental variance, c^2
E <- mxEval(e*e, twinACEFit) # unique environmental variance, e^2
V <- (A+C+E) # total variance
a2 <- A/V # standardized A
c2 <- C/V # standardized C
e2 <- E/V # standardized E
ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2)) # table of estimates
LL_ACE <- mxEval(objective, twinACEFit) # likelihood of ACE model

2.5.2 Alternative Models: an AE Model

To evaluate the significance of each of the model parameters, nested submodels are fit in which the parameters of
interest are fixed to zero. If the likelihood ratio test between the two models is significant, the parameter that is
dropped from the model significantly contributes to the variance of the phenotype in question. Here we show how
we can fit the AE model as a submodel with a change in two mxPath commands. First, we define a new model
‘AEModel’ with ‘ACEModel’ as its first argument. ACEModel included the common parts of the model, necessary
for both MZ and DZ group. Next we re-specify the path from C1 to bmi1 to be fixed to zero, and do the same for
the path from C2 to bmi2. We need to respecify the mzModel and the dzModel, so that they are now built with the
changed paths from the common AEModel. We can run this model in the same way as before, by combining the
objective functions of the two groups and generate similar summaries of the results.

#Run AE model
AEModel <- mxModel(twinACEModel, #name="twinAE",

mxPath(
from=c("A1","C1","E1"),
to="bmi1",
arrows=1,

2.5. Genetic Epidemiology, Path Specification 61

OpenMx Documentation, Release 0.2.6-1114

free=c(T,F,T),
values=c(.6,0,.6),
label=c("a","c","e")

),
mxPath(

from=c("A2","C2","E2"),
to="bmi2",
arrows=1,
free=c(T,F,T),
values=c(.6,0,.6),
label=c("a","c","e")

)
)
mzModel <- mxModel(AEModel, name="MZ",

mxPath(
from="A1",
to="A2",
arrows=2,
free=FALSE,
values=1

),
mxData(

observed=mzfData,
type="raw"

)
)
dzModel <- mxModel(AEModel, name="DZ",

mxPath(
from="A1",
to="A2",
arrows=2,
free=FALSE,
values=.5

),
mxData(

observed=dzfData,
type="raw"

)
)
twinAEModel <- mxModel("twinAE", mzModel, dzModel,

mxAlgebra(
expression=MZ.objective + DZ.objective,
name="twin"

),
mxAlgebraObjective("twin")

)

twinAEFit <- mxRun(twinAEModel)

MZc <- mxEval(MZ.covariance, twinAEFit)
DZc <- mxEval(DZ.covariance, twinAEFit)
M <- mxEval(MZ.means, twinAEFit)
A <- mxEval(a*a, twinAEFit)
C <- mxEval(c*c, twinAEFit)
E <- mxEval(e*e, twinAEFit)
V <- (A+C+E)
a2 <- A/V

62 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

c2 <- C/V
e2 <- E/V
AEest <- rbind(cbind(A, C, E),cbind(a2, c2, e2))
LL_AE <- mxEval(objective, twinAEFit)

We use a likelihood ratio test (or take the difference between -2 times the log-likelihoods of the two models, for the
difference in degrees of freedom) to determine the best fitting model, and print relevant output.

LRT_ACE_AE <- LL_AE - LL_ACE

#Print relevant output
ACEest
AEest
LRT_ACE_AE

Note that the way to specify submodels using path specification is not straightforward and requires repeating code.
The OpenMx team is currently working on better alternatives. These models may also be specified using matrices
instead of paths, which allow for easier submodel specification. See Genetic Epidemiology, Matrix Specification for
matrix specification of these models.

2.6 Definition Variables, Path Specification

This example will demonstrate the use of OpenMx definition variables with the analysis of a simple two group dataset.
What are definition variables? Essentially, definition variables can be thought of as observed variables that are used to
change the statistical model on an individual case basis. In essence, it is as though one or more variables in the raw data
vectors are used to specify the statistical model for that individual. Many different types of statistical model can be
specified in this fashion; some are readily specified in standard fashion, and some cannot. To illustrate, we implement
a two-group model. The groups differ in their means but not in their variances and covariances. This situation could
easily be modeled in a regular multiple group fashion - it is only implemented using definition variables to illustrate
their use. The results are verified using summary statistics and an Mx 1.0 script for comparison is also available.

2.6.1 Mean Differences

The example shows the use of definition variables to test for mean differences. It is available in the following file:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/DefinitionMeans_PathRaw.R

A parallel version of this example, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/DefinitionMeans_MatrixRaw.R

Statistical Model

Algebraically, we are going to fit the following model to the observed x and y variables:

xi = µx + βx ∗ def + εxi

yi = µy + βy ∗ def + εyi

where def is the definition variable and the residual sources of variance, εxi and εyi covary to the extent ρ. So, the task
is to estimate: the two means µx and µy; the deviations from these means due to belonging to the group identified by
having def set to 1 (as opposed to zero), βx and βy; and the parameters of the variance covariance matrix: cov(εx, εy).

2.6. Definition Variables, Path Specification 63

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/DefinitionMeans_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/DefinitionMeans_MatrixRaw.R

OpenMx Documentation, Release 0.2.6-1114

Our task is to implement the model shown in the figure below:

Data Simulation

Our first step to running this model is to simulate the data to be analyzed. Each individual is measured on two observed
variables, x and y, and a third variable def which denotes their group membership with a 1 or a 0. These values for
group membership are not accidental, and must be adhered to in order to obtain readily interpretable results. Other
values such as 1 and 2 would yield the same model fit, but would make the interpretation more difficult.

library(MASS) # to get hold of mvrnorm function

set.seed(200) # to make the simulation repeatable
N=500 # sample size, per group

Sigma <- matrix(c(1,.5,.5,1),2,2)
group1<-mvrnorm(N, c(1,2), Sigma)
group2<-mvrnorm(N, c(0,0), Sigma)

We make use of the superb R function mvrnorm in order to simulate N=500 records of data for each group. These
observations correlate .5 and have a variance of 1, per the matrix Sigma. The means of x and y in group 1 are 1.0 and
2.0, respectively; those in group 2 are both zero. The output of the mvrnorm function calls are matrices with 500
rows and 2 columns, which are stored in group 1 and group 2. Now we create the definition variable

Put the two groups together, create a definition variable,
and make a list of which variables are to be analyzed (selVars)
xy<-rbind(group1,group2)
dimnames(xy)[2]<-list(c("x","y"))
def<-rep(c(1,0),each=N)
selVars<-c("x","y")

The objects xy and def might be combined in a data frame. However, in this case we won’t bother to do it externally,
and simply paste them together in the mxData function call.

Model Specification

The following code contains all of the components of our model. Before specifying a model, the OpenMx library must
be loaded into R using either the require() or library() function. This code uses the mxModel function to
create an mxModel object, which we’ll then run. Note that all the objects required for estimation (data, matrices, and
an objective function) are declared within the mxModel function. This type of code structure is recommended for
OpenMx scripts generally.

64 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

require(OpenMx)
defmeansmodel<-mxModel("Definition Means -- Path Specification",

type="RAM",

The first argument in an mxModel function has a special function. If an object or variable containing an MxModel
object is placed here, then mxModel adds to or removes pieces from that model. If a character string (as indicated by
double quotes) is placed first, then that becomes the name of the model. Models may also be named by including a
name argument. This model is named "Definition Means -- Path Specification".

The second line of the mxModel function call declares that we are going to be using RAM specification of the model,
using directional and bidirectional path coefficients between the variables.

manifestVars=c("x","y"),
latentVars="DefDummy",

Model specification is carried out using two lists of variables, manifestVars and latentVars. Then mxPath
functions are used to specify paths between them. In the present case, we need four mxPath commands to specify
the model. The first is for the variances of the x and y variables, and the second specifies their covariance. The third
specifies a path from the mean vector, always known by the special keyword “one”, to each of the observed variables,
and to the single latent variable DefDummy. This last path is specified to contain the definition variable, by virtue of
the data.def label. Finally, two paths are specified from the DefDummy latent variable to the observed variables.
These parameters estimate the deviation of the mean of those with a data.def value of 1 from that of those with
data.def values of zero.

variances
mxPath(

from=c("x","y"),
arrows=2,
free= TRUE,
values=1,
labels=c("Varx","Vary")

),
covariances
mxPath(

from="x",
to="y",
arrows=2,
free= TRUE,
values=.1,
labels=c("Covxy")

),
means
mxPath(

from="one",
to=c("x","y"),
arrows=1,
free=TRUE,
values=1,
labels=c("meanx","meany")

),
definition value
mxPath(

from="one",
to="DefDummy",
arrows=1,
free= FALSE,

2.6. Definition Variables, Path Specification 65

OpenMx Documentation, Release 0.2.6-1114

values=1,
labels="data.def"

),
beta weights
mxPath(

from="DefDummy",
to=c("x","y"),
arrows=1,
free= TRUE,
values=1,
labels=c("beta_1","beta_2")

),

Next, we declare where the data are, and their type, by creating an MxData object with the mxData function. This
code first references the object where our data are, then uses the type argument to specify that this is raw data.
Analyses using definition variables have to use raw data, so that the model can be specified on an individual data
vector level.

mxData(
observed=data.frame(xy,def),
type="raw"

),

We can then run the model and examine the output with a few simple commands.

Model Fitting

Run the model
defMeansFit<-mxRun(defMeansModel)

defMeansFit@matrices

The R object defmeansFit contains matrices and algebras; here we are interested in the matrices, which can be
seen with the defmeansFi@matrices entry. In path notation, the unidirectional, one-headed arrows appear in the
matrix A, the two-headed arrows in S, and the mean vector single headed arrows in M.

Compare OpenMx estimates to summary statistics from raw data,
remembering to knock off 1 and 2 from group 1’s data
so as to estimate variance of combined sample without
the mean difference contributing to the variance estimate.

First we compute some summary statistics from the data
ObsCovs <- cov(rbind(group1 - rep(c(1,2), each=n), group2))
ObsMeansGroup1 <- c(mean(group1[,1]), mean(group1[,2]))
ObsMeansGroup2 <- c(mean(group2[,1]), mean(group2[,2]))

Second we extract the parameter estimates and matrix algebra results from the model
Sigma<-defmeansresult@matrices$S@values[1:2,1:2]
Mu<-defmeansresult@matrices$M@values[1:2]
beta<-defmeansresult@matrices$A@values[1:2,3]

Third, we check to see if things are more or less equal
omxCheckCloseEnough(ObsCovs,Sigma,.01)
omxCheckCloseEnough(ObsMeansGroup1,as.vector(Mu+beta),.001)
omxCheckCloseEnough(ObsMeansGroup2,as.vector(Mu),.001)

66 Chapter 2. Examples, Path Specification

OpenMx Documentation, Release 0.2.6-1114

These models may also be specified using matrices instead of paths. See Definition Variables, Matrix Specification for
matrix specification of these models.

2.6. Definition Variables, Path Specification 67

OpenMx Documentation, Release 0.2.6-1114

68 Chapter 2. Examples, Path Specification

CHAPTER

THREE

EXAMPLES, MATRIX SPECIFICATION

3.1 Regression, Matrix Specification

Our next example will show how regression can be carried out from structural modeling perspective. This example
is in three parts; a simple regression, a multiple regression, and multivariate regression. There are two versions of
each example are available; one with raw data, and one where the data is supplied as a covariance matrix and vector of
means. These examples are available in the following files: Parallel versions of this example, using matrix specification
of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_MatrixRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_MatrixRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_MatrixRaw.R

This example will focus on the RAM approach to building structural models. A parallel version of this example, using
path-centric rather than matrix specification, is available here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_PathRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_PathRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_PathRaw.R

3.1.1 Simple Regression

We begin with a single dependent variable (y) and a single independent variable (x). The relationship between these
variables takes the following form:

y = β0 + β1 ∗ x+ ε

69

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/SimpleRegression_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultipleRegression_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MultivariateRegression_PathRaw.R

OpenMx Documentation, Release 0.2.6-1114

In this model, the mean of y is dependent on both regression coefficients (and by extension, the mean of x). The
variance of y depends on both the residual variance and the product of the regression slope and the variance of x. This
model contains five parameters from a structural modeling perspective β0, β1, σ2

ε , and the mean and variance of x).
We are modeling a covariance matrix with three degrees of freedom (two variances and one covariance) and a means
vector with two degrees of freedom (two means). Because the model has as many parameters (5) as the data have
degrees of freedom, this model is fully saturated.

Data

Our first step to running this model is to put include the data to be analyzed. The data must first be placed in a variable
or object. For raw data, this can be done with the read.table function. The data provided has a header row, indicating
the names of the variables.

myRegDataRaw <- read.table("myRegData.txt",header=TRUE)

The names of the variables provided by the header row can be displayed with the names() function.

> names(myRegDataRaw)
[1] "w" "x" "y" "z"

As you can see, our data has four variables in it. However, our model only contains two variables, x and y. To use only
them, we’ll select only the variables we want and place them back into our data object. That can be done with the R
code below.

SimpleDataRaw <- myRegDataRaw[,c("x","y")]

For covariance data, we do something very similar. We create an object to house our data. Instead of reading in raw
data from an external file, we can include a covariance matrix. This requires the matrix() function, which needs to
know what values are in the covariance matrix, how big it is, and what the row and column names are. As our model
also references means, we’ll include a vector of means in a separate object. Data is selected in the same way as before.

myRegDataCov <- matrix(
c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),

nrow=4,
dimnames=list(

70 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

c("w","x","y","z"),
c("w","x","y","z"))

)

SimpleDataCov <- myRegDataCov[c("x","y"),c("x","y")]

myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)

SimpleDataMeans <- myRegDataMeans[c(2,3)]

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require() or library() function. All objects required for estimation (data,
paths, and a model type) are included in their own arguments or functions. This code uses the mxModel function to
create an MxModel object, which we’ll then run.

require(OpenMx)

uniRegModel <- mxModel("Simple Regression -- Matrix Specification",
mxData(

observed=SimpleRegRaw,
type="raw"

),
asymmetric paths
mxMatrix(

type="Full",
nrow=2,
ncol=2,
free=c(F, F,

F, F),
values=c(0, 0,

1, 0),
labels=c(NA, NA,

"beta1", NA),
byrow=TRUE,
name="A"

),
symmetric paths
mxMatrix(

type="Symm",
nrow=2,
ncol=2,
values=c(1, 0,

0, 1),
free=c(T, F,

F, T),
labels=c("varx", NA,

NA, "residual"),
byrow=TRUE,
name="S"

),
filter matrix
mxMatrix(

type="Iden",
nrow=2,

3.1. Regression, Matrix Specification 71

OpenMx Documentation, Release 0.2.6-1114

ncol=2,
name="F",
dimnames=list(c("x","y"),c("x","y"))

),
means
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=c(T, T),
values=c(0, 0),
labels=c("meanx", "beta0"),
name="M"),

mxRAMObjective("A", "S", "F", "M")
)

This mxModel function can be split into several parts. First, we give the model a title. The first argument in an
mxModel function has a special function. If an object or variable containing an MxModel object is placed here, then
mxModel adds to or removes pieces from that model. If a character string (as indicated by double quotes) is placed
first, then that becomes the name of the model. Models may also be named by including a name argument. This
model is named Simple Regression -- Matrix Specification.

The second component of our code creates an MxData object. The example above, reproduced here, first references
the object where our data is, then uses the type argument to specify that this is raw data.

mxData(
observed=SimpleDataRaw,
type="raw"

)

If we were to use a covariance matrix and vector of means as data, we would replace the existing mxData function
with this one:

mxData(
observed=SimpleDataCov,
type="cov",
numObs=100,
means=SimpleRegMeans

)

The next four functions specify the four matricies that make up the RAM specified model. Each of these matrices
defines part of the relationship between the observed variables. These matrices are then combined by the objective
function, which follows the four mxMatrix functions, to define the expected covariances and means for the supplied
data. In all of the included matrices, the order of variables matches those in the data. Therefore, the first row and
column of all matrices corresponds to the x variable, while the second row and column of all matrices corresponds to
the y variable.

The A matrix is created first. This matrix specifies all of the assymetric paths or regressions among the variables. A
free parameter in the A matrix defines a regression of the variable represented by that row on the variable represented
by that column. For clarity, all matrices are specified with the byrow argument set to TRUE, which allows better
correspondence between the matrices as displayed below and their position in mxMatrix objects. In the section of
code below, a free parameter is specified as the regression of y on x, with a starting value of 1, and a label of "beta1".
This matrix is named "A".

asymmetric paths
mxMatrix(

72 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

type="Full",
nrow=2,
ncol=2,
free=c(F, F,

F, F),
values=c(0, 0,

1, 0),
labels=c(NA, NA,

"beta1", NA),
byrow=TRUE,
name="A"

)

The second mxMatrix function specifies the S matrix. This matrix specifies all of the symmetric paths or covariances
among the variables. By definition, this matrix is symmetric. A free parameter in the S matrix represents a variance or
covariance between the variables represented by the row and column that parameter is in. In the code below, two free
parameters are specified. The free parameter in the first row and column of the S matrix is the variance of x (labeled
"varx"), while the free parameter in the second row and column is the residual variance of y (labeled "residual").
This matrix is named "S".

symmetric paths
mxMatrix(

type="Symm",
nrow=2,
ncol=2,
values=c(1, 0,

0, 1),
free=c(T, F,

F, T),
labels=c("varx", NA,

NA, "residual"),
byrow=TRUE,
name="S"

)

The third mxMatrix function specifies the F matrix. This matrix is used to filter latent variables out of the expected
covariance of the manifest variables, or to reorder the manifest variables. When there are no latent variables in a model
and the order of manifest variables is the same in the model as in the data, then this filter matrix is simply an identity
matrix.

There are no free parameters in any F matrix.

filter matrix
mxMatrix(

type="Iden",
nrow=2,
ncol=2,
name="F",
dimnames=list(c("x","y"),c("x","y"))

)

The fourth and final mxMatrix function specifies the M matrix. This matrix is used to specify the means and
intercepts of our model. Exogenous or independent variables receive means, while endogenous or dependent variables
get intercepts, or means conditional on regression on other variables. This matrix contains only one row. This matrix
consists of two free parameters; the mean of x (labeled "meanx") and the intercept of y (labeled "beta0"). This
matrix gives starting values of 1 for both parameters, and is named "M".

3.1. Regression, Matrix Specification 73

OpenMx Documentation, Release 0.2.6-1114

means
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=c(T, T),
values=c(0, 0),
labels=c("meanx", "beta0"),
name="M"

)

The final part of this model is the objective function. This defines both how the specified matrices combine to create
the expected covariance matrix of the data, as well as the fit function to be minimized. In a RAM specified model, the
expected covariance matrix is defined as:

ExpCovariance = F ∗ (I −A)−1 ∗ S ∗ ((I −A)−1)′ ∗ F ′

The expected means are defined as:

ExpMean = F ∗ (I −A)−1 ∗M

The free parameters in the model can then be estimated using maximum likelihood for covariance and means data, and
full information maximum likelihood for raw data. While users may define their own expected covariance matrices
using other objective functions in OpenMx, the mxRAMObjective function yields maximum likelihood estimates
of structural equation models when the A, S, F and M matrices are specified. The M matrix is required both for raw
data and for covariance or correlation data that includes a means vector. The mxRAMObjective function takes four
arguments, which are the names of the A, S, F and M matrices in your model.

mxRAMObjective("A", "S", "F", "M")

The model now includes an observed covariance matrix (i.e., data) and the matrices and objective function required to
define the expected covariance matrix and estimate parameters.

Model Fitting

We’ve created an MxModel object, and placed it into an object or variable named uniRegModel. We can run this
model by using the mxRun function, which is placed in the object uniRegFit in the code below. We then view the
output by referencing the output slot, as shown here.

uniRegFit <- mxRun(uniRegModel)

The @output slot contains a great deal of information, including parameter estimates and information about the
matrix operations underlying our model. A more parsimonious report on the results of our model can be viewed using
the summary() function, as shown here.

uniRegFit@output
summary(uniRegFit)

3.1.2 Multiple Regression

In the next part of this demonstration, we move to multiple regression. The regression equation for our model looks
like this:

y = β0 + βx ∗ x+ βz ∗ z + ε

74 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

Our dependent variable y is now predicted from two independent variables, x and z. Our model includes 3 regression
parameters (β0, βx, βz), a residual variance (σ2

ε) and the observed means, variances and covariance of x and z, for a
total of 9 parameters. Just as with our simple regression, this model is fully saturated.

We prepare our data the same way as before, selecting three variables instead of two.

MultipleDataRaw <- myRegDataRaw[,c("x","y","z")]

MultipleDataCov <- myRegDataCov[c("x","y","z"),c("x","y","z")]

MultipleDataMeans <- myRegDataMeans[c(2,3,4)]

Now, we can move on to our code. It is identical in structure to our simple regression code, containing the same A,
S, F and M matrices. With the addition of a third variables, the A, S and F matrices become 3x3, while the M matrix
becomes a 1x3 matrix.

multiRegModel<-mxModel("Multiple Regression - Matrix Specification",
mxData(

MultipleDataRaw,
type="raw"

),
asymmetric paths
mxMatrix(

type="Full",
nrow=3,
ncol=3,
values=c(0,0,0,

1,0,1,
0,0,0),

free=c(F, F, F,
T, F, T,
F, F, F),

labels=c(NA, NA, NA,
"betax", NA,"betaz",
NA, NA, NA),

byrow=TRUE,
name = "A"

),
symmetric paths
mxMatrix(

type="Symm",

3.1. Regression, Matrix Specification 75

OpenMx Documentation, Release 0.2.6-1114

nrow=3,
ncol=3,
values=c(1, 0, .5,

0, 1, 0,
.5, 0, 1),

free=c(T, F, T,
F, T, F,
T, F, T),

labels=c("varx", NA, "covxz",
NA, "residual", NA,

"covxz", NA, "varz"),
byrow=TRUE,
name="S"

),
filter matrix
mxMatrix(

type="Iden",
nrow=3,
ncol=3,
name="F",
dimnames=list(c("x","y","z"),c("x","y","z"))

),
means
mxMatrix(

type="Full",
nrow=1,
ncol=3,
values=c(0,0,0),
free=c(T,T,T),
labels=c("meanx","beta0","meanz"),
name="M"

),
mxRAMObjective("A","S","F","M")

)

The mxData function now takes a different data object (MultipleDataRaw replaces SingleDataRaw, adding
an additional variable), but is otherwise unchanged. The mxRAMObjective does not change. The only differences
between this model and the simple regression script can be found in the A, S, F and M matrices, which have expanded
to accommodate a second independent variable.

The A matrix now contains two free parameters, representing the regressions of the dependent variable y on both x
and z. As regressions appear on the row of the dependent variable and the column of the independent variable, these
two parameters are both on the second (y) row of the A matrix.

asymmetric paths
mxMatrix(

type="Full",
nrow=3,
ncol=3,
values=c(0,0,0,

1,0,1,
0,0,0),

free=c(F, F, F,
T, F, T,
F, F, F),

labels=c(NA, NA, NA,
"betax", NA,"betaz",
NA, NA, NA),

76 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

byrow=TRUE,
name = "A"

)

We’ve made a similar changes in the other matrices. The S matrix includes not only a variance term for the z variable,
but also a covariance between the two independent variables. The F matrix still does not contain free parameters, but
has expanded in size. The M matrix includes an additional free parameter for the mean of z.

The model is run and output is viewed just as before, using the mxRun function, @output and the summary()
function to run, view and summarize the completed model.

3.1.3 Multivariate Regression

The structural modeling approach allows for the inclusion of not only multiple independent variables (i.e., multiple
regression), but multiple dependent variables as well (i.e., multivariate regression). Versions of multivariate regression
are sometimes fit under the heading of path analysis. This model will extend the simple and multiple regression
frameworks we’ve discussed above, adding a second dependent variable w.

y = βy + βyx ∗ x+ βyz ∗ z + εy

w = βw + βwx ∗ x+ βwz ∗ z + εw

We now have twice as many regression parameters, a second residual variance, and the same means, variances and
covariances of our independent variables. As with all of our other examples, this is a fully saturated model.

Data import for this analysis will actually be slightly simpler than before. The data we imported for the previous
examples contains only the four variables we need for this model. We can use myRegDataRaw, myRegDataCov,
and myRegDataMeans in our models.

myRegDataRaw<-read.table("myRegData.txt",header=TRUE)

myRegDataCov <- matrix(
c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),

nrow=4,
dimnames=list(

c("w","x","y","z"),
c("w","x","y","z"))

3.1. Regression, Matrix Specification 77

OpenMx Documentation, Release 0.2.6-1114

)

myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)

Our code should look very similar to our previous two models. The mxData function will reference the data ref-
erenced above, while the mxRAMObjective again refers to the A, S, F and M matrices. Just as with the multiple
regression example, the A, S and F expand to order 4x4, and the M matrix now contains one row and four columns.

multivariateRegModel<-mxModel("Multiple Regression -- Matrix Specification",
mxData(

myRegDataRaw,
type="raw"

),
asymmetric paths
mxMatrix(

type="Full",
nrow=4,
ncol=4,
values=c(0,1,0,1,

0,0,0,0,
0,1,0,1,
0,0,0,0),

free=c(F, T, F, T,
F, F, F, F,
F, T, F, T,
F, F, F, F),

labels=c(NA, "betawx", NA, "betawz",
NA, NA, NA, NA,
NA, "betayx", NA, "betayz",
NA, NA, NA, NA),

byrow=TRUE,
name="A"

),
symmetric paths
mxMatrix(

type="Symm",
nrow=4,
ncol=4,
values=c(1, 0, 0, 0,

0, 1, 0, .5,
0, 0, 1, 0,
0, .5, 0, 1),

free=c(T, F, F, F,
F, T, F, T,
F, F, T, T,
F, T, F, T),

labels=c("residualw", NA, NA, NA,
NA, "varx", NA, "covxz",
NA, NA, "residualy", NA,
NA, "covxz", NA, "varz"),

byrow=TRUE,
name="S"

),
filter matrix
mxMatrix(

type="Iden",
nrow=4,

78 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

ncol=4,
name="F",
dimnames=list(c("w", "x", "y", "z"),c("w", "x", "y", "z"))

),
means
mxMatrix(

type="Full",
nrow=1,
ncol=4,
values=c(0,0,0,0),
free=c(T,T,T,T),
labels=c("betaw","meanx","betay","meanz"),
name="M"

),
mxRAMObjective("A","S","F","M")

)

The only additional components to our mxMatrix functions are the inclusion of the w variable, which becomes the
first row and column of all matrices. The model is run and output is viewed just as before, using the mxRun function,
@output and the summary() function to run, view and summarize the completed model.

These models may also be specified using paths instead of matrices. See Regression, Path Specification for path
specification of these models.

3.2 Factor Analysis, Matrix Specification

This example will demonstrate latent variable modeling via the common factor model using RAM matrices for model
specification. We’ll walk through two applications of this approach: one with a single latent variable, and one with
two latent variables. As with previous examples, these two applications are split into four files, with each application
represented separately with raw and covariance data. These examples can be found in the following files:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_MatrixRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_MatrixRaw.R

Parallel versions of this example, using path-centric specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_PathRaw.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_PathRaws.R

3.2.1 Common Factor Model

The common factor model is a method for modeling the relationships between observed variables believed to measure
or indicate the same latent variable. While there are a number of exploratory approaches to extracting latent factor(s),
this example uses structural modeling to fit confirmatory factor models. The model for any person and path diagram
of the common factor model for a set of variables x1 - x6 are given below.

xij = µj + λj ∗ ηi + εij

3.2. Factor Analysis, Matrix Specification 79

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneFactorModel_PathRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoFactorModel_PathRaws.R

OpenMx Documentation, Release 0.2.6-1114

While 19 parameters are displayed in the equation and path diagram above (6 manifest variances, six manifest means,
six factor loadings and one factor variance), we must constrain either the factor variance or one factor loading to a
constant to identify the model and scale the latent variable. As such, this model contains 18 parameters. Unlike the
manifest variable examples we’ve run up until now, this model is not fully saturated. The means and covariance matrix
for six observed variables contain 27 degrees of freedom, and thus our model contains 9 degrees of freedom.

Data

Our first step to running this model is to put include the data to be analyzed. The data for this example contain nine
variables. We’ll select the six we want for this model using the selection operators used in previous examples. Both
raw and covariance data are included below, but only one is required for any model.

> names(myFADataRaw)
[1] "x1" "x2" "x3" "x4" "x5" "x6" "y1" "y2" "y3"

oneFactorRaw <- myFADataRaw[,c("x1", "x2", "x3", "x4", "x5", "x6")]

myFADataCov <- matrix(
c(0.997, 0.642, 0.611, 0.672, 0.637, 0.677, 0.342, 0.299, 0.337,

0.642, 1.025, 0.608, 0.668, 0.643, 0.676, 0.273, 0.282, 0.287,
0.611, 0.608, 0.984, 0.633, 0.657, 0.626, 0.286, 0.287, 0.264,
0.672, 0.668, 0.633, 1.003, 0.676, 0.665, 0.330, 0.290, 0.274,
0.637, 0.643, 0.657, 0.676, 1.028, 0.654, 0.328, 0.317, 0.331,
0.677, 0.676, 0.626, 0.665, 0.654, 1.020, 0.323, 0.341, 0.349,
0.342, 0.273, 0.286, 0.330, 0.328, 0.323, 0.993, 0.472, 0.467,
0.299, 0.282, 0.287, 0.290, 0.317, 0.341, 0.472, 0.978, 0.507,
0.337, 0.287, 0.264, 0.274, 0.331, 0.349, 0.467, 0.507, 1.059),

nrow=9,
dimnames=list(

c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3"),
c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3")),

)

oneFactorCov <- myFADataCov[c("x1","x2","x3","x4","x5","x6"),c("x1","x2","x3","x4","x5","x6")]

myFADataMeans <- c(2.988, 3.011, 2.986, 3.053, 3.016, 3.010, 2.955, 2.956, 2.967)

oneFactorMeans <- myFADataMeans[1:6]

80 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require() or library() function. All objects required for estimation (data,
matrices, and an objective function) are included in their functions. This code uses the mxModel function to create
an MxModel object, which we’ll then run.

oneFactorModel <- mxModel("Common Factor Model -- Matrix Specification",
mxData(

myFADataRaw,
type="raw"

),
asymmetric paths
mxMatrix(

type="Full",
nrow=7,
ncol=7,
values=c(0,0,0,0,0,0,1,

0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,0),

free=c(F, F, F, F, F, F, F,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, F),

labels=c(NA,NA,NA,NA,NA,NA,"l1",
NA,NA,NA,NA,NA,NA,"l2",
NA,NA,NA,NA,NA,NA,"l3",
NA,NA,NA,NA,NA,NA,"l4",
NA,NA,NA,NA,NA,NA,"l5",
NA,NA,NA,NA,NA,NA,"l6",
NA,NA,NA,NA,NA,NA,NA),

byrow=TRUE,
name="A"

),
symmetric paths
mxMatrix(

type="Symm",
nrow=7,
ncol=7,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,0,0,0,1),

free=c(T, F, F, F, F, F, F,
F, T, F, F, F, F, F,
F, F, T, F, F, F, F,
F, F, F, T, F, F, F,
F, F, F, F, T, F, F,

3.2. Factor Analysis, Matrix Specification 81

OpenMx Documentation, Release 0.2.6-1114

F, F, F, F, F, T, F,
F, F, F, F, F, F, T),

labels=c("e1", NA, NA, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA,
NA, NA, NA, "e4", NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA,
NA, NA, NA, NA, NA, "e6", NA,
NA, NA, NA, NA, NA, NA, "varF1"),

byrow=TRUE,
name="S"

),
filter matrix
mxMatrix(

type="Full",
nrow=6,
ncol=7,
free=FALSE,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0),

byrow=TRUE,
name="F"

),
means
mxMatrix(

type="Full",
nrow=1,
ncol=7,
values=c(1,1,1,1,1,1,0),
free=c(T,T,T,T,T,T,F),
labels=c("meanx1","meanx2","meanx3",

"meanx4","meanx5","meanx6",
NA),

name="M"
),
mxRAMObjective("A","S","F","M")

)

This mxModel function can be split into several parts. First, we give the model a name. The first argument in an
mxModel function has a special function. If an object or variable containing an MxModel object is placed here, then
mxModel adds to or removes pieces from that model. If a character string (as indicated by double quotes) is placed
first, then that becomes the name of the model. Models may also be named by including a name argument. This
model is named "Common Factor Model -- Matrix Specification".

The second component of our code creates an MxData object. The example above, reproduced here, first references
the object where our data is, then uses the type argument to specify that this is raw data.

mxData(
observed=oneFactorRaw,
type="raw"

)

If we were to use a covariance matrix and vector of means as data, we would replace the existing mxData function
with this one:

82 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

mxData(
observed=oneFactorCov,
type="cov",
numObs=500,
means=oneFactorMeans

)

Model specification is carried out using mxMatrix functions to create matrices for a RAM specified model. The A
matrix specifies all of the assymetric paths or regressions in our model. In the common factor model, these parameters
are the factor loadings. This matrix is square, and contains as many rows and columns as variables in the model
(manifest and latent, typically in that order). Regressions are specified in the A matrix by placing a free parameter in
the row of the dependent variable and the column of independent variable.

The common factor model requires that one parameter (typically either a factor loading or factor variance) be con-
strained to a constant value. In our model, we’ll constrain the first factor loading to a value of 1, and let all other
loadings be freely estimated. All factor loadings have a starting value of one and labels of "l1" - "l6".

asymmetric paths
mxMatrix(

type="Full",
nrow=7,
ncol=7,
values=c(0,0,0,0,0,0,1,

0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,0),

free=c(F, F, F, F, F, F, F,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, F),

labels=c(NA,NA,NA,NA,NA,NA,"l1",
NA,NA,NA,NA,NA,NA,"l2",
NA,NA,NA,NA,NA,NA,"l3",
NA,NA,NA,NA,NA,NA,"l4",
NA,NA,NA,NA,NA,NA,"l5",
NA,NA,NA,NA,NA,NA,"l6",
NA,NA,NA,NA,NA,NA,NA),

byrow=TRUE,
name="A"

)

The second matrix in a RAM model is the S matrix, which specifies the symmetric or covariance paths in our model.
This matrix is symmetric and square, and contains as many rows and columns as variables in the model (manifest
and latent, typically in that order). The symmetric paths in our model consist of six residual variances and one factor
variance. All of these variances are given starting values of one and labels "e1" - "e6" and "varF1".

symmetric paths
mxMatrix(

type="Symm",
nrow=7,

3.2. Factor Analysis, Matrix Specification 83

OpenMx Documentation, Release 0.2.6-1114

ncol=7,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,0,0,0,1),

free=c(T, F, F, F, F, F, F,
F, T, F, F, F, F, F,
F, F, T, F, F, F, F,
F, F, F, T, F, F, F,
F, F, F, F, T, F, F,
F, F, F, F, F, T, F,
F, F, F, F, F, F, T),

labels=c("e1", NA, NA, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA,
NA, NA, NA, "e4", NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA,
NA, NA, NA, NA, NA, "e6", NA,
NA, NA, NA, NA, NA, NA, "varF1"),

byrow=TRUE,
name="S"

)

The third matrix in our RAM model is the F or filter matrix. Our data contains six observed variables, but the A and S
matrices contain seven rows and columns. For our model to define the covariances present in our data, we must have
some way of projecting the relationships defined in the A and S matrices onto our data. The F matrix filters the latent
variables out of the expected covariance matrix, and can also be used to reorder variables.

The F matrix will always contain the same number of rows as manifest variables and columns as total (manifest and
latent) variables. If the manifest variables in the A and S matrices precede the latent variables and are in the same
order as the data, then the F matrix will be the horizontal adhesion of an identity matrix and a zero matrix. This matrix
contains no free parameters, and is made with the mxMatrix function below.

filter matrix
mxMatrix(

type="Full",
nrow=6,
ncol=7,
free=FALSE,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0),

byrow=TRUE,
name="F"

)

The last matrix of our model is the M matrix, which defines the means and intercepts for our model. This matrix
describes all of the regressions on the constant in a path model, or the means conditional on the means of exogenous
variables. This matrix contains a single row, and one column for every manifest and latent variable in the model. In our
model, the latent variable has a constrained mean of zero, while the manifest variables have freely estimated means,
labeled "meanx1" through "meanx6".

84 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

means
mxMatrix(

type="Full",
nrow=1,
ncol=7,
values=c(1,1,1,1,1,1,0),
free=c(T,T,T,T,T,T,F),
labels=c("meanx1","meanx2","meanx3",

"meanx4","meanx5","meanx6",
NA),

name="M"
)

The final part of this model is the objective function. This defines both how the specified matrices combine to create
the expected covariance matrix of the data, as well as the fit function to be minimized. In a RAM specified model, the
expected covariance matrix is defined as:

ExpCovariance = F ∗ (I −A)−1 ∗ S ∗ ((I −A)−1)′ ∗ F ′

The expected means are defined as:

ExpMean = F ∗ (I −A)−1 ∗M

The free parameters in the model can then be estimated using maximum likelihood for covariance and means data, and
full information maximum likelihood for raw data. While users may define their own expected covariance matrices
using other objective functions in OpenMx, the mxRAMObjective function yields maximum likelihood estimates
of structural equation models when the A, S, F and M matrices are specified. The M matrix is required both for raw
data and for covariance or correlation data that includes a means vector. The mxRAMObjective function takes four
arguments, which are the names of the A, S, F and M matrices in your model.

mxRAMObjective("A", "S", "F", "M")

The model now includes an observed covariance matrix (i.e., data) and the matrices and objective function required to
define the expected covariance matrix and estimate parameters.

The model can now be run using the mxRun function, and the output of the model can be accessed from the @output
slot of the resulting model. A summary of the output can be reached using summary().

oneFactorFit <- mxRun(oneFactorModel)

oneFactorFit@output

summary(oneFactorFit)

3.2.2 Two Factor Model

The common factor model can be extended to include multiple latent variables. The model for any person and path
diagram of the common factor model for a set of variables x1 - x3 and y1 - y3 are given below.

xij = µj + λj ∗ η1i + εij

yij = µj + λj ∗ η2i + εij

3.2. Factor Analysis, Matrix Specification 85

OpenMx Documentation, Release 0.2.6-1114

Our model contains 21 parameters (6 manifest variances, six manifest means, six factor loadings, two factor variances
and one factor covariance), but each factor requires one identification constraint. Like in the common factor model
above, we’ll constrain one factor loading for each factor to a value of one. As such, this model contains 19 parameters.
The means and covariance matrix for six observed variables contain 27 degrees of freedom, and thus our model
contains 8 degrees of freedom.

The data for the two factor model can be found in the myFAData files introduced in the common factor model. For
this model, we’ll select three x variables (x1-x3) and three y variables (y1-y3).

twoFactorRaw <- myFADataRaw[,c("x1", "x2", "x3", "y1", "y2", "y3")]

twoFactorCov <- myFADataCov[c("x1","x2","x3","y1","y2","y3"),c("x1","x2","x3","y1","y2","y3")]

twoFactorMeans <- myFADataMeans[c(1:3,7:9)]

Specifying the two factor model is virtually identical to the single factor case. The mxData function has been changed
to reference the appropriate data, but is identical in usage. We’ve added a second latent variable, so the A and S
matrices are now of order 8x8. Similarly, the F matrix is now of order 6x8 and the M matrix of order 1x8. The
mxRAMObjective has not changed. The code for our two factor model looks like this:

twoFactorModel <- mxModel("Two Factor Model -- Matrix Specification",
type="RAM",
mxData(

observed=twoFactorRaw,
type="raw",

),
asymmetric paths
mxMatrix(

type="Full",
nrow=8,
ncol=8,
values=c(0,0,0,0,0,0,1,0,

0,0,0,0,0,0,1,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0),

free=c(F, F, F, F, F, F, F, F,
F, F, F, F, F, F, T, F,
F, F, F, F, F, F, T, F,
F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, T,

86 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

F, F, F, F, F, F, F, T,
F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F),

labels=c(NA,NA,NA,NA,NA,NA,"l1", NA,
NA,NA,NA,NA,NA,NA,"l2", NA,
NA,NA,NA,NA,NA,NA,"l3", NA,
NA,NA,NA,NA,NA,NA, NA,"l4",
NA,NA,NA,NA,NA,NA, NA,"l5",
NA,NA,NA,NA,NA,NA, NA,"l6",
NA,NA,NA,NA,NA,NA, NA, NA,
NA,NA,NA,NA,NA,NA, NA, NA),

byrow=TRUE,
name="A"

),
symmetric paths
mxMatrix(

type="Symm",
nrow=8,
ncol=8,
values=c(1,0,0,0,0,0, 0, 0,

0,1,0,0,0,0, 0, 0,
0,0,1,0,0,0, 0, 0,
0,0,0,1,0,0, 0, 0,
0,0,0,0,1,0, 0, 0,
0,0,0,0,0,1, 0, 0,
0,0,0,0,0,0, 1,.5,
0,0,0,0,0,0,.5, 1),

free=c(T, F, F, F, F, F, F, F,
F, T, F, F, F, F, F, F,
F, F, T, F, F, F, F, F,
F, F, F, T, F, F, F, F,
F, F, F, F, T, F, F, F,
F, F, F, F, F, T, F, F,
F, F, F, F, F, F, T, T,
F, F, F, F, F, F, T, T),

labels=c("e1", NA, NA, NA, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA, NA,
NA, NA, NA, "e4", NA, NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA, NA,
NA, NA, NA, NA, NA, "e6", NA, NA,
NA, NA, NA, NA, NA, NA, "varF1", "cov",
NA, NA, NA, NA, NA, NA, "cov", "varF2"),

byrow=TRUE,
name="S"

),
filter matrix
mxMatrix(

type="Full",
nrow=6,
ncol=8,
free=F,
values=c(1,0,0,0,0,0,0,0,

0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,
0,0,0,1,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,0,1,0,0),

3.2. Factor Analysis, Matrix Specification 87

OpenMx Documentation, Release 0.2.6-1114

byrow=T,
name="F"

),
means
mxMatrix(

type="Full",
nrow=1,
ncol=8,
values=c(1,1,1,1,1,1,0,0),
free=c(T,T,T,T,T,T,F,F),
labels=c("meanx1","meanx2","meanx3",

"meanx4","meanx5","meanx6",
NA,NA),

name="M"
),
mxRAMObjective("A","S","F","M")

)

The four mxMatrix functions have changed slightly to accomodate the changes in the model. The A matrix, shown
below, is used to specify the regressions of the manifest variables on the factors. The first three manifest variables
("x1"-"x3") are regressed on "F1", and the second three manifest variables ("y1"-"y3") are regressed on "F2".
We must again constrain the model to identify and scale the latent variables, which we do by constraining the first
loading for each latent variable to a value of one.

asymmetric paths
mxMatrix(

type="Full",
nrow=8,
ncol=8,
values=c(0,0,0,0,0,0,1,0,

0,0,0,0,0,0,1,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0),

free=c(F, F, F, F, F, F, F, F,
F, F, F, F, F, F, T, F,
F, F, F, F, F, F, T, F,
F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, T,
F, F, F, F, F, F, F, T,
F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F),

labels=c(NA,NA,NA,NA,NA,NA,"l1", NA,
NA,NA,NA,NA,NA,NA,"l2", NA,
NA,NA,NA,NA,NA,NA,"l3", NA,
NA,NA,NA,NA,NA,NA, NA,"l4",
NA,NA,NA,NA,NA,NA, NA,"l5",
NA,NA,NA,NA,NA,NA, NA,"l6",
NA,NA,NA,NA,NA,NA, NA, NA,
NA,NA,NA,NA,NA,NA, NA, NA),

byrow=TRUE,
name="A"

)

The S matrix has an additional row and column, and two additional parameters. For the two factor model, we must

88 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

add a variance term for the second latent variable and a covariance between the two latent variables.

symmetric paths
mxMatrix(

type="Symm",
nrow=8,
ncol=8,
values=c(1,0,0,0,0,0, 0, 0,

0,1,0,0,0,0, 0, 0,
0,0,1,0,0,0, 0, 0,
0,0,0,1,0,0, 0, 0,
0,0,0,0,1,0, 0, 0,
0,0,0,0,0,1, 0, 0,
0,0,0,0,0,0, 1,.5,
0,0,0,0,0,0,.5, 1),

free=c(T, F, F, F, F, F, F, F,
F, T, F, F, F, F, F, F,
F, F, T, F, F, F, F, F,
F, F, F, T, F, F, F, F,
F, F, F, F, T, F, F, F,
F, F, F, F, F, T, F, F,
F, F, F, F, F, F, T, T,
F, F, F, F, F, F, T, T),

labels=c("e1", NA, NA, NA, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA, NA,
NA, NA, NA, "e4", NA, NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA, NA,
NA, NA, NA, NA, NA, "e6", NA, NA,
NA, NA, NA, NA, NA, NA, "varF1", "cov",
NA, NA, NA, NA, NA, NA, "cov", "varF2"),

byrow=TRUE,
name="S"

)

The F and M matrices contain only minor changes. The F matrix is now of order 6x8, but the additional column is
simply a column of zeros. The M matrix contains an additional column (with only a single row), which contains the
mean of the second latent variable. As this model does not contain a parameter for that latent variable, this mean is
constrained to zero.

The model is now ready to run using the mxRun function, and the output of the model can be accessed from the
@output slot of the resulting model. A summary of the output can be reached using summary().

These models may also be specified using paths instead of matrices. See Factor Analysis, Path Specification for path
specification of these models.

3.3 Time Series, Matrix Specification

This example will demonstrate a growth curve model using RAM specified matrices. As with previous examples, this
application is split into two files, one each raw and covariance data. These examples can be found in the following
files:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_MatrixCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_MatrixRaw.R

Parallel versions of this example, using path-centric specification of models rather than paths, can be found here:

3.3. Time Series, Matrix Specification 89

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_MatrixCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_MatrixRaw.R

OpenMx Documentation, Release 0.2.6-1114

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_PathCov.R

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_PathRaw.R

3.3.1 Latent Growth Curve Model

The latent growth curve model is a variation of the factor model for repeated measurements. For a set of manifest
variables xi1 - xi5 measured at five discrete times for people indexed by the letter i, the growth curve model can be
expressed both algebraically and via a path diagram as shown here:

xij = Intercepti + λj ∗ Slopei + εi

The values and specification of the λ parameters allow for alterations to the growth curve model. This example will
utilize a linear growth curve model, so we will specify λ to increase linearly with time. If the observations occur at
regular intervals in time, then λ can be specified with any values increasing at a constant rate. For this example, we’ll
use [0, 1, 2, 3, 4] so that the intercept represents scores at the first measurement occasion, and the slope represents
the rate of change per measurement occasion. Any linear transformation of these values can be used for linear growth
curve models.

Our model for any number of variables contains 6 free parameters; two factor means, two factor variances, a factor
covariance and a (constant) residual variance for the manifest variables. Our data contains five manifest variables, and
so the covariance matrix and means vector contain 20 degrees of freedom. Thus, the linear growth curve model fit to
these data has 14 degrees of freedom.

Data

The first step to running our model is to import data. The code below is used to import both raw data and a covariance
matrix and means vector, either of which can be used for our growth curve model. This data contains five variables,
which are repeated measurements of the same variable. As growth curve models make specific hypotheses about the
variances of the manifest variables, correlation matrices generally aren’t used as data for this model.

myLongitudinalData <- read.table("myLongitudinalData.txt",header=T)

myLongitudinalDataCov<-matrix(
c(6.362, 4.344, 4.915, 5.045, 5.966,

4.344, 7.241, 5.825, 6.181, 7.252,
4.915, 5.825, 9.348, 7.727, 8.968,
5.045, 6.181, 7.727, 10.821, 10.135,

90 Chapter 3. Examples, Matrix Specification

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_PathCov.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/LatentGrowthCurveModel_PathRaw.R

OpenMx Documentation, Release 0.2.6-1114

5.966, 7.252, 8.968, 10.135, 14.220),
nrow=5,
dimnames=list(

c("x1","x2","x3","x4","x5"),
c("x1","x2","x3","x4","x5"))

)

myLongitudinalDataMean <- c(9.864, 11.812, 13.612, 15.317, 17.178)

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require() or library() function. All objects required for estimation (data,
matrices, and an objective function) are included in their functions. This code uses the mxModel function to create
an MxModel object, which we’ll then run.

require(OpenMx)

growthCurveModel <- mxModel("Linear Growth Curve Model -- Matrix Specification",
mxData(

myLongitudinalDataRaw,
type="raw"

),
asymmetric paths
mxMatrix(

type="Full",
nrow=7,
ncol=7,
free=F,
values=c(0,0,0,0,0,1,0,

0,0,0,0,0,1,1,
0,0,0,0,0,1,2,
0,0,0,0,0,1,3,
0,0,0,0,0,1,4,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0),

byrow=TRUE,
name="A"

),
symmetric paths
mxMatrix(

type="Symm",
nrow=7,
ncol=7,
free=c(T, F, F, F, F, F, F,

F, T, F, F, F, F, F,
F, F, T, F, F, F, F,
F, F, F, T, F, F, F,
F, F, F, F, T, F, F,
F, F, F, F, F, T, T,
F, F, F, F, F, T, T),

values=c(0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,

3.3. Time Series, Matrix Specification 91

OpenMx Documentation, Release 0.2.6-1114

0,0,0,0,0, 1,0.5,
0,0,0,0,0,0.5, 1),

labels=c("residual", NA, NA, NA, NA, NA, NA,
NA, "residual", NA, NA, NA, NA, NA,
NA, NA, "residual", NA, NA, NA, NA,
NA, NA, NA, "residual", NA, NA, NA,
NA, NA, NA, NA, "residual", NA, NA,
NA, NA, NA, NA, NA, "vari", "cov",
NA, NA, NA, NA, NA, "cov", "vars"),

byrow= TRUE,
name="S"

),
filter matrix
mxMatrix(

type="Full",
nrow=5,
ncol=7,
free=F,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0),

byrow=T,
name="F"

),
means

mxMatrix(
type="Full",
nrow=1,
ncol=7,
values=c(0,0,0,0,0,1,1),
free=c(F,F,F,F,F,T,T),
labels=c(NA,NA,NA,NA,NA,"meani","means"),
name="M"

),
mxRAMObjective("A","S","F","M")

)

The model begins with a name, in this case “Linear Growth Curve Model – Matrix Specification”. If the first argument
is an object containing an MxModel object, then the model created by the mxModel function will contain all of the
named entites in the referenced model object.

Data is supplied with the mxData function. This example uses raw data, but the mxData function in the code above
could be replaced with the function below to include covariance data.

mxData(
myLongitudinalDataCov,
type="cov",
numObs=500,
means=myLongitudinalDataMeans
)

The four mxMatrix functions define the A, S, F and M matrices used in RAM specification of models. In all four
matrices, the first five rows or columns of any matrix represent the five manifest variables, the sixth the latent intercept
variable, and the seventh the slope. The A and S matrices are of order 7x7, the F matrix of order 5x7, and the M matrix
1x7.

92 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

The A matrix specifies all of the assymetric paths or regressions among variables. The only assymmetric paths in
our model regress the manifest variables on the latent intercept and slope with fixed values. The regressions of the
manifest variables on the intercept are in the first five rows and sixth column of the A matrix, all of which have a fixed
value of one. The regressions of the manifest variables on the slope are in the first five rows and seventh column of the
A matrix with fixed values in this series: [0, 1, 2, 3, 4].

asymmetric paths
mxMatrix(

type="Full",
nrow=7,
ncol=7,
free=F,
values=c(0,0,0,0,0,1,0,

0,0,0,0,0,1,1,
0,0,0,0,0,1,2,
0,0,0,0,0,1,3,
0,0,0,0,0,1,4,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0),

byrow=TRUE,
name="A"

)

The S matrix specifies all of the symmetric paths among our variables, representing the variances and covariances
in our model. The five manifest variables do not have any covariance parameters with any other variables, and all
are restricted to have the same residual variance. This variance term is constrained to equality by specifying five
free parameters and giving all five parameters the same label residual. The variances and covariance of the latent
variables are included as free parameters in the sixth and sevenths rows and columns of this matrix as well.

symmetric paths
mxMatrix(

type="Symm",
nrow=7,
ncol=7,
free=c(T, F, F, F, F, F, F,

F, T, F, F, F, F, F,
F, F, T, F, F, F, F,
F, F, F, T, F, F, F,
F, F, F, F, T, F, F,
F, F, F, F, F, T, T,
F, F, F, F, F, T, T),

values=c(0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 1,0.5,
0,0,0,0,0,0.5, 1),

labels=c("residual", NA, NA, NA, NA, NA, NA,
NA, "residual", NA, NA, NA, NA, NA,
NA, NA, "residual", NA, NA, NA, NA,
NA, NA, NA, "residual", NA, NA, NA,
NA, NA, NA, NA, "residual", NA, NA,
NA, NA, NA, NA, NA, "vari", "cov",
NA, NA, NA, NA, NA, "cov", "vars"),

byrow= TRUE,

3.3. Time Series, Matrix Specification 93

OpenMx Documentation, Release 0.2.6-1114

name="S"
)

The third matrix in our RAM model is the F or filter matrix. This is used to “filter” the latent variables from the
expected covariance of the observed data. The F matrix will always contain the same number of rows as manifest
variables and columns as total (manifest and latent) variables. If the manifest variables in the A and S matrices
precede the latent variables are in the same order as the data, then the F matrix will be the horizontal adhesion of an
identity matrix and a zero matrix. This matrix contains no free parameters, and is made with the mxMatrix function
below.

filter matrix
mxMatrix(

type="Full",
nrow=5,
ncol=7,
free=F,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0),

byrow=T,
name="F"

)

The final matrix in our RAM model is the M or means matrix, which specifies the means and intercepts of the
variables in the model. While the manifest variables have expected means in our model, these expected means are
entirely dependent on the means of the intercept and slope factors. In the M matrix below, the manifest variables are
given fixed intercepts of zero while the latent variables are each given freely estimated means with starting values of 1
and labels of "meani" and "means"

means
mxMatrix(

type="Full",
nrow=1,
ncol=7,
values=c(0,0,0,0,0,1,1),
free=c(F,F,F,F,F,T,T),
labels=c(NA,NA,NA,NA,NA,"meani","means"),
name="M"

)

The last piece of our model is the mxRAMObjective function, which defines both how the specified matrices com-
bine to create the expected covariance matrix of the data, as well as the fit function to be minimized. As covered in
earlier examples, the expected covariance matrix for a RAM model is defined as:

ExpCovariance = F ∗ (I −A)−1 ∗ S ∗ ((I −A)−1)′ ∗ F ′

The expected means are defined as:

ExpMean = F ∗ (I −A)−1 ∗M

The free parameters in the model can then be estimated using maximum likelihood for covariance and means data, and
full information maximum likelihood for raw data. The M matrix is required both for raw data and for covariance or
correlation data that includes a means vector. The mxRAMObjective function takes four arguments, which are the
names of the A, S, F and M matrices in your model.

94 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

The model is now ready to run using the mxRun function, and the output of the model can be accessed from the
@output slot of the resulting model. A summary of the output can be reached using summary().

growthCurveFit <- mxRun(growthCurveModel)

growthCurveFit@output
summary(growthCurveFit)

These models may also be specified using paths instead of matrices. See Time Series, Path Specification for path
specification of these models.

3.4 Multiple Groups, Matrix Specification

An important aspect of structural equation modeling is the use of multiple groups to compare means and covariances
structures between any two (or more) data groups, for example males and females, different ethnic groups, ages etc.
Other examples include groups which have different expected covariances matrices as a function of parameters in the
model, and need to be evaluated together to estimated together for the parameters to be identified.

The example includes the heterogeneity model as well as its submodel, the homogeneity model and is available in the
following file:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateHeterogeneity_MatrixRaw.R

A parallel version of this example, using paths specification of models rather than matrices, can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateHeterogeneity_PathRaw.R

3.4.1 Heterogeneity Model

We will start with a basic example here, building on modeling means and variances in a saturated model. Assume we
have two groups and we want to test whether they have the same mean and covariance structure.

The path diagram of the heterogeneity model for a set of variables x and y are given below.

3.4. Multiple Groups, Matrix Specification 95

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateHeterogeneity_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateHeterogeneity_PathRaw.R

OpenMx Documentation, Release 0.2.6-1114

Data

For this example we simulated two datasets (‘xy1’ and ‘xy2’) each with zero means and unit variances, one with a
correlation of .5, and the other with a correlation of .4 with 1000 subjects each. We use the mvrnorm function in
the MASS package, which takes three arguments: Sample Size, Means, Covariance Matrix). We check the
means and covariance matrix in R and provide dimnames for the dataframe. See attached R code for simulation and
data summary.

#Simulate Data
require(MASS)
#group 1
set.seed(200)
rs=.5
xy1 <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
set.seed(200)
#group 2
rs=.4
xy2 <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))

#Print Descriptive Statistics
selVars <- c(’X’,’Y’)
summary(xy1)
cov(xy1)
dimnames(xy1) <- list(NULL, selVars)
summary(xy2)
cov(xy2)
dimnames(xy2) <- list(NULL, selVars)

Model Specification

As before, we include the OpenMx package using a require statement. We first fit a heterogeneity model, allowing
differences in both the mean and covariance structure of the two groups. As we are interested whether the two
structures can be equated, we have to specify the models for the two groups, named ‘group1’ and ‘group2’ within
another model, named ‘bivHet’. The structure of the job thus look as follows, with two mxModel commands as
arguments of another mxModel command. mxModel commands are unlimited in the number of arguments.

require(OpenMx)

bivHetModel <- mxModel("bivHet",
mxModel("group1",

....
mxModel("group2",

....
mxAlgebra(group1.objective + group2.objective, name="h12"),
mxAlgebraObjective("h12")

)

For each of the groups, we fit a saturated model, using a Cholesky decomposition to generate the expected covariance
matrix and a row vector for the expected means. Note that we have specified different labels for all the free elements,
in the two mxModel statements. For more details, see example 1.

#Fit Heterogeneity Model
bivHetModel <- mxModel("bivHet",

mxModel("group1",
mxMatrix(

96 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

type="Lower",
nrow=2,
ncol=2,
free=T,
values=.5,
labels=c("vX1", "cXY1", "vY1"),
name="Chol1"

),
mxAlgebra(

Chol1 %*% t(Chol1),
name="EC1"

),
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=T,
values=c(0,0),
labels=c("mX1", "mY1"),
name="EM1"

),
mxData(

xy1,
type="raw"

),
mxFIMLObjective(

"EC1",
"EM1",
selVars

)
),
mxModel("group2",

mxMatrix(
type="Lower",
nrow=2,
ncol=2,
free=T,
values=.5,
labels=c("vX2", "cXY2", "vY2"),
name="Chol2"

),
mxAlgebra(

Chol2 %*% t(Chol2),
name="EC2"

),
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=T,
values=c(0,0),
labels=c("mX2", "mY2"),
name="EM2"

),
mxData(

xy2,
type="raw"

),

3.4. Multiple Groups, Matrix Specification 97

OpenMx Documentation, Release 0.2.6-1114

mxFIMLObjective(
"EC2",
"EM2",
selVars

)
),

As a result, we estimate five parameters (two means, two variances, one covariance) per group for a
total of 10 free parameters. We cut the Labels matrix: parts from the output generated with
bivHetModel$group1@matrices and bivHetModel$group2@matrices

in group1
$S

X Y
X "vX1" NA
Y "cXY1" "vY1"

$M
X Y

[1,] "mX1" "mY1"

in group2
$S

X Y
X "vX2" NA
Y "cXY2" "vY2"

$M
X Y

[1,] "mX2" "mY2"

To evaluate both models together, we use an mxAlgebra command that adds up the values of the objective functions
of the two groups. The objective function to be used here is the mxAlgebraObjective which uses as its argument
the sum of the function values of the two groups, referred to by the name of the previously defined mxAlgebra object
h12.

mxAlgebra(
group1.objective + group2.objective,
name="h12"

),
mxAlgebraObjective("h12")

)

Model Fitting

The mxRun command is required to actually evaluate the model. Note that we have adopted the following notation of
the objects. The result of the mxModel command ends in “Model”; the result of the mxRun command ends in “Fit”.
Of course, these are just suggested naming conventions.

bivHetFit <- mxRun(bivHetModel)

A variety of output can be printed. We chose here to print the expected means and covariance matrices for the two
groups and the likelihood of data given the model. The mxEval command takes any R expression, followed by the
fitted model name. Given that the model bivHetFit included two models (group1 and group2), we need to use the
two level names, i.e. group1.EM1 to refer to the objects in the correct model.

98 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

EM1Het <- mxEval(group1.EM1, bivHetFit)
EM2Het <- mxEval(group2.EM2, bivHetFit)
EC1Het <- mxEval(group1.EC1, bivHetFit)
EC2Het <- mxEval(group2.EC2, bivHetFit)
LLHet <- mxEval(objective, bivHetFit)

3.4.2 Homogeneity Model: a Submodel

Next, we fit a model in which the mean and covariance structure of the two groups are equated to one another, to test
whether there are significant differences between the groups. Rather than having to specify the entire model again, we
copy the previous model bivHetModel into a new model bivHomModel to represent homogeneous structures.

#Fit Homnogeneity Model
bivHomModel <- bivHetModel

As elements in matrices can be equated by assigning the same label, we now have to equate the labels of the free
parameters in group1 to the labels of the corresponding elements in group2. This can be done by referring to the
relevant matrices using the ModelName[[’MatrixName’]] syntax, followed by @labels. Note that in the
same way, one can refer to other arguments of the objects in the model. Here we assign the labels from group1 to the
labels of group2, separately for the Cholesky matrices used for the expected covariance matrices and for the expected
means vectors.

bivHomModel[[’group2.Chol2’]]@labels <- bivHomModel[[’group1.Chol1’]]@labels
bivHomModel[[’group2.EM2’]]@labels <- bivHomModel[[’group1.EM1’]]@labels

The specification for the submodel is reflected in the names of the labels which are now equal for the corresponding
elements of the mean and covariance matrices, as below.

in group1
$S

X Y
X "vX1" NA
Y "cXY1" "vY1"

$M
X Y

[1,] "mX1" "mY1"

in group2
$S

X Y
X "vX1" NA
Y "cXY1" "vY1"

$M
X Y

[1,] "mX1" "mY1"

We can produce similar output for the submodel, i.e. expected means and covariances and likelihood, the only differ-
ence in the code being the model name. Note that as a result of equating the labels, the expected means and covariances
of the two groups should be the same.

3.4. Multiple Groups, Matrix Specification 99

OpenMx Documentation, Release 0.2.6-1114

bivHomFit <- mxRun(bivHomModel)
EM1Hom <- mxEval(group1.EM1, bivHomFit)
EM2Hom <- mxEval(group2.EM2, bivHomFit)
EC1Hom <- mxEval(group1.EC1, bivHomFit)
EC2Hom <- mxEval(group2.EC2, bivHomFit)
LLHom <- mxEval(objective, bivHomFit)

Finally, to evaluate which model fits the data best, we generate a likelihood ratio test as the difference between -2 times
the log-likelihood of the homogeneity model and -2 times the log-likelihood of the heterogeneity model. This statistic
is asymptotically distributed as a Chi-square, which can be interpreted with the difference in degrees of freedom of the
two models.

Chi= LLHom-LLHet
LRT= rbind(LLHet,LLHom,Chi)
LRT

These models may also be specified using paths instead of matrices. See Multiple Groups, Path Specification for path
specification of these models.

3.5 Genetic Epidemiology, Matrix Specification

Mx is probably most popular in the behavior genetics field, as it was conceived with genetic models in mind, which rely
heavily on multiple groups. We introduce here an OpenMx script for the basic genetic model in genetic epidemiologic
research, the ACE model. This model assumes that the variability in a phenotype, or observed variable, of interest
can be explained by differences in genetic and environmental factors, with A representing additive genetic factors,
C shared/common environmental factors and E unique/specific environmental factors (see Neale & Cardon 1992,
for a detailed treatment). To estimate these three sources of variance, data have to be collected on relatives with
different levels of genetic and environmental similarity to provide sufficient information to identify the parameters.
One such design is the classical twin study, which compares the similarity of identical (monozygotic, MZ) and fraternal
(dizygotic, DZ) twins to infer the role of A, C and E.

The example starts with the ACE model and includes one submodel, the AE model. It is available in the following file:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis_MatrixRaw.R

A parallel version of this example, using path specification of models rather than matrices, can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis_PathRaw.R

3.5.1 ACE Model: a Twin Analysis

Data

Let us assume you have collected data on a large sample of twin pairs for your phenotype of interest. For illustration
purposes, we use Australian data on body mass index (BMI) which are saved in a text file ‘myTwinData.txt’. We use
R to read the data into a data.frame and to create two subsets of the data for MZ females (mzfData) and DZ females
(dzfData) respectively with the code below.

require(OpenMx)

#Prepare Data
twinData <- read.table("myTwinData.txt", header=T, na.strings=".")
twinVars <- c(’fam’,’age’,’zyg’,’part’,’wt1’,’wt2’,’ht1’,’ht2’,’htwt1’,’htwt2’,’bmi1’,’bmi2’)
summary(twinData)

100 Chapter 3. Examples, Matrix Specification

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis_PathRaw.R

OpenMx Documentation, Release 0.2.6-1114

selVars <- c(’bmi1’,’bmi2’)
mzfData <- as.matrix(subset(twinData, zyg==1, c(bmi1,bmi2)))
dzfData <- as.matrix(subset(twinData, zyg==3, c(bmi1,bmi2)))
colMeans(mzfData,na.rm=TRUE)
colMeans(dzfData,na.rm=TRUE)
cov(mzfData,use="complete")
cov(dzfData,use="complete")

Model Specification

There are a variety of ways to set up the ACE model. The most commonly used approach in Mx is to specify three
matrices for each of the three sources of variance. The matrix X represents the additive genetic path a, the Y matrix is
used for the shared environmental path c and the matrix Z for the unique environmental path e. The expected variances
and covariances between member of twin pairs are typically expressed in variance components (or the square of the
path coefficients, i.e. a2, c2 and e2). These quantities can be calculated using matrix algebra, by multiplying the X
matrix by its transpose t(X). Note that the transpose is not strictly needed in the univariate case, but will allow easier
transition to the multivariate case. We then use matrix algebra again to add the relevant matrices corresponding to the
expectations for each of the statistics of the observed covariance matrix. The R functions ‘cbind’ and ‘rbind’ are used
to concatenate the resulting matrices in the appropriate way. The expectations can be derived from the path diagrams
for MZ and DZ twins.

Let’s go through each of the matrices step by step. They will all form arguments of the mxModel, specified as follows.

3.5. Genetic Epidemiology, Matrix Specification 101

OpenMx Documentation, Release 0.2.6-1114

Note that we left the comma’s at the end of the lines which are necessary when all the arguments are combined prior
to running the model. Each line can be pasted into R, and then evaluated together once the whole model is specified.

#Fit ACE Model with RawData and Matrix-style Input
twinACEModel <- mxModel("twinACE",

Given the current example is univariate (in the sense that we analyze one variable, even though we have measured it in
two members of twin pairs), the matrices for the paths a, c and e, respectively, X, Y and Z are all Full 1x1 matrices
assigned the free status and given a .6 starting value. We also specify the matrix h to have a fixed value of 0.5,
necessary for the expectation of DZ twins.

additive genetic path
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=.6,
label="a",
name="X"

),
shared environmental path
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=.6,
label="c",
name="Y"

),
specific environmental path
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=.6,
label="e",
name="Z"

),

While the labels in these matrices are given lower case names, similar to the convention that paths have lower case
names, the names for the variance component matrices, obtained from multiplying matrices with their transpose have
upper case letters A, C and E which are distinct (as R is case-sensitive).

additive genetic variance
mxAlgebra(

expression=X * t(X),
name="A"

),
shared environmental variance
mxAlgebra(

expression=Y * t(Y),
name="C"

),
specific environmental variance

102 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

mxAlgebra(
expression=Z * t(Z),
name="E"

),

As the focus is on individual differences, the model for the means is typically simple. We can estimate each of the
means, in each of the two groups (MZ & DZ) as free parameters. Alternatively, we can establish whether the means
can be equated across order and zygosity by fitting submodels to the saturated model. In this case, we opted to use
one ‘grand’ mean, obtained by assigning the same label to the two elements of the matrix ‘expMeanMZ’ and the two
elements of the matrix ‘expMeanDZ’, each of which are ‘Full’ 1x2 matrices with free parameters and start values of
20.

means
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=T,
values=20,
labels="mean",
name="expMean"

),

Previous Mx users will likely be familiar with the look of the expected covariance matrices for MZ and DZ twin pairs.
These 2x2 matrices are built by horizontal and vertical concatenation of the appropriate matrix expressions for the
variance, the MZ or the DZ covariance. In R, concatenation of matrices is accomplished with the ‘rbind’ and ‘cbind’
functions. Thus to represent the matrices in expression below in R, we use the following code.

covMZ =

[
a2 + c2 + e2, a2 + c2

a2 + c2, a2 + c2 + e2

]
covDZ =

[
a2 + c2 + e2, .5a2 + c2

.5a2 + c2, a2 + c2 + e2

]
mxAlgebra(

expression=rbind (cbind(A+C+E, A+C),
cbind(A+C , A+C+E)),

name="expCovMZ"
),
mxAlgebra(

expression=rbind (cbind(A+C+E , h%x%A+C),
cbind(h%x%A+C, A+C+E)),

name="expCovDZ"
),

As the expected covariance matrices are different for the two groups of twins, we specify two mxModel com-
mands within the ‘twinACE’ mxModel command. They are given a name, and arguments for the data and the ob-
jective function to be used to optimize the model. We have set the model up for raw data, and thus will use the
mxFIMLObjective function to evaluate it. For each model, the mxData command calls up the appropriate data,
and provides a type, here raw, and the mxFIMLObjective command is given the names corresponding to the re-
spective expected covariance matrices and mean vectors, specified above. Given the objects expCovMZ, expCovDZ
and expMean were created in the mxModel named twinACE we need to use two-level names, starting with the
model name separated from the object with a dot, i.e. twinACE.expCovMZ.

mxModel("MZ",
mxData(

observed=mzfData,
type="raw"

),

3.5. Genetic Epidemiology, Matrix Specification 103

OpenMx Documentation, Release 0.2.6-1114

mxFIMLObjective(
covariances="twinACE.expCovMZ",
means="twinACE.expMean",
dimnames=selVars

)
),
mxModel("DZ",

mxData(
observed=dzfData,
type="raw"

),
mxFIMLObjective(

covariances="twinACE.expCovDZ",
means="twinACE.expMean",
dimnames=selVars

)
),

Finally, both models need to be evaluated simultaneously. We first generate the sum of the objective functions for
the two groups, using mxAlgebra. We refer to the correct objective function (object named objective) by
adding the name of the model to the two-level argument, i.e. MZ.objective. We then use that as argument of the
mxAlgebraObjective command.

mxAlgebra(
expression=MZ.objective + DZ.objective,
name="twin"

),
mxAlgebraObjective("twin")

)

Model Fitting

We need to invoke the mxRun command to start the model evaluation and optimization. Detailed output will be
available in the resulting object, which can be obtained by a print() statement.

#Run ACE model
twinACEFit <- mxRun(twinACEModel)

Often, however, one is interested in specific parts of the output. In the case of twin modeling, we typically will inspect
the expected covariance matrices and mean vectors, the parameter estimates, and possibly some derived quantities,
such as the standardized variance components, obtained by dividing each of the components by the total variance.
Note in the code below that the mxEval command allows easy extraction of the values in the various matrices/algebras
which form the first argument, with the model name as second argument. Once these values have been put in new
objects, we can use and regular R expression to derive further quantities or organize them in a convenient format for
including in tables. Note that helper functions could (and will likely) easily be written for standard models to produce
‘standard’ output.

MZc <- mxEval(expCovMZ, twinACEFit)
DZc <- mxEval(expCovDZ, twinACEFit)
M <- mxEval(expMeanMZ, twinACEFit)
A <- mxEval(A, twinACEFit)
C <- mxEval(C, twinACEFit)
E <- mxEval(E, twinACEFit)
V <- (A+C+E)
a2 <- A/V

104 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

c2 <- C/V
e2 <- E/V
ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
LL_ACE <- mxEval(objective, twinACEFit)

3.5.2 Alternative Models: an AE Model

To evaluate the significance of each of the model parameters, nested submodels are fit in which these parameters are
fixed to zero. If the likelihood ratio test between the two models is significant, the parameter that is dropped from
the model significantly contributes to the phenotype in question. Here we show how we can fit the AE model as a
submodel with a change in one mxMatrix command. First, we call up the previous ‘full’ model and save it as a new
model twinAEModel. Next we re-specify the matrix Y to be fixed to zero. We can run this model in the same way
as before and generate similar summaries of the results.

#Run AE model
twinAEModel <- mxModel(twinACEModel,

drop shared environmental path
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=F,
values=0,
label="c",
name="Y"

)
)

twinAEFit <- mxRun(twinAEModel)

MZc <- mxEval(expCovMZ, twinAEFit)
DZc <- mxEval(expCovDZ, twinAEFit)
A <- mxEval(A, twinAEFit)
C <- mxEval(C, twinAEFit)
E <- mxEval(E, twinAEFit)
V <- (A+C+E)
a2 <- A/V
c2 <- C/V
e2 <- E/V
AEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
LL_AE <- mxEval(objective, twinAEFit)

We use a likelihood ratio test (or take the difference between -2 times the log-likelihoods of the two models) to
determine the best fitting model, and print relevant output.

LRT_ACE_AE <- LL_AE-LL_ACE

#Print relevant output
ACEest
AEest
LRT_ACE_AE

Note that the OpenMx team is currently working on better alternatives for dropping parameters. These models may also
be specified using paths instead of matrices, which allow for easier submodel specification. See Genetic Epidemiology,
Path Specification for path specification of these models.

3.5. Genetic Epidemiology, Matrix Specification 105

OpenMx Documentation, Release 0.2.6-1114

3.6 Definition Variables, Matrix Specification

This example will demonstrate the use of OpenMx definition variables with the implementation of a simple two
group dataset. What are definition variables? Essentially, definition variables can be thought of as observed variables
which are used to change the statistical model on an individual case basis. In essence, it is as though one or more
variables in the raw data vectors are used to specify the statistical model for that individual. Many different types
of statistical model can be specified in this fashion; some are readily specified in standard fashion, and some that
cannot. To illustrate, we implement a two-group model. The groups differ in their means but not in their variances
and covariances. This situation could easily be modeled in a regular multiple group fashion - it is only implemented
using definition variables to illustrate their use. The results are verified using summary statistics and an Mx 1.0 script
for comparison is also available.

3.6.1 Mean Differences

The example shows the use of definition variables to test for mean differences. It is available in the following file:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/DefinitionMeans_MatrixRaw.R

A parallel version of this example, using path specification of models rather than matrices, can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/DefinitionMeans_PathRaw.R

Statistical Model

Algebraically, we are going to fit the following model to the observed x and y variables:

xi = µx + βx ∗ def + εxi

yi = µy + βy ∗ def + εyi

where def is the definition variable and the residual sources of variance, εxi and εyi covary to the extent ρ. So, the task
is to estimate: the two means µx and µy; the deviations from these means due to belonging to the group identified by
having def set to 1 (as opposed to zero), βx and βy; and the parameters of the variance covariance matrix: cov(εx, εy).

Our task is to implement the model shown in the figure below:

Data Simulation

Our first step to running this model is to simulate the data to be analyzed. Each individual is measured on two observed
variables, x and y, and a third variable def which denotes their group membership with a 1 or a 0. These values for
group membership are not accidental, and must be adhered to in order to obtain readily interpretable results. Other
values such as 1 and 2 would yield the same model fit, but would make the interpretation more difficult.

106 Chapter 3. Examples, Matrix Specification

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/DefinitionMeans_MatrixRaw.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/DefinitionMeans_PathRaw.R

OpenMx Documentation, Release 0.2.6-1114

library(MASS) # to get hold of mvrnorm function

set.seed(200) # to make the simulation repeatable
N=500 # sample size, per group

Sigma <- matrix(c(1,.5,.5,1),2,2)
group1<-mvrnorm(N, c(1,2), Sigma)
group2<-mvrnorm(N, c(0,0), Sigma)

We make use of the superb R function mvrnorm in order to simulate N=500 records of data for each group. These
observations correlate .5 and have a variance of 1, per the matrix Sigma. The means of x and y in group 1 are 1.0 and
2.0, respectively; those in group 2 are both zero. The output of the mvrnorm function calls are matrices with 500
rows and 3 columns, which are stored in group 1 and group 2. Now we create the definition variable

Put the two groups together, create a definition variable,
and make a list of which variables are to be analyzed (selVars)
xy<-rbind(group1,group2)
dimnames(xy)[2]<-list(c("x","y"))
def<-rep(c(1,0),each=n)
selVars<-c("x","y")

The objects xy and def might be combined in a data frame. However, in this case we won’t bother to do it externally,
and simply paste them together in the mxData function call.

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require() or library() function. This code uses the mxModel function to
create an mxModel object, which we’ll then run. Note that all the objects required for estimation (data, matrices, and
an objective function) are declared within the mxModel function. This type of code structure is recommended for
OpenMx scripts generally.

defMeansModel <- mxModel("Definition Means -- Matrix Specification",
mxFIMLObjective(

covariance="Sigma",
means="Mu",
dimnames=selVars

),

The first argument in an mxModel function has a special function. If an object or variable containing an MxModel
object is placed here, then mxModel adds to or removes pieces from that model. If a character string (as indicated by
double quotes) is placed first, then that becomes the name of the model. Models may also be named by including a
name argument. This model is named "Definition Means -- Matrix Specification".

The second argument in this mxModel call is itself a function. It declares that the objective function to be optimized is
full information maximum likelihood (FIML) under normal theory, which is tagged as mxFIMLObjective. There
are in turn two arguments to this function: the covariance matrix Sigma and the mean vector Mu. These matrices will
be defined later in the mxModel function call.

Model specification is carried out using mxMatrix functions to create matrices for the model. In the present case,
we need four matrices. First is the predicted covariance matrix, Sigma. Next, we use three matrices to specify the
model for the means. First is M which corresponds to estimates of the means for individuals with definition variables
with values of zero. Individuals with definition variable values of 1 will have the value in M along with the value in the
matrix beta. So both matrices are of size 1x2 and both contain two free parameters. There is a separate deviation for
each of the variables, which will be estimated in the elements 1,1 and 1,2 of the beta matrix. Last, but by no means

3.6. Definition Variables, Matrix Specification 107

OpenMx Documentation, Release 0.2.6-1114

least, is the matrix def which contains the definition variable. The variable def in mxData data frame is referred to
as data.def. In the present case, the definition variable contains a 1 for group 1, and a zero otherwise.

covariance matrix
mxMatrix(

type="Symm",
nrow=2,
ncol=2,
free=TRUE,
values=c(1, 0, 1),
name="Sigma"

),
means
mxMatrix(

type="Full",
nrow = 1,
ncol = 2,
free=TRUE,
name = "M"

),
regression coefficient
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=TRUE,
values=c(0, 0),
name="beta"

),
definition variable
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=FALSE,
labels="data.def",
name="def"

),

The trick - commonly used in regression models - is to multiply the beta matrix by the def matrix. This multiplica-
tion is effected using an mxAlgebra function call:

mxAlgebra(
expression= M+beta*def,
name="Mu"

)
)

The result of this algebra is named Mu, and this handle is referred to in the mxFIMLObjective function call.

Next, we declare where the data are, and their type, by creating an MxData object with the mxData function. This
piece of code creates an MxData object. It first references the object where our data are, then uses the type argument
to specify that this is raw data. Analyses using definition variables have to use raw data, so that the model can be
specified on an individual data vector level.

mxData((
observed=data.frame(xy,def)),

108 Chapter 3. Examples, Matrix Specification

OpenMx Documentation, Release 0.2.6-1114

type="raw"
),

We can then run the model and examine the output with a few simple commands.

Model Fitting

Run the model
defMeansFit <- mxRun(defMeansModel)
defMeansFit@matrices
defMeansFit@algebras

It is possible to compare the estimates from this model to some summary statistics computed from the data:

Compare OpenMx estimates to summary statistics computed from raw data.
Note that to calculate the common variance,
group 1 has the 1 and 2 subtracted from every Xi and Yi in the sample
data, so as to estimate variance of combined sample without the mean correction.

First we compute some summary statistics from the data
ObsCovs<-cov(rbind(group1-rep(c(1,2),each=n),group2))
ObsMeansGroup1<-c(mean(group1[,1],mean(group1[,2]))
ObsMeansGroup2<-c(mean(group2[,1],mean(group2[,2]))

Second we extract the parameter estimates and matrix algebra results from the model
Sigma<-run@matrices$Sigma@values
Mu<-run@algebras$Mu@result
M<-run@matrices$M@values
beta<-run@matrices$beta@values

Third, we check to see if things are more or less equal
omxCheckCloseEnough(ObsCovs,Sigma,.01)
omxCheckCloseEnough(ObsMeansGroup1,as.vector(M+beta),.001)
omxCheckCloseEnough(ObsMeansGroup2,as.vector(Mu),.001)

These models may also be specified using paths instead of matrices. See Definition Variables, Path Specification for
path specification of these models.

3.7 ABO Blood Groups, Matrix Specification

This example use an mxAlgebra likelihood function to compare the fit of two models for the population frequencies of
the A, B and O blood groups. It is based on the textbook Likelihood, by Anthony William Fairbank Edwards (1972;
1984). Human beings may be classified according to which of four ABO blood groups they belong: A, B, AB, or O.
These groups can be phenotypically distinguished by which antibodies they produce, and this is important for blood
transfusions. Patients receiving blood containing an antigen that they do not produce have an adverse reaction to it.

Two hypotheses were advanced to account for the ABO variation. The single locus model posited that there exists
one locus with three alleles, A, B and O. Allele A generates antibody A, allele B generates antibody B, and allele O
generates neither. Under the two locus model, there is a diallelic A locus, with one allele that produces antibody A,
and another that does not. At a second, unlinked, locus B, antigen B is generated by those who have at least one B
allele. We try not to make jokes about people who have the BO genotype. For a more thorough account of the ABO
blood group system, the Wikipedia article http://en.wikipedia.org/wiki/ABO_blood_group_system is a good starting
point.

3.7. ABO Blood Groups, Matrix Specification 109

http://en.wikipedia.org/wiki/ABO_blood_group_system

OpenMx Documentation, Release 0.2.6-1114

The two scripts are available in these files:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneLocusLikelihood.R

and

• http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoLocusLikelihood.R

For (former) users of the first version of Mx, scripts for that software can be found here:

• http://openmx.psyc.virginia.edu/repoview/1/trunk/models/passing/mx-scripts/one.mx

• http://openmx.psyc.virginia.edu/repoview/1/trunk/models/passing/mx-scripts/two.mx

3.7.1 Specification of the Single Locus Model

Data

The data for this example come from the German mathematician Felix Bernstein
<http://en.wikipedia.org/wiki/Felix_Bernstein> (1924). Their observed frequencies are shown in this table,
along with expected proportions in the population under the single locus model. A good exercise is to derive the
expected proportions by hand. A key consideration is that several different genotypes (combinations of alleles) may
generate a single phenotype (observed antigens in the blood). Due to the genetic dominance of allele A, both AA and
AO genotypes produce the blood group A phenotype.

Single Locus Model

The single locus dominant genetic model, with alleles A and B being codominant (resulting in the AB blood group
phenotype) predicts that certain proportions of each blood group will occur in the population. These proportions
depend on, and can be expressed as functions of, the allele frequencies. Let the frequencies of alleles A, B and O
be p, q′and : math : ‘r, respectively. We assume that parents mate at random with respect to their blood groups, so
that the likelihood of inheriting two A alleles becomes simply the product of the allele frequencies in the population,
i.e., p2. Thus we are able to draw up a Table of the expected proportions of each blood group as a function of
the parameters p, q′and : math : ‘r. These unknown parameters will be estimated from the data using numerical
optimization, subject to the constraint that p+ q + r = 1.

Phenotype Genotypes Frequency Proportion
A AO, AA 234 p(p+2r)
B BO, BB 261 q(q+2r)
AB AB 182 2pq
O OO 94 r^2

The individuals in this sample are considered to be statistically independent. Therefore the likelihood of observing,
e.g., 234 individuals with blood type A, is simply (p(p + 2r))234 and the log-likelihood is 234 log p(p+ 2r). The
OpenMx script will use the four log-likelihoods of the four phenotypes, and sum them to obtain the overall log-
likelihood. Optimization proceeds by minimization by default, so we minimize the negative log-likelihood in order to
maximize the log-likelihood. The following code block specifies this model. There

require(OpenMx)

Bernstein data on ABO blood-groups
c.f. Edwards, AWF (1972) Likelihood. Cambridge Univ Press, pp. 39-41

OneLocusModel <- mxModel("OneLocus",

110 Chapter 3. Examples, Matrix Specification

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/OneLocusLikelihood.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/TwoLocusLikelihood.R
http://openmx.psyc.virginia.edu/repoview/1/trunk/models/passing/mx-scripts/one.mx
http://openmx.psyc.virginia.edu/repoview/1/trunk/models/passing/mx-scripts/two.mx

OpenMx Documentation, Release 0.2.6-1114

Matrices for allele frequencies, p, q and r
mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=c(.3333), name="P"),
mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=c(.3333), name="Q"),
mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=c(.3333), name="R"),

Algebra for sum of allele frequencies and 1.0 constant for equality constraint
mxAlgebra(expression=P+Q+R, name="SumAlleleFreqs"),
mxMatrix(type="Unit", nrow=1, ncol=1, name="I"),
mxConstraint("I", "=", "SumAlleleFreqs"),

Matrix of observed data
mxMatrix(type="Full", nrow=4, ncol=1, values=c(211,104,39,148), name="ObservedFreqs"),

Algebra for predicted proportions
mxAlgebra(expression=rbind(P*(P+2*R), Q*(Q+2*R), 2*P*Q, R*R), name="ExpectedFreqs"),

Algebra for -logLikelihood
mxAlgebra(expression=-(sum(log(ExpectedFreqs) * ObservedFreqs)), name="NegativeLogLikelihood"),

User-defined objective
mxAlgebraObjective("NegativeLogLikelihood")

)

OneLocusFit <- mxRun(OneLocusModel)
OneLocusFit@matrices
OneLocusFit@algebras

Answers should be 0.2945 0.1540 0.5515 for the allele frequencies p, q and r, respectively, and 627.104 for the negative
log-likelihood. We now turn to the alternative two-locus model.

Two Locus Model Specification

Under the two locus model, we allow for two unlinked (i.e. segregating independently of each other) diallelic loci,
A and B. We denote the O allele as a at the A locus, and as b at the B locus, so as to distinguish between these two
alleles, neither of which generates an antigen. Thus genotypes at the A locus can be AA, Aa, or aa, with genotype
frequencies p2, 2pq and q2, where p is the proportion of allele p in the population, and q = 1− p is the proportion of
allele a. Similarly, genotypes at the B locus can be BB, Bb or bb, with genotype frequencies s2, 2st and t2, given allele
frequencies s and t, respectively. Due to the dominance of A over a and B over b, only those with aabb genotypes
will belong to blood group O (no antigens). The number the genotype combinations which generate a particular blood
group is generally larger than under the single locus model. The combinations, and their expected frequencies in the
population, are given in the following Table:

Phenotype Genotypes Frequency Proportion
A AAbb, Aabb 234 (p^2+2pq)*t^2
B aaBB, aaBb 261 q^2(s^2+2st)
AB AABB, AABb, AaBB, AaBb 182 (p^2+2pq)(s^2+2st)
O aabb 94 q^2t^2

The R script to fit this model is very similar to that of the single locus model. Note, however, that it does not feature
the mxConstraint function. There are in fact two constraints, q = 1 − p and t = 1 − s, but these are trivial
and easily dealt with using mxAlgebra statements. Although one might think that this approach would be suitable
for the single locus model, in which r = 1 − p − q, a difficulty arises because there is no straightforward way to
restrict p + q ≤ 1 which is necessary for r ≥ 0. Models specified so that an allele frequency can go negative during
optimization are inherently fragile. A negative allele frequency would potentially result in negative likelihoods, and
undefined log-likelihoods. Bounding the parameters to lie between 0.0 and 1.0 provides sufficient robustness to this
potential problem.

require(OpenMx)

Bernstein data on ABO blood-groups

3.7. ABO Blood Groups, Matrix Specification 111

OpenMx Documentation, Release 0.2.6-1114

c.f. Edwards, AWF (1972) Likelihood. Cambridge Univ Press, pp. 39-41

TwoLocusModel <- mxModel("TwoLocus",
Matrices for allele frequencies, p and s

mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=c(.3333), name="P"),
mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=c(.3333), name="S"),

Matrix of observed data
mxMatrix(type="Full", nrow=4, ncol=1, values=c(211,104,39,148), name="ObservedFreqs"),

Algebra for predicted proportions
mxAlgebra(expression=1-P, name="Q"),
mxAlgebra(expression=1-S, name="T"),
mxAlgebra(rbind ((P*P+2*P*Q)*T*T, (Q*Q)*(S*S+2*S*T), (P*P+2*P*Q)*(S*S+2*S*T), (Q*Q)*(T*T)), name="ExpectedFreqs"),

Algebra for -logLikelihood
mxAlgebra(expression=-(sum(log(ExpectedFreqs) * ObservedFreqs)), name="NegativeLogLikelihood"),

User-defined objective
mxAlgebraObjective("NegativeLogLikelihood")

)

TwoLocusFit<-mxRun(TwoLocusModel)
TwoLocusFit@matrices
TwoLocusFit@algebras

Results

The allele frequencies estimated by this script should be p = 0.2929, s = 0.1532 with negative log-likelihood of
646.972 units. Comparison of this model with the single locus one shows that although they have the same number of
free parameters (the third allele frequency in the single locus model is constrained) the single locus model has much
greater support. Investigation of the $ExpectedFreqs algebra in the two models helps to illustrate why.

112 Chapter 3. Examples, Matrix Specification

CHAPTER

FOUR

CHANGES IN OPENMX

4.1 Release 0.2.9-1147

• bugfix for ordinal FIML with columns that are not threshold columns

• bugfix for detection of algebraic cycles when multiple objective functions are present

• test cases included for standard error calculation

• enabled standard error calculation by default

4.2 Release 0.2.8-1133

• bugfix for memory leak behavior in kronecker product calculation

• implemented kronecker exponentiation operator %^%.

• actually updating means calculations in ordinal FIML models

• removing standard errors from summary() until they are computed correctly

4.3 Release 0.2.7-1125

• added ‘unsafe’ argument to mxRun function. See ?mxRun for more information.

• bugfix for filtering definition variable assignment to current data source.

• bugfix for using data.frame with integer type columns that are not factors.

4.4 Release 0.2.6-1114

• implemented omxAllInt, use ?omxAllInt for R help on this function

• implemented omxMnor, use ?omxMnor for R help on this function

• added option to calculate Hessian after optimization. See ?mxOption for R help.

• added option to calculate standard errors after optimization. See ?mxOption for R help.

• added R documentation for vech, vechs, vec2diag, and diag2vec

• performance improvements for independent submodels

113

OpenMx Documentation, Release 0.2.6-1114

• added ‘silent=FALSE’ argument to mxRun() function

• added R documentation for omxApply(), omxSapply(), and omxLapply()

• wrote mxRename() and added R documentation for function

• added ‘indep’ argument to summary() to ignore independent submodels (see ?summary)

• added ‘independentTime’ to summary() output. Wall clock time for independent submodels.

• added ‘wallTime’ and ‘cpuTime’ to summary() output. Total wall clock time and total cpu time.

• implemented ‘:’ operator for MxAlgebra expressions. 1:5 returns the vector [1,2,3,4,5]

• implemented subranges for ‘[’ operator in MxAlgebra expressions. foo[1:5,] is valid inside algebra.

• added omxGetParameters, omxSetParameters, omxAssignFirstParameters. Use ? for documentation.

• renamed all objective function generic functions from omxObj* to genericObj*

• enumerated OpenMx and NPSOL options in ?mxOption documentation

• implemented foo[x,y] and foo[x,y] <- z for MxMatrix objects

4.5 Release 0.2.5-1050

• added ‘mxVersion’ slot to output of summary() function.

• added documentation of summary() function.

• set default function precision for ordinal FIML evaluation to “1e-9”

• not throwing an error on mxMatrix(‘Full’, 3, 3, labels = c(NA, NA, NA))

• applying identical error checking to single thresholds matrix and single thresholds algebra

• implemented generic method names() for MxModel objects.

• implemented vec2diag() and diag2vec() matrix algebra functions.

4.6 Release 0.2.4-1038

• definition variables can now be used inside algebra expressions

• definition variables inside of MxMatrices will populate to the 1st row before conformability checking. In plain
english: you do not need to specify the starting values for definition variables.

• the square-bracket operator when used in MxMatrix labels is no longer restricted to constants for the row and
column. The row and column arguments will accept any term that evaluates to a scalar value or a (1 x 1) matrix.

• summary() on a model returns a S3 object. Behaves like summary() in stats package.

• eliminated UnusualLabels.R test case. Too many problems with windows versus OS X versus linux.

• implemented vech() and vechs() functions: half-vectorization and strict half-vectorization

• fixed bug in ordinal FIML when # of data columns > # of thresholds

• added ‘frontendTime’ and ‘backendTime’ values to summary() output. They store the elapsed time of a model
in the R front-end and C back-end, respectively.

• created a name space for the OpenMx library. Only mx**() and omx**() functions should be exported to the
user, plus several miscellaneous matrix functions and S4 generic functions.

114 Chapter 4. Changes in OpenMx

OpenMx Documentation, Release 0.2.6-1114

• corrected ‘observedStatistics’ output of summary() to exclude definition variables

• corrected ‘observedStatistics’ output of summary() count the number of equality constraints

4.7 Release 0.2.3-1006

• added ‘vector’ argument to mxFIMLObjective() function. Specifies whether to return the likelihood vector (if
TRUE) or the sum of log likelihoods (if FALSE). Default value is FALSE.

• renamed omxCheckEquals() to omxCheckIdentical(). omxCheckIdentical() call “identical” so that NAs can be
compared.

• added checking of column names of F and M matrices in RAM objective functions.

• added ‘dimnames’ argument to mxRAMObjective() function. Populates the column names of F and M matrices.

• added square bracket operator to MxAlgebra expressions. A[x,y] or A[,y] or A[x,] or A[,] are valid.

• square bracket operator supports row and column string arguments.

• mxModel(remove=TRUE) accepts both character names or S4 named entities.

• added support for x86_64 on OS X 10.6 (snow leopard)

• fixed support for x86_64 on Ubuntu 9.10 (gcc 4.4)

• throw error message when inserting a named entity into a model with an identical name

• added Anthony William Fairbank Edwards “Likelihood” (1972; 1984) A, B, O blood group example to online
documentation

4.8 Release 0.2.2-951

• omxGraphviz() either prints to stdout or to a filename

• updated omxGraphviz() to draw an arrow if (value != 0 || free == TRUE || !is.na(label))

• omxGraphviz() returns a character string invisibly

• error checking for bogus definition variables

• summary() uses matrix dimnames by default, use options(‘mxShowDimnames’=FALSE) to disable

• added support for gcc 4.4 (Ubuntu 9.10) on x86 and x86_64 architectures

• created R documention for omxGraphviz() function

• generalized dependency specification for objective functions (omxObjDependencies)

• fixed cross-reference links in User Guide

4.9 Release 0.2.1-922

• checked observed data for dimnames on ML objective functions

• using dimnames= argument to mxMLObjective() and mxFIMLObjective() propagates to MxMatrix objects on
output.

• bug fix for error message where model name is incorrect

4.7. Release 0.2.3-1006 115

OpenMx Documentation, Release 0.2.6-1114

• updated user guide in response to feedback from beta testers

• incremented version number to 0.2.1-922 to sync demos and user guide

4.10 Release 0.2.0-905

• several of the twin model demo examples have been recoded.

• fixed bug with non-floating point matrices.

• more error checking for mxPath().

• tools/mxAlgebraParser.py will convert Mx 1.0 algebra expressions (Python PLY library is required).

• renamed “parameter estimate” column to “Estimate” and “error estimate” to “Std.Error” in summary().

• added ‘dimnames’ argument to mxFIMLObjective() and mxMLObjective().

• error checking for RAM models with non-RAM objective functions.

4.11 Release 0.1.5-851

• improved error messages on unknown identifier in a model (beta tester issue)

• fixed bug in mxMatrix() when values argument is matrix and byrow=TRUE

• implemented square-bracket substitution for MxMatrix labels

• fixed a bug in computation of omxFIMLObjective within an algebra when definition variables are used

• significant alterations to back-end debugging flags

• tweaked memory handling in back-end matrix copying

• added support for x86_64 linux with gcc 4.2 and 4.3

4.12 Release 0.1.4-827

• added checking and type coercion to arguments of mxPath() function (a beta tester alerted us to this)

• moved matrices into submodels in UnivariateTwinAnalysis_MatrixRaw demo

• added Beginners Guide to online documentation

• mxRun() issues an error when the back-end reports a negative status code

• named entities and free or fixed parameter names cannot be numeric values

• constant literals are allowed inside mxAlgebra() statements, e.g. mxAlgebra(1 + 2 + 3)

• constant literals can be of the form 1.234E+56 or 1.234e+56.

• type checking added to mxMatrix arguments (prompted by a forum post)

• mxPath() issues an error if any of the arguments are longer than the number of paths to be generated

• data frames are now accepted at the back-end

• FIML ordinal objective function is now working. Still a bit slow and inelegant, but working

• FIML ordinal now accepts algebras and matrices. dimnames of columns must match data elements

116 Chapter 4. Changes in OpenMx

OpenMx Documentation, Release 0.2.6-1114

• implemented free parameter and fixed parameter substitution in mxAlgebra statements

• implemented global variable substitution in mxAlgebra statements

• turned off matrix and algebra substitution until a new proposal is decided

• snow and snowfall are no longer required packages

• added cycle detection to algebra expressions

• mxEval() with compute = TRUE will assign dimnames to algebras

• added dimnames checking of algebras in the front-end before optimization is called

• added ‘make rproftest’ target to makefile

4.13 Release 0.1.3-776

• mxEvaluate() was renamed to mxEval() after input from beta testers on the forums.

• new function mxVersion that prints out the current version number (beta tester request).

• When printing OpenMx objects, the @ sign is used where it is needed if you would want to print part of the
object (beta tester request).

• now supports PPC macs.

• implemented AIC, BIC and RMSEA calculations.

• mxMatrix documentation now talks about lower triangular matrices (beta tester request).

• fixed bugs in a number of demo scripts.

• added chi-square and p-value patch from beta tester Michael Scharkow.

• added comments to demo scripts.

• fixed a bug in the quadratic operator (a beta tester alerted us to this).

• means vectors are now always 1xn matrices (beta tester request).

• added an option “compute” to mxEval() to precompute matrix expressions without going to the optimizer.

• Matrix algebra conformability is now tested in R at the beginning of each mxRun().

• named entities (i.e. mxMatrices, mxAlgebras, etc.) can no longer have the same name as the label of a free
parameter. (This seems obscure, but you will like what we do with it in the next version!)

• can use options(mxByrow=TRUE) in the R global options if you always read your matrices in with the by-
row=TRUE argument. Saves some typing. (beta tester request)

• fixed the standard error estimates summary.

• added mxVersion() function to return the version number (as a string).

4.14 Release 0.1.2-708

• Added R help documentation for omxCheckCloseEnough(), omxCheckWithinPercentError(),
omxCheckTrue(), omxCheckEquals(), and omxCheckSetEquals()

• (mxMatrix) Fixed a bug in construction of symmetric matrixes. – now supports lower, standardized, and
subdiagonal matrices.

4.13. Release 0.1.3-776 117

OpenMx Documentation, Release 0.2.6-1114

4.15 Release 0.1 (August 3, 2009)

• (mxEvaluate) mxEvaluate translates MxMatrix references, MxAlgebra references, MxObjectiveFunction refer-
ences, and label references.

• (mxOptions) added ‘reset’ argument to mxOptions()

• (mxPath) renamed ‘start’ argument of mxPath() to ‘values’ – renamed ‘name’ argument of mxPath() to
‘labels’

– renamed ‘boundMin’ argument of mxPath() to ‘lbound’

– renamed ‘boundMax’ argument of mxPath() to ‘ubound’

– eliminated ‘ciLower’ argument of mxPath()

– eliminated ‘ciUpper’ argument of mxPath()

– eliminated ‘description’ argument of mxPath()

• (dimnames) implemented dimnames(x) for MxMatrix objects – implemented dimnames(x) <- value for
MxMatrix objects

– implemented dimnames(x) for MxAlgebra objects

– implemented dimnames(x) <- value for MxAlgebra objects

• (mxMatrix) added ‘dimnames’ argument to mxMatrix()

• (mxData) renamed ‘vector’ argument of mxData() to ‘means’

118 Chapter 4. Changes in OpenMx

CHAPTER

FIVE

REFERENCE

• OpenMx R documentation

119

OpenMx Documentation, Release 0.2.6-1114

120 Chapter 5. Reference

CHAPTER

SIX

INDICES AND TABLES

• Index

• Module Index

• Search Page

121

	Introduction
	Beginners Guide to OpenMx
	Quick Overview
	Two Model Styles - Two Data Styles

	Examples, Path Specification
	Regression, Path Specification
	Factor Analysis, Path Specification
	Time Series, Path Specification
	Multiple Groups, Path Specification
	Genetic Epidemiology, Path Specification
	Definition Variables, Path Specification

	Examples, Matrix Specification
	Regression, Matrix Specification
	Factor Analysis, Matrix Specification
	Time Series, Matrix Specification
	Multiple Groups, Matrix Specification
	Genetic Epidemiology, Matrix Specification
	Definition Variables, Matrix Specification
	ABO Blood Groups, Matrix Specification

	Changes in OpenMx
	Release 0.2.9-1147
	Release 0.2.8-1133
	Release 0.2.7-1125
	Release 0.2.6-1114
	Release 0.2.5-1050
	Release 0.2.4-1038
	Release 0.2.3-1006
	Release 0.2.2-951
	Release 0.2.1-922
	Release 0.2.0-905
	Release 0.1.5-851
	Release 0.1.4-827
	Release 0.1.3-776
	Release 0.1.2-708
	Release 0.1 (August 3, 2009)

	Reference
	Indices and tables

