OpenMx: Simpified manual for beginners, version 10th March 2010
Preamble 
This manual was written in response to comments that the existing instruction material for OpenMx assumed too much background knowledge.

Here we assume no background knowledge other than competence in elementary statistics: the reader may be someone who is unfamiliar with the programming language R, with OpenMx's predecessor Mx, with structural equation modelling (SEM) or with behaviour genetics methods.  The aim is to teach you something about all these things by working through example scripts written in R and OpenMx.  The focus is on using OpenMx to run models for twin data, ensuring you understand some fundamentals about how such models work.  
The current version of the manual assumes you will be working on a PC in a Windows-based environment.  It is hoped that experienced users of other platforms will add modifications to the manual to make it more generally useful.  N.B. I have marked in yellow highlighting points where input from others is needed – though suggestions for modifications are welcome for any part of the manual.
Getting started in R 
OpenMx is written in a programming language called R, which is free to download.  R is a powerful language for statistical computing, but much of the documentation is written for experts, and so it can be daunting for beginners.  If you go to the website:

http://www.r-project.org/
You will see instructions for how to download R.  Do not be put off by the instruction to "choose your preferred CRAN mirror": this just means you should select a download site from the list provided that is geographically close to where you are.

You may then be offered further options that you may not fully understand.  Just persevere by selecting the 'windows' option from the "Download and install R" section, and then select 'base', which at last takes you to a page with straightforward download instructions. 
Installation of R will create a Start Menu item and an icon for R on your desktop. Double clicking on the R icon starts the program.

This opens a window called R console, in which you can type commands.

You will see a > cursor.

This cursor will not be shown in the examples below, but it indicates that the console is awaiting input from you.

At the > cursor, type:

   help.start() 

This starts a web-based interface to on-line help. You may want to briefly explore this before going further.  As with other programming languages, you type Enter at the end of each command.
Just to familiarise yourself with the console, type:

    1+2
R evaluates the expression and you see output:

   [1]  3

The [1] at the beginning of the output line indicates that the answer is the first element of a vector.

Now type:

   x = 1+2

Nothing happens.  But the variable x has been assigned,  and if you now type x on the console, you will again see the output 

   [1] 3
In R, the results of variable assignments are not shown automatically, but you can see them at any time by just typing the name of the variable.

The assigned variable x will remain assigned unless you explicitly remove it using the 'rm' command. Type:

   rm(x) 
And then type x  again

You now see

  Error: object 'x' not found

You can repeat an earlier command by pressing the up arrow until it reappears.  Use this method to redo the assignment x=1+2, and then type X. Again you get the error message, because R is case-sensitive, and so X and x are different variables.

Now type:

   y = c(1, 3, 6, 7)

and then inspect the variable y.

You will see that it is a vector of numbers [1 3 6 7].  The 'c' in the previous command is not a variable name, but rather denotes the operation of concatenation.  It just instructs R to create a variable consisting of the sequence of material that follows in brackets.

Now type:

   x=

and hit Enter.

The cursor changs to +

This is R telling you that the command is incomplete.  If you now type 1+2 followed by Enter, your regular cursor returns, because the command is completed.
It can happen that you start typing a command and think better of it.  To escape from an incomplete command, and restore the > cursor, just hit Escape.

Also, if a program is running and you want to stop it, you can escape with Ctrl+c.
Now select New Script from the File option on the menu bar. A new window opens titled R editor. This is used to hold a script, i.e. a list of R commands that don't execute until you instruct R to run them. 
If you type in the Editor

  1+2

  3+4

  5+6

and then select Run All from the Edit option on the Menu Bar, the script is executed, and you see the results of the computations.

You can write or edit scripts directly in the Editor, but you may find it easier to use a word processor to do this and then paste the script into the Editor, as this allows for easier editing.
Important: Traditionally, R scripts use <- instead of =.  

So, you will see instances of scripts which have commands such as 
a <- 1+3.

This is equivalent to
 a = 1+3.  

It is also possible to have the arrow going the other way , i.e., 1+3 -> a, which means the same thing.

Both methods for denoting an assignment are used in this manual, so you become familiar with interchanging them.

Commenting: A good script will contain many lines preceded by #

This indicates that the line is a comment – it does not contain commands to be executed, but provides explanation of how the script works.  The demonstration scripts in this manual are heavily commented so that you can understand how they work.

Before you start running the scripts in this manual, create a project directory that will contain all of your scripts, data, and workspace for a project.  Then go to the menu and select Change dir from the File menu, and navigate to your new directory.  This means that all your work will be saved in one place.  Whenever you start up R from a file in that directory, it will continue as your working directory.
A note on quotes:  If you paste a script into your R console or browser,  quotes may get reformatted, causing an error.  Always check: for R, single quotes should be straight quotes, not 'smart quotes'. You may need to retype them if your system has reformatted them.
As you work through this manual you will become more familiar with R, but it is likely that you will also want to extend your knowledge beyond the very basic details given here.
There is a good introductory manual that can be downloaded from the web-page that you saw when you typed help.start().

In addition, the following books are recommended:

Braun, W. J., & Murdoch, D. J. (2007). A first course in statistical programming with R. Cambridge: Cambridge University Press.

Crawley, M. J. (2007). The R Book. Chichester, UK: Wiley.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S, 4th edition. New York: Springer. (Do not be put off by the title: it really should be entitled 'with S and R')
Generating simulated data in R
As a first exercise in running a script in R, we shall generate a simulated set of data for two variables, look at some basic statistics for the variables, plot them, and save the data. We will be using the data for more interesting purposes later on, but for the time being, the aim is to familiarise you with some key R commands.  In addition, it is very useful to know how to simulate datasets with specific characteristics, as these can be used to check how various analyses work. Copy the script below into the R editor.  
#-------------------------------------------------------------------------------------------------------
#   Generate correlated data
#  "Simulate data" script (based on p 11 of OpenMx manual )
#-------------------------------------------------------------------------------------------------------

# modified version by: DVM Bishop, 3rd March 2010
# Simulates data on X and Y from 50 cases, with correlation of .5 between them

# (NB using smaller N than in original example, so user can see mismatch between obtained correlation and that specified by user).
require(MASS)        # MASS is a R package that you need for generating multivariate normal data

set.seed(2)             # A seed is a value used in creating random numbers; 

                               # You don't need to understand how it works

                               # Keep the seed the same if you want the same random numbers every time you run

                               # Change the seed to any other number to run the script and get different random numbers

rs=.5                                 # User-specific correlation between variables

mydata=mvrnorm(50,       # Create a matrix of multivariate random normal deviates, called mydata, and specify number of XY pairs to generate

   c(0,0),                            # User-specified mean values for X and Y ; NB c denote concatenation in R
   matrix(c(1,rs,rs,1),2,2))  # Covariance matrix to be simulated, 2 rows, 2 columns

                              # this will give a matrix as follows:  [1 .5

                              #                                                       .5  1]

mylabels=c('X','Y')                  # Put labels for the two variables in a vector

dimnames(mydata)=list(NULL,mylabels) # Allocate the labels to mydata (our created dataset)

                                     # Just accept that NULL is needed here: too complicated to explain

summary(mydata)                      # Print means for mydata

print('Covariances')

cov(mydata)                          # Print covariance for mydata

print('Correlations')

cor(mydata)                          # Print correlation for mydata

print('Note that actual values may differ from specified value of .5, especially with small sample size')

print('SDs')

sd(mydata)                           # Print SD for mydata

print('Note that the correlation = covariance/(SD_X * SD_Y)')

plot(mydata)                         # Plots a scatterplot of X vs Y

write.table(mydata,"myfile")         # Saves a copy of mydata in your R directory under name "myfile"
# If you want to re-read your data another time, you can use a command such as

# newdata=read.table("myfile"); this will create a matrix called newdata containing the data
Note that the first executable command (after comments) uses the 'require' statement.  R has a great many functions, some of which are available from the main package; others are more specialised and so are not automatically available, but can be accessed by specifying the relevant package using the 'require' statement.  When we come to use OpenMx, we will always need to start a script with require(OpenMx), in order to access the specialised functions of OpenMx.

You should now try to run the script, inspect the output, and check that you can understand it.  It can be a useful exercise to work through the script, running one line at a time, so you can work out what each line does.  Note that you can run just part of a script by selecting that part and typing Ctrl+r

You should then try modifying the script to see what effect this has.  Experimenting with a script is one of the best ways of learning how it works.

You will see that the program allows you to save your simulated data; you should be able to find the data file in the working directory that you set up earlier.
A useful feature of R is the edit command:


nudata=edit(mydata)

This opens your data in a window and allows you to edit values from your original matrix('mydata') and save as a new matrix called 'nudata'.  Or you can just use edit to update an existing matrix by a command such as:

    mydata=edit(mydata)

 If you want to save the updated values, you need to rerun the write.table command.
Note that the program encourages you to inspect the correlation and covariance matrices for  X and Y.  Most of the analyses in OpenMx  are concerned with relationships between variables as expressed in covariances, rather than with absolute values (as, e.g. reflected in the means). You may be more familiar with correlations than covariances.  It is important that you understand how one is derived from the other, as explained in the script comments above. In essence, the correlation and covariance express the same information, but the correlation is scaled relative to the standard deviations of the variables, so that its values lie within a range from -1 and 1.  The covariance is scaled in the original units. This is just like the variance, which is closely related: the variance is equivalent to the covariance of a variable with itself.
Matrix operations in R

 A matrix is a two-way array of numbers. Most computations in OpenMx are done on matrices, which allow complex computations on data arrays to be done in a very efficient manner.

In the previous script you generated two kinds of matrices. The first was 'mydata', the matrix of values for X and Y.  The main way you will use such matrices in OpenMx is to import raw data for analysis, which are then used to extra summary statistics.  You have already encountered the commands summary, cov, cor, and sd, which provide basic statistics for  a data array.  The main additional thing you need to know how to do is to select a subset of data from a data matrix.

Let us first generate a matrix of random numbers.  The rnorm function generates random numbers.  If we just want 200 random numbers, we could type:

   mydata=rnorm(200)

 but this gives just a long list of numbers (a vector), whereas we want the data in rows and columns.  To achieve this, we use the 'matrix' command, i.e.:

myarray=matrix(rnorm(200),nrow=40)
Note that we need to specify the number of rows in the matrix, but R can then work out how many columns. We now want to make a new variable, myarray2, which just has columns 2 and 3 from the original array:

myarray2=matrix(c(myarray[,2:3]),nrow=40) # Format to have 40 rows and 2 columns

When selecting from myarray, we could have used c(myarray(1:40,2:3), to specify that we wanted all 40 rows and columns 2-3.  However, since we wanted all the rows, we just left the row specification blank, which tells R to take the whole row dimension.  You should experiment with selecting from myarray in other ways, .e.g. selecting rows 10-20.

The bulk of the computational work on matrices in R will be done on covariance matrices.  We shall illustrate the different operations on a simple 3 x 3 matrix, which you enter as follows:
          mymat = matrix(c(1, 1, 2, 3, 1, 2, 4, 3, 1), nrow=3)

Check the output and you will see that the vector of numbers is converted to a 3 x 3 matrix by the use of the matrix command, with nrow specified as 3.  But is there something surprising about the result?  You might have expected the values to be entered into the matrix one row at a time, whereas you will see they are entered by columns.   You can change this by giving a specific instruction when setting up the matrix.  Compare mymat with mymat2:
mymat2= matrix(c(1, 1, 2, 3, 1, 2, 4, 3, 1), nrow, byrow=TRUE)
Individual elements can be extracted from a matrix mymat by specifying mymat[i,j],

which extracts the element in the ith row and jth column.
Transpose:  A matrix is transposed by exchanging rows and columns. In our example, mymat2 is a transpose of mymat.  In common parlance, the transpose of matrix X is written as X'.
The transpose operation is performed in R with the command t().

Try:


t(mymat)

If you start with a 2 x 3 matrix, its transpose with have 3 rows and 2 columns.

Matrix addition and subtraction: these are straightforward, and done element-by-element on two matrices of the same dimensionality.  Try, for instance, mymat+mymat2
Matrix multiplication. This is not so simple.  You may think it is, because if you type mymat * mymat2, you  will get an answer analogous to addition, with each element of the first matrix multiplied by its corresponding element in the second matrix.  However, this is NOT true matrix multiplication.   The operator for matrix multiplication involves three characters, as in this example:


mymat%*%mymat2

The explanation below borrows heavily from an account of matrix multiplication on the website: http://www.purplemath.com/modules/mtrxmult.htm

Let us first define two matrices, A and B, as below.  You should by now be able to work out how to create these matrices in R. 

A=  [ 1 0 -2 

          0 3 -1]

B = [  0   3

         -2 -1

          0  4]

To multiply the two matrices, multiply the ROWS of A by the COLUMNS of B. First take the first row of A and the first column of B, and multiply the first entries, then the second entries, and then the third entries, and then add the three products. The sum is one entry in the product matrix AB; in fact, being the product of row 1 and column 1, the result is the 1,1-entry of AB. Then continue in like manner. For instance, the sum of the products from row 2 of A and column 1 of B is the 2,1-entry of AB.
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The final answer is:
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Matrix multiplication can seem counter-intuitive, but it relates to real-world problems. 

For instance,  suppose a saleman makes the following sales:

Monday: 3 T-shirts at $10 each, 4 hats at $15 each, and 1 pair of shorts at $20. 
Tuesday: 4 T-shirts at $10 each, 2 hats at $15 each, and 3 pairs of shorts at $20.
If we put the cost of each item in mycosts  = [ 10 15 20]

And the quantities sold in my mysales = [3 4

                                                                          4 2

                                                                           1 3]

Then the total income for Mon and Tue can be computed by mycosts%*%mysales  = [110 130]

This example is taken from a useful resource for learning about matrix algebra:

http://www.zweigmedia.com/RealWorld/tutorialsf1/frames3_2.html
Matrix inversion.  Matrix inversion is the matrix equivalent of 1/X, or taking X-1 and is conventionally written as X~.    The meaning is as for X-1 with a single digit, i.e. just as 

4 * 4-1= 1
X * X-1 = 1, except that for a matrix, the result is the identity matrix, I, which is a matrix with zero entries except for ones on the diagonal.

The inverse of a matrix is found in R using 'solve', for example, if


X = [ 3 1 5

                       2 0 1

                       9 2 7]

Then 

solve(X) = [-0.2222222  0.3333333  0.1111111

                   -0.5555556 -2.6666667  0.7777778

                     0.4444444  0.3333333 -0.2222222]

Now multiply X by solve(X) to confirm that this leads to a 3 x 3 identity matrix. You will find that the off-diagonal values have very small but real values, rather than zero.  This is due to rounding errors.

Determinant

A determinant is a real number associated with a square matrix, which is obtained using the 'det' function in R.

For a simple 2 x 2 matrix

     [a  b

      c d]

the determinant is ad-bc.

The determinant is involved in computations to find the inverse of a matrix, but R does this for us automatically.  Unless you are very interested in matrix algebra, you need not worry about how to compute the determinant by hand, though the following gives a clear account:
http://people.richland.edu/james/lecture/m116/matrices/determinant.html
Eigenvalues and eigenvectors.  The command
    eigen(X)

gives two matrices as output.

The first is the eigenvalues. For X as defined above, these are:

[12.3300698 -1.9571103 -0.3729595]

The second matrix has the same dimensionality as X and has eigenvectors:

 [ -0.4794238 -0.6904042  0.1286079

   -0.1479209  0.3962907 -0.9855369

   -0.8650273  0.6052238  0.1103495]

A reasonably clear explanation of the meaning of eigenvalue and eigenvector comes from Andy Field's textbook, Discovering Statistics in SPSS, 2nd edition, on which the following description is based.
Start by considering the two-dimensional case.  If we have two variables in a bivariate normal distribution, as shown in Figure 1, then their distribution forms an ellipse.


[image: image3]
If we draw lines to measure the height and length of the the ellipse encompassing the distribution, these correspond to eigenvectors; i.e. they are orthogonal lines of a given direction.  Each eigenvector has an eigenvalue that indicates its length.  We can visualise scaling up to three dimensions, in which case the distribution would have the shape of an American football that could be described by three orthogonal vectors. The ratio of the largest to smallest eigenvalue tells us something about dependencies between variables: returning to the 2D example above, if X and Y were uncorrelated, then the scatterplot would have a circular form, with the two eigenvalues of equivalent size;  on the other hand, if they were so strongly correlated that all the points fell on a single line, then there would be one very large eigenvalue, corresponding to the length of the distribution, whereas the height would be of negligible size.
Likelihood estimation 
We noticed when generating the multivariate dataset, mydata, that although the mvrnorm command allows us to specify the correlation between the simulated variables, the actual correlation observed might depart from this value, especially when the sample size is small. You will also be familiar with the idea of a 'nonsignificant' yet positive correlation.  For instance, if in a sample of 20 cases, you obtain a correlation of .2, this is not statistically significant, which is to say that it is not reliably different from zero.  These observations illustrate the point that any observed statistic is an estimate of a parameter which is never quite precise – the degree of precision will depend in part on the sample size.   Rather than just specifying whether a correlation is significant or not, it is possible to adopt a different approach of estimating the likelihood that the observed value comes from a population that has a given true value.   This point will be illustrated in the next script.
Our script will use the  'mydata' file that you created earlier. If you are running the same session, it will still be present in memory.  If you have shut down R, it will only be present if you accepted the option "Save Workspace Image" when exiting R. This is not a problem, because we saved the data, and so can just read it in.
There is an easy way to check which variables are present in memory.  At the R console, type

    objects()

and you get a list of all variables.

NB. If at any point you want to clear all variables from the workspace, type:

rm(list = ls(all = TRUE))

#-------------------------------------------------------------------------------------------------------

# Likelihood demo

#  Computes likelihood of observed correlation relative to range of true population correlations

# by DVM Bishop, 6th March 2010

#-------------------------------------------------------------------------------------------------------

mydata=read.table("myfile")  # read in the data we created earlier

myn=nrow(mydata)             # set myn to the number of cases

mycoro=cor(mydata)           # set mycoro to the correlation matrix for mydata

mynvar=nrow(mycoro)          # set mynvar to the number of variables

myresult=matrix(0,nrow=9,ncol=2)  # set up a blank matrix with 10 rows to hold expected correlations and likelihoods

mylabels=c('True correlation','-LL')    # Put labels for the two columns of myresult in a vector

dimnames(myresult)=list(NULL,mylabels) # Allocate the labels to myresult

for (myx in c(0:9))   # Start a loop, which will run with value of myx updated from 0 to 9 on each pass through the loop

{

 mytruecor=matrix(c(1,myx/10,myx/10,1),nrow=2)   # Divide myx by 10 to give expected correlation for this pass of loop

 myresult[myx,1]=myx/10       # Results table has true covariance value in column 1

 myLL=(myn-1)%*%log(det(mycoro))-log(det(mytruecor))+sum(diag(mytruecor%*%solve(mycoro))-mynvar)

#  formula for computing negative log likelihood of observed correlation matrix, given true population value

 myresult[myx,2]=myLL # put -likelihood value for this pass of the loop in myresult

}  # close curly bracket denotes end of loop

plot(myresult) #plot true correlation vs likelihood
In practice, for computational reasons, it is customary to report a value of 2 times the negative log likelihood, rather than the raw likelihood. The lower this value, the better the fit.

As you will see from the plot, the negative log likelihood function is at a minimum when the true population covariance is .5.

Prepackaged datasets.  The 'data' function can be used to read sample data that has been pre-packaged into the R library. To see a list of the prepackaged datasets that are available, type
   data() 

One of the listed datasets is 'attitude'. If you type 
  data(attitude)

you will load in this dataset.
You will see that the demonstration file has 30 cases and 7 variables.
We shall now re-run the Likelihood Demonstration script using just the first two variables from 'attitudes'.

To select those variables, type:

  mydata=attitudes[,1:2]

You can now re-run the Likelihood Demonstration script using these data. To select the current 'mydata', rather than reading in the saved file, just add a # to the start of the first uncommented program line – this 'comments out' that line so it will not run, and you will use the version of 'mydata' that you have just created.  Compare the likelihood plot with the actual correlation in this dataset.
Likelihood estimation of correlation matrix with three variables. Our next script demonstrates how the same matrix formula for likelihood estimation works if we have three variables, and so three correlations to estimate: between variables 1 and 2, 1 and 3, and 2 and 3. We use this demonstration to show how some combinations of correlations yield incomputable likelihood estimates.  Read this script and try to understand how it works; it can be useful to type it in to the console one step at a time and then look at the values of different variables.  

#-------------------------------------------------------------------------------------------------------

# Likelihood demo with 3 variables

#  Computes likelihood of observed correlation relative to range of true population correlations

#  by DVM Bishop, 6th March 2010

#-------------------------------------------------------------------------------------------------------

data(attitude)  # read in one of R's prepackaged datasets

mydata=attitude[,1:3]  #select the first 3 columns (ratings, complaints, privileges) for new dataset called mydata

myn=nrow(mydata)             # set myn to the number of cases

mycoro=cor(mydata)           # set mycoro to the correlation matrix for mydata

mynvar=nrow(mycoro)          # set mynvar to the number of variables

mytable=matrix(0,nrow=1000,ncol=2)  # table to hold results 

myloopcount=0 #initialise counter that increments each time you run through the loop

for (myx in c(0:9))   # Start a loop, which will run with value of myx updated from 0 to 9 on each pass
                      # myx determines correlation between vars 1 and 2 (= myx/10)

{                     # Curly brackets enclose all commands within the loop

  for (myy in c(0:9))   # Next loop (for correlation between vars 1 and 3)

  {

    for (myz in c(0:9))   # Next loop (for correlation between vars 2 and 3)

    {

     mytruecor=matrix(c(1,myx/10,myy/10, myx/10, 1,myz/10,myy/10,myz/10,1),nrow=3)   #  expected correlation for this pass of loops; NB only positive correlations used here, but could extend to negative values
     myloopcount=myloopcount+1 
     myLL=(myn-1)%*%log(det(mycoro))-log(det(mytruecor))+sum(diag(mytruecor%*%solve(mycoro))-mynvar)

     # formula for computing log likelihood of observed correlation matrix, given true population value

     # Note this is same formula as for single variable; matrix algebra means we can just scale up N variables without altering formula

     mytable[myloopcount,]=c(myx*100+myy*10+myz,myLL)

     # Create 3 digit number that represents myx in first digit, myy in second, and myz in third

     }   # close curly bracket denotes end of innermost loop

   }     # end of next loop

}        # end of outermost loop

 droprow=c(which(is.nan(mytable[,2])),which(is.infinite(mytable[,2])))  

 # identify rows where -LL is not calculated (not a number (NaN) or infinity),

 # You can see how the elements of this formula work by typing help(which), help(is.nan),help(is.infinite)

 mytable2=mytable[-droprow,]      #mytable2 is same as mytable but with dropped rows
                                                             # (minus sign before droprow means select all but these rows)

plot(mytable2, xlab="100*r12 plus 10*r13 plus r23",ylab="-LL") 
 myresult=match(mytable2[,2],min(mytable2[,2])) #finds row in mytable2 with minimum value in col. 2

 mymin=mytable2[is.finite(myresult)] #myresult has NaN for all rows except the one that matches minimum
 print ("Index for minimum value of -LL, -LL")

 print(mymin)
When you run this script, you get a plot showing –LL values in relation to the pattern of correlations.  This uses a simple, if rather clunky, method to show the three correlations associated with a given value of –LL with a 3-digit number; e.g. the number 435 means that correlation between rating and complaints is .4 (the first digit), correlation between rating and privileges is .3 (the second digit) and correlation between complaints and privileges is .5 (the third digit).  You can see that the –LL reaches a minum somewhere in the middle of the range from 800-900.  The precise value of the correlation index, 846,  is stored in variable mymin and is printed on the console, together with the associated value of –LL.   You can compare this with the actual correlations in mydata by typing
   cor(mydata)
Note that the level of precision of estimates is constrained by the fact that we have only estimated likelihood for true values of correlation coefficients in steps of .1.  After you have finished this section, as an exercise you might like to consider how you could modify the program to give an estimate to two decimal places. Note that as well as modifying the ranges for the loops and the formulae for rx,  ry and rz, you would need to change the command that initialises mytable, as it will need to hold many more values (100^3, rather than 10^3).
Before making changes to the script, take a look at the values in 'mytable'.   For some rows there are numeric values of –LL, but for others the value is given as NaN, which means 'not a number', or Inf (infinity).   The  mathematical explanation for this is that these are cases where the matrix is 'not positive definite', i.e. it has one or more negative eigenvalues, but there is also an intuitive explanation: these are cases where the set of correlations is not possible.  For instance, the first row where a NaN occurs is where the index is 59, i.e. the correlation matrix is 
  1.0  0.0  0.5

  0.0  1.0  0.9

  0.5  0.9  1.0
A moment's thought indicates that if the correlation between variables 2 and 3 is .9, then they would be closely similar: it would not then be possible for variable 1 to be totally uncorrelated with variable 2, but still have correlation of .5 with variable 3. 

Create this matrix on the console.  The quickest way to do this is by typing


thismat=diag(1,3)   # creates 3D matrix with ones on the diagonal

and then use

thismat=edit(thismat)

to open the edit screen and change the off-diagonal elements.

Now type: 

eigen(thismat)
 You will see that one of the eigenvalues is negative.

If you modify the matrix so that the correlation between variables 2 and 3 is .8, rather than .9, you will find that the eigenvalues are all positive.  
Optimization

In the context of structural equation modelling, optimization is a process whereby a model is specified, and different values of its free parameters are iteratively tested by computing the likelihood of observed vs. expected covariances (or other statistics).  In our previous example, we could obtain an optimised estimate of the correlation matrix by testing all possible combinations of three correlations, and picking the correlation matrix with the lowest value of –LL.  This is, however, a very labor-intensive method, especially if want to have estimates to precision of more than one decimal place.  One can see that if more than three variables were involved, it would quickly become non-viable, even on a fast computer.

Optimization is the process of searching through the range of possible values that a model's parameters can take to identify the one that gives the best fit.  Various computational algorithms can be used in optimization: this is a technically complex area.  In OpenMx non-expert users need not concern themselves with the details of how optimization is done, because default procedures will usually work well.  In effect, the method homes in on a set of values by tweaking estimated values in the direction that reduces the estimate of –LL. It is important to realise that optimization is not infallible, especially with complicated multivariate models.  
OpenMx model specification in R. Before considering a script for optimisation, a brief introduction is needed to R syntax for model specification in OpenMx.  To access OpenMx commands, type:


require(OpenMx)

Now type:

     mxMatrix(type="Full",nrow=3,ncol=3, values=c(3,2,1,0,2,4,3,1,2),name="A")
You will see you have created a matrix, A, with the specific values given above, but also with a list of properties, listed preceded by the symbol @.

An OpenMx model will typically include one or more mxMatrix statements.  Here is a very simple model that specifies two matrices and then adds them together.
 # first of all specify the model; it does not run at this stage

myeasymodel=mxModel("add up",             #the name 'add up' is used in output from the model
 mxMatrix(type="Full",nrow=3,ncol=3, values=c(3,2,1,0,2,4,3,1,2),name="A"),

 mxMatrix(type="Full",nrow=3,ncol=3, values=c(0,0,1,1,2,0,3,0,0),name="B"),

 mxAlgebra(expression=A+B,name="mysum",)  
)  #final close bracket denotes end of model specification
myrun=mxRun(myeasymodel)   # results of running the model are saved to 'myrun'
print(myrun@output$algebras)   # shows matrix mysum
Note the commas after each step of model specification except the final one.  This indicates there are more model commands to come. Once the model is completed, a final close bracket is used.
This example is just to give you a feel for the structure of an mxModel; in practice, you would not use OpenMx for simple matrix manipulation: rather it is used in optimization. The next script shows an OpenMx in this more usual role.
#-----------------------------------------------------------------------------------
# Optimization demo

#  by DVM Bishop, 7th March 2010

#  based on script on p 13 of OpenMx Users Guide 

#---------------------------------------------------------------------------------

require(OpenMx) # loads OpenMx package

data(attitude)  # read in one of R's prepackaged datasets

mydata=attitude[,1:3]  #select the first 3 columns (ratings, complaints, privileges) 

#---------------------------------------------------------------------------------

# set up a model which specifies the observed data, matrices for computed expected values, and optimization method
mytriCovModel <- mxModel("triCov",

mxMatrix( type="Full", nrow=1, ncol=3, free=TRUE, values=60, name="expMean" ),

#'values' gives starting values for estimates: select a number close to true means

# N.B. can give different starting values for different variables, e.g. values=c(60,55,50)

mxMatrix( type="Lower", nrow=3, ncol=3, free=TRUE, values=100, name="Chol" ),
# see text for explanation of 'Chol'

mxAlgebra( expression=Chol %*% t(Chol), name="expCov", ),  

mxData( observed=mydata, type="raw" ),  #'type' can be raw or cov (if covariance matrix as input)

                                        # if raw data input, then covariance matrix is computed by OpenMx

mxFIMLObjective( covariance="expCov", means="expMean", dimnames=colnames(mydata) )

)

#-------------------------------------------------------------------------------------------------------------------------

# end of model specification; opening bracket after mxModel is matched by a close bracket

#------------------------------------------------------------------------------------------------------------------------

triCovFit <- mxRun(triCovModel)           #perform optimisation with model as set up above

my_emean=triCovFit[['expMean']]@values    # see text for explanation of '@values'

print("observed means")

print(mean(mydata))

print("expected means under optimal fit")

print(my_emean)

my_ecov=triCovFit[['expCov']]@result

print("observed covariances")

print(cov(mydata))

print("expected covariances under optimal fit")

print(my_ecov)

LL <- mxEval(objective,triCovFit);

print("-log likelihood")

print(LL)

#------------------------------------------------------------------------------------------------------------------------- 
 This script computes the likelihood (based on the similarity between observed and expected covariances) starting with the expected covariance set to the start values provided. These are then tweaked to find values that give a higher likelihood (or lower value of -2LL). In this way the process converges on the best fit between expected and obtained values. There are different algorithms that can be used to control how the tweaking process is done; in this script, a process called FIML is used. 
The key point to understand about OpenMx is that it always involves setting up a model.

This can have any name you like; here we have called it 'mytriCovModel'. This name is assigned to the model in the same way as you might assign a name to a matrix. The key difference is that the model contains a set of parameters.  If you are familiar with other programming languages, it may help to think of a model as analogous to a structure. 

There is great flexibility about what a model can contain; and indeed a model be built out of other (sub)models.   The mxRun function will run a model through the optimizer. The return value of this function is an identical model, with all the free parameters in the cells of the matrices of the model assigned to their final values.
The key information needed for our optimization here is:


A matrix of observed data; this is specified using the command mxData


Matrices which specify how the expected covariances are to be derived, these are defined with the command mxMatrix.   The optimization procedure will start by estimating –LL for start values provided by the user – these are given as 'values'.  The other point to note about an mxMatrix is that we can distinguish elements that we want to have estimated by the program (where Free=TRUE), and those we want to keep fixed at the start value.  We will encounter cases where Free=FALSE later on.  For the present, note that we want to estimate the whole covariance matrix, and so Free=TRUE for all elements of the expected covariance matrix.


Alebraic expressions which specify operations to be carried out on matrices, defined with mxAlgebra, and explained for this script more fully below


An expression specifying the optimization method to be used, here defined as mxFIMLObjective; the details of this are not visible to the user, but it specifies a procedure for comparing likelihoods for obtained and expected values of the covariances in order to minimize the –LL function.
Cholesky decomposition. The mxAlgebra section of this script illustrates one important method that is commonly used in optimization routines, i.e. the Cholesky decomposition. As we saw in the previous script, if you allow a square covariance matrix to have different values estimated for it, there is a danger that the resulting matrix will not be suitable for the matrix operations that are used in estimating likelihood.  In formal terms, it is not 'positive definite' (which means that it has one or more negative eigenvalues).  This can be avoided if, instead of estimating the expected covariance matrix directly, we estimate a lower triangular matrix, which, when multiplied by its transpose, yields the matrix of expected covariances. This is known as a Cholesky decomposition. We will encounter the Cholesky decomposition later on, where it can be used in structural equation models to perform a process analogous to stepwise multiple regression, but its more general use in modelling is just as a computational fix to constrain the kinds of matrix that can be estimated.   
Note: in these scripts so far, you have encountered statements such as free=TRUE.

This can be abbreviated to free=T (or free=F, for false).  We avoid doing that because it can confuse beginners, but you will encounter scripts with this abbreviation.  You should avoid using T or F as variable names. One reason why the scripts here tend to use variable names starting with 'my' is to help distinguish user-defined variables from R functions and operators.
A second point to note is that the second mxMatrix command now specifies that the type is "Lower".  You can probably work out what this means, but may be confused by the fact that 'values' specifies a single starting value for the matrix. If this, or other features of a script, has you uncertain, you should always experiment to clarify what is happening in the script.  In this case, you can just type at the console:

  mxMatrix( type="Lower", nrow=3, ncol=3, free=TRUE, values=100, name="Chol" )
and you will see full information about the matrix.

Compare this with the command:

   mxMatrix( type="Lower", nrow=3, ncol=3, free=TRUE, values=c(100,110,90,80,70,60), name="Chol" )
You can refer to different parts of a model by using the name of part of a model, and by using the @ operator  to denote the part you want.  As an illustration, let us make a toy model that just contains two matrices, one Full and one Lower, with the command:

   mytoy=mxModel("mytoy",

 mxMatrix(type="Full",nrow=1,ncol=3,free=TRUE,values=0,name="mymat1"),

 mxMatrix(type="Lower",nrow=3,ncol=3,free=TRUE,values=.5,name="mymat2")
)
if you now type

   mytoy

you can see the properties of the model, which has a number of blank fields, except for '@matrices'

To inspect the matrices, you type:

  mytoy@matrices
You now see the detailed information for both matrices.

Suppose you want to just inspect mymat2, then you can either type

  mytoy@matrices[2]

to specify that you want to see the 2nd matrix, or you can reference it by name, enclosed in double square brackets:

  mytoy[['mymat2']]

You can also specify that you only want to see part of the information of mymat2, by using the @ operator, e.g. to just see the start values:

  mytoy[['mymat2']]@values

Structural equation modeling using RAM path method (section still under development)
Suppose we have collected data on two verbal tests, words(W)  and syntax (S), and two nonverbal tests, blocks (B) and pics (P), in a sample of 80 people.  We want to test the hypothesis that the verbal tests are indicators of an underlying verbal factor (V), and the nonverbal tests are indicators of an underlying nonverbal factor (N), but the two factors are entirely independent.   Before proceeding, it should be noted that this is a small sample size for testing such a model, but we use it to make it easy for users to inspect the dataset.
The key features of this model are easy to capture in a diagram , as in Figure x.

[image: image4]
Diagrams not my strong point: am hoping someone can help here. Need double-headed arrows on variables, with labels e, f, g, h!
The key features of this model are easy to capture in a diagram , as in Figure x.  As is traditional in structural equation modeling (SEM), observed variables are shown in squares, and latent (i.e. postulated explanatory) variables in circles (or ellipses).

A structural equation model is principally concerned with explaining relationships between variables, rather than means. The information we have for testing our model comes from the covariance matrix between our 4 observed variables.  Our model allows us to compute an expected covariance matrix, which can be compared with the observed matrix.   Note that the diagonal of a covariance matrix contains the variances of the variables, which are equivalent to the covariance of a variable with itself.  
A path diagram like Figure x can be converted into a set of structural equations that allow estimation of the size of the paths, given the observed covariance matrix.  The expected covariance between any two observed variables can be estimated by applying path-tracing rules, which explain which paths should be multiplied and added to give a formula for the covariance.  For a full account of path-tracing rules see:
http://ibgwww.colorado.edu/twins2002/cdrom/HTML/BOOK/node77.htm
1. Trace backward along an arrow and then forward, or simply forwards from one variable to the other but never forward and then back 

2. Pass through each variable only once in each chain of paths 

3. Trace through at most one two-way arrow in each chain of paths 
For our simple model, this is really quite straightforward. The covariance between W and S is ab, because we trace back along path a, then forward (via V) along path b, and multiply the two paths.  The covariance between W and B is zero, because there are no paths linking the two variables. The variance of W is a2 + e, where e is the portion of variance not accounted for by the model, i.e. the residual variance.
As an exercise, you should complete the following covariance matrix:
	
	W
	S
	B
	P

	W
	a2+e
	ab
	
	

	S
	ab
	
	
	

	B
	0
	
	
	

	P
	
	
	
	


The RAM path method allows one to compute expected covariances from a model using matrix algebra. It uses the path diagram specification to derive three matrices: S, A and F. 

A is for the asymmetric paths, or one-headed arrows.

S is for the symmetric paths (two-headed arrows) and is symmetric. 

F is for filtering the observed variables out of the whole set (see below). 

Let the number of observed variables be mobs, and number of latent variables by mlat, and mtot = mobs+mlat.

The dimensions of matrices A and S are both mtot × mtot,

For the model in Figure x, 

A = 

	
	
	V
	N
	W
	S
	B
	P

	
	V
	0
	0
	0
	0
	0
	0

	
	N
	0
	0
	0
	0
	0
	0

	
	W
	a
	0
	0
	0
	0
	0

	
	S
	b
	0
	0
	0
	0
	0

	
	B
	0
	d
	0
	0
	0
	0

	
	P
	0
	e
	0
	0
	0
	0


S = 

	
	
	V
	N
	W
	S
	B
	P

	
	V
	1
	0
	0
	0
	0
	0

	
	N
	0
	1
	0
	0
	0
	0

	
	W
	0
	0
	e
	0
	0
	0

	
	S
	0
	0
	0
	f
	0
	0

	
	B
	0
	0
	0
	0
	g
	0

	
	P
	0
	0
	0
	0
	0
	h


Note that cell(1,1) and cell (2,2) of matrix S, which correspond to variances of the latent variables, are fixed to one. In effect, we standardize our latent variables, to avoid having too many parameters to estimate in the model.
F is a matrix of size mobs x mtot, and has a value of 1 for each cell where the row and column are the same 

F = 

	
	
	V
	N
	W
	S
	B
	P

	
	W
	0
	0
	1
	0
	0
	0

	
	S
	0
	0
	0
	1
	0
	0

	
	B
	0
	0
	0
	0
	1
	0

	
	P
	0
	0
	0
	0
	0
	1


Now that we have defined these matrices, plus the identiy matrix I (size mtot x mtot, with ones on diagonals and zeroes elsewhere), the expected covariance matrix can be computed by a matrix formula: 

      F * (I-A)-1 * S * ((I-A) -1)' * F'

We shall now demonstrate this with an example.  Let us assume that the true values of the paths in Figure X are as follows:

	path
	a
	b
	c
	d
	e
	f
	g
	h

	value
	5
	6
	3
	7
	2
	3
	1
	4


You should be able to complete this table by hand, using the formulae derived above from path tracing rules
Expected covariance matrix

	
	W
	S
	B
	P

	W
	
	
	
	

	S
	
	
	
	

	B
	
	
	
	

	P
	
	
	
	


Now, using the specifications given above, create matrices A, S and F.

You can do this most efficiently by creating a blank matrix, and then adding non-blank values using edit. To make a blank 6 x 6 matrix, type:

   myA=matrix(c(0),nrow=6,ncol=6)

then type
  myA= edit(myA) 
and you can type in the nonblank values. Another way to do this is by specifying an element by its row and column index.  So row 3, column 1 of the A matrix corresponds to a = 5, which can be achieved by 
   myA[3,1] = 5

Note that square brackets are used here.

Matrix S has values only on the diagonal, so we can take a short-cut and use the diag command to make a matrix with ones on all diagonals (an Identity matrix) and then edit to alter the non-one values:

    myS=diag(1,6)  # first index is the value, and second gives matrix size (square matrix)
Since the RAM path formula also requires an identity matrix, you could specify myI=myS, before modifying the myS matrix. 

Once you have created matrices A, S, F, and I, you can plug them in to the RAM path formula, 

   expected covariance = F * (I-A)-1 * S * ((I-A) -1)' * F'

A good way of consolidating what you have learned so far is to see whether you can translate this formula into R code.  Remember that the conventional way of representing matrix inversion is by -1, and that the ' symbol denotes a matrix transpose.  Also remember that in R, matrix multiplication requires a sequence of symbols, not just *.
When you have worked out the formula, use it to compute myexpcov, and check that the values agree with those you computed by hand.
Degrees of freedom and model identification. An important feature of a structural model is that it should provide a parsimonious explanation of the data.  We could simply use our optimization procedures to estimate the covariance matrix and means in our dataset, without having any model of their relationships, but this would be a theoretically vacuous exercise. As we shall see later on, we do in fact do such an estimation when evaluating a model, as it provides a baseline (a 'saturated model') against which to evaluate the likelihood of a structural model. But a good structural model will explain the data using fewer estimated parameters than observed statistics.  The difference between the number of estimated parameters and observed statistics corresponds to the degrees of freedom of the model.  For the model in Figure x, assuming we set the variance of the latent variables to 1 and so do not have to estimate these values, we have a total of eight estimated parameters in the model; i.e. a, b, c, d, e, f, g and h.  The observed covariance matrix that we input to the model contains 10 distinct values (remember that the symmetry of the matrix means that we do not need to count the covariances in the upper triangle, as they are the same as those in the lower triangle).  This gives 10-8 = 2 degree of freedom(DF)  In practice, in OpenMx, means as well as covariances are estimated, and for the model in Figure X, this gives four additional observed values (giving total of 14) and four additional estimated parameters (giving total of 12), with the DF remaining at 2.  It is important that a model has a positive DF: such a model is termed 'overidentified'. If you specify a model with more estimated parameters than observed variables it is underidentified and not amenable to sensible solution.  As will be discussed further below, for some models, it may be necessary to give parameters a fixed value (so it does not count in the N estimated parameters), or to set two paths to the same value (so that two estimated parameters become one), in order to ensure the model is overidentified.
You are now ready to fit your model to a simulated dataset.

First let us simulate data, assuming that all variables have mean of 0, variance of 1, and that the covariance between W and S is .6, and between B and P is .5, with other covariances zero.

As a challenge, see if you can work out how to simulate a dataset with these characteristics using the mvrnorm command.

There are two methods in R for finding out more about how to use a command:


help(mvrnorm)


example(mvrnorm)

However, the help and examples in R are typically written with statisticians in mind, and are not always all that easy for others to understand.

It is possible that if you type these commands, you will just get an error message, i.e.
"No documentation for 'mvrnorm' in specified packages and libraries: you could try '??mvrnorm'"

Can you work out why this happens?

The answer is that this function is part of a package which is not automatically loaded when R starts up, unless you have saved a workspace image after loading it.

Check back to the first example script (generate correlated data) and see what you need to do to fix this.

You should be able to work out how to use the mvrnorm command to create the whole set of data for 80 cases and 4 variables.  If you are stuck, you could modify the command in the "Generate correlated data" script to create one dataset for W and S (called 'myWS', with correlation of .6), and another for B and P (called 'myBP', with correlation .5).  Since the two datasets are uncorrelated, this will work.   You just need then to glue the two datasets together.  The cbind command (for glueing matrix columns together) can be used for this purpose:


myscore=cbind(myWS,myBP)
(Note: there is an analogous command, rbind, for combining rows of matrices).
Check the correlation matrix for myscore, using cor(myscore).  Note that the actual values for a sample of this size may deviate from those we specified; the expectation is for ones on the diagonals, zeros for correlations between verbal and nonverbal tests, .6 for correlations between verbal tests, and .5 for correlations between nonverbal tests.  Use write.table to save 'myscore' with filename 'my4var'.  See the "Generate correlated data" script if you can't remember how to do this.
We are now ready to use OpenMx to see how well our simulated data fits the model.  OpenMx gives us an option of selecting model type 'RAM'.  This is useful for beginners, because the model clearly maps on to the pictorial model in Figure x.   For a RAM-type model, we specify within the model the manifest variables, the latent variables, and the one-headed and two-headed paths between them, as in the example script below.
# -----------------------------------------------------------------------

# Program: DB_TwoFactorModel_PathCov.R , based on TwoFactorModel_PathCov.R 

#  Author: DVM Bishop

#    Date: 4th March 2010

#

# Two Factor model to estimate factor loadings, residual variances and means

# Path style model input - Covariance matrix data input

#

# Modified by DVM Bishop to fit example in Simplified Manual

# -----------------------------------------------------------------------

require(OpenMx)

#Prepare Data

myscore=read.table("my4var") # use the 'myscore' file that you created previously.

mylabels=c('W', 'S', 'B', 'P')                  # Put labels for the variables in a vector

colnames(myscore)=mylabels # Allocate the labels to mydata columns (our created dataset)

myFADataCov=cov(myscore)   # Table of covariances will be compared with expected covs

myFADataMeans <- mean(myscore) # Will be compared with expected means in matrix M
# -----------------------------------------------------------------------

#Create an MxModel object; this won't execute until we do mxRun

# By specifying the type argument to equal ‘RAM’, we create a path style model

# -----------------------------------------------------------------------

db_twoFactorModel <- mxModel("DB_Two Factor Model - Path", type="RAM",

    mxData(

    
observed=myFADataCov, 

    
type="cov", 

    
numObs=nrow(myscore), 

    
means=myFADataMeans

    ),

    manifestVars=c("W", "S", "B", "P"),

    latentVars=c("V","N"),

    # residual variances

    mxPath(

    
from=c("W", "S", "B", "P"),

        arrows=2,                     # 2-headed arrow for residual variance

        free=TRUE,                    # All variances to be estimated

        values=1,                     # Start value is 1

        labels=c("e1","e2","e3","e4")

    ),

    # latent variances ; NB no covariance between factors in this model

    mxPath(

    
from=c("V","N"),

        arrows=2,  # 2-headed arrow for residual variance

        free=FALSE,   # if we wanted to allow for covariance between latent factors, 

                     # would need to add ALL=true, to include 2-headed path between V and N

         values=1,  # Start value is 1

        labels=c("varV","varN")

    ), 

    # factor loadings for verbal variables

    mxPath(

    
from="V",

        to=c("W","S"),

        arrows=1,

        free=TRUE,     # Can use single statement if you want to set all paths to free=TRUE

        values=c(1,1),        # Starting values

        labels=c("a","b")

    ),

    # factor loadings for nonverbal variables

    mxPath(

    
from="N",

        to=c("B", "P"),

        arrows=1,

        free=c(TRUE,TRUE), # Just to illustrate alternative way of denoting true or false for each individual path

        values=c(1,1),

        labels=c("c","d")

    )

) # close model

db_twoFactorFit <- mxRun(db_twoFactorModel)

summary(db_twoFactorFit)

db_twoFactorFit@output$estimate
#----------------------------------------------------------------
A RAM style model must include a vector of manifest variables (manifestVars=) and a vector

for latent variables (latentVars=). In this case the manifest variables are "W", "S", "B", and "P" and the latent variables are "V" and "N".
Paths are created using the mxPath function. Multiple paths can be created with a single invocation of the mxPath function. The 'from' argument specifies the path sources, and the' to' argument specifies the path sinks. If the ' to' argument is missing, then it is assumed to be identical to the ‘from’ argument. By default, the ith element of the‘from’ argument is matched with the ith element of the ‘to’ argument, in order to create a path. 
The arrows argument specifies whether the path is unidirectional (single-headed arrow, 1) or bidirectional (double-headed arrow, 2). 
The next three arguments are vectors: 
   free, takes a value of True or False, and specifies whether a path is free or fixed; 
   values is a numeric vector that specifies the starting value of the path;
   labels is a character vector that assigns a label to each free or fixed parameter.
The summary function is a convenient method for displaying the highlights of a model after it has been executed.  For our model, the summary first gives a table of the distributional statistics of the four observed variables.  You should always check this table to ensure it is sensible.  NB I am puzzled by the output here! I thought the summary would give means for observed data but it doesn't!
The next table shows the estimated values for parameters from matrix A (single-headed arrows), S (double-headed arrows), and M (means).  Each path estimate has an associated standard error.  This can be used to test whether the path differs significantly from zero.  The 95% confidence interval around the path is (P-1.96s) to (P+1.96s), where P is the path coefficent, and s is the associated standard error.  If this interval spans zero, the path is not significantly different from zero.  Thus, for the a path, we have:
Thus for the first path, a, the 95% CI is:

   .5835 – (1.96 * .21954)  to .5835 + (1.96 * .21954)

i.e. from

  0.153 to 1.014

Since this interval does not include zero, we can conclude that the path is significant and could not be dropped from the model without loss of fit.
The degrees of freedom is then given: you should always check this to be sure that you specified the model correctly and that the number of observed statistics and estimated parameters is as expected, and that the DF is positive.
The negative log likelihood of the model is multiplied by 2 (giving -2LL).  You should be able to explain what this number represents: it is the lowest likelihood that can be obtained by the optimization procedure when estimating model parameters.  In estimating this value, we arrive at useful estimates of parameters, but the actual -2LL value is not meaningful on its own.  It can, however, be compared with likelihoods of other models, to give an idea of whether the model provides a good account of the data.  There are two types of comparison that are useful.  The first, which is automatically provided in OpenMx, is a comparison with the 'saturated model'. Although this is termed a 'model', it is not one in the normally accepted sense, since there are no latent variables or paths in it.  It simply represents the case where the optimization procedure is used to estimate the observed statistics.  This is the kind of exercise we did with the two scripts showing likelihood calculations, first for a pair of variables, and then for three variables.  The value of -2LL for a saturated model will always be lower than that for a model with latent variables, because the search for a fit is totally unconstrained.  As noted above, however, the saturated model is of no theoretical interest, and it has an equal number of observed statistics and estimated values, and hence no degrees of freedom. The saturated model is of use, though, to provide a baseline level of -2LL against which to compare our overidentified model.  If we subtract the -2LL value of the saturated model from the -2LL value for our model of interest, we get a statitic that follows the chi square distribution.  The degree of freedom correspond to the DF for the model of interest minus the DF for the saturated model (which is zero).  So, in this case:
    chi square = 204.3614 – 201.7717 = 2.5897

    DF = 2 – 0 = 2

As shown in the script output, the p-value corresponding to this chi square is .273, which is not significant.  When fitting a structural model, a nonsignificant chi square is an indication of good model fit, because it means that the -2LL associated with the model is no different from the -2LL of the saturated model, even though our new model is more parsimonous.

The values of AIC, BIC and RMSEA are alternative methods for measuring goodness of fit of a model.

For our model, Akaike's Information Criterion (AIC) is less than zero, also indicating good  fit. BIC refers to the Bayesian information criterion (BIC), where again, smaller is better. Finally, a usual rule of thumb is that the RMSEA statistic should be .05 or less for very good fit, or between .05 and .10 for good fit.

As an exercise, you should now repeat this analysis, but with a much larger dataset.  Use the same method as before to generate a simulated dataset, with the same correlations between variables, but with 5000 cases. Save it under a new name. Re-run the script: you won't need to change anything other than the name of the dataset that is the argument of the 'read.table' command.  Compare the output with that of the same model with the smaller dataset.  How does the change in sample size affect the path estimates, the standard errors, the degree of freedom, and the measures of model fit?  
Now repeat the exercise, but this time, have the paths transposed, so that W and B are indicators of V, and S and P are indicators of N.  You can do this by simply modifying the mxPath statements for 'from = "V"' and 'from = "N"' so that the 'to' paths refer to "W" and "B" in the first case, and to "S" and "P" in the second case. The model specified in the script now gives a very poor fit to the data, because the pattern of correlations cannot be explained by the path structure, which implies correlations only between W and S, and B and P. 
In a final test, return to the original script, reading in the data from 50 simulated cases.  We are now going to see what happens if we drop one path. Usually we compare a model with the saturated model to test goodness of fit, but different models can be directly compared with one another if they are nested.  Nested models are ones which have the same path structure, but which differ purely in terms of whether specific paths are fixed.   If we set the starting value of a path to zero, and specify it as free=FALSE, this means that OpenMx will not estimate its value, but will keep it at the starting value: in effect this means the path is dropped.  We will illustrate this by dropping path d.  Before reading on, inspect the script and see if you can work out how to achieve this. 

The answer is to change two lines of the following portion of script:

mxPath(

    
from="N",

              to=c("B", "P"),

             arrows=1,

             free=c(TRUE,FALSE), 

             values=c(1,0),

             labels=c("c","d") 

The model now has one more degreeof freedom, and we can test the effect of dropping the path by computing chi square as follows:

	
	4-path model  (a, b, c, d)        
	3 path model (a, b, c)
	difference

	DF
	2
	3
	1

	-2LL
	182.9102
	205.1985
	22.28


A chi square of 22.28 with 1 DF has associated probability < .001.  This tells us that dropping path d leads to highly significant worsening of fit of the model.
R will compute the p-value associated with a given value of chi square, by the expression:

1-pchisq(chi,df)

so, for this example, the probability can be computed as:

1-pchisq(22.28,1)

For readers who are used to using chi square to test for associations between variables, it may seem odd that a nonsignificant chi square is indicative of a good model fit, whereas a highly significant chi square denotes poor model fit.   The key point to note is that in traditional statistical tests, chi square is compared against chance association, and we typically are interested in results that cannot be explained by chance.  In contrast, in SEM the fit is tested against either the saturated model, or (as in this case) an overidentified model with fewer degrees of freedom. The further the estimated parameters are from the comparison model, the higher the chi square, and hence the more likely to be 'significant'.  Significance here denotes a departure of estimated values from obtained values.  Your experimentation above with varying sample size should also have illustrated a further point about model fit, which is that the larger the sample size, the more precise will be the estimated statistics (i.e. the smaller the standard errors), but also the more likely it is that a structural model will differ significantly from the saturated model. 
You will find that this kind of experimentation with scripts using different datasets and manipulating the paths gives you a far better understanding of how SEM works than any amount of reading.
Introduction to SEM approach to analysis of twin data
For behavior genetic analysis, our interest is in how far phenotypic similarities between individuals can be accounted for in terms of their degree of genetic similarity.  In the simplest kind of twin analysis, our observed data consists of two covariance matrices, one for MZ (identical) and one for DZ (fraternal twins), representing the covariance on a single measured trait between two members of a twin pair.  The key assumption behind the twin method is that similarities and differences between pairs of individuals can be expressed in terms of genes, their common environment (which serves to make twins resemble one another) and their specific (nonshared) environment (which makes twins different from one another).  One point that can cause confusion is when we talk of genetic similarity between individuals: it is common to find a statement that MZ twins have all their genes in common, whereas DZ twins have 50% in common.  This is puzzling when we also hear that humans have 98% of their genes in common with chimpanzees!  The point is that in behavior genetics we are only interested in genes that take different allelic forms in different people, and so can potentially account for individual differences. These polymorphic (or 'segregating') genes are a very small proportion of the human genome.  

 If we focus for the time being just on additive genetic influences, then the relationship between a set of DZ twins can be depicted in the standard ACE model, i.e

[image: image5]
Each latent factor has its associated path, and it is the goal of a behavior genetic analysis to estimate these paths.  Note that the same letters are used for paths from latent factors to twin 1 and twin 2, indicating that in our model we assume no differences in the size of genetic and environmental influences for the two twins. Provided twins are assigned as twin 1 and twin 2 at random, this is a valid assumption.  

Note that the path between the two latent C factors (common environment) is set to 1, as this is, by definition, identical for twin 1 and twin 2. The path between the latent A factors is set to .5, reflecting the fact that DZ twins share 50% of their segregating alleles on average.

Path-tracing rules can be applied to estimate the expected covariance between twin 1 and 2:
    CovDZ = .5 * a2 + c2
Also, the variance for scores of either set of twins can be estimated:

  VarDZ  = a2 + c2+ e2
For MZ twins,  the model is virtually identical, except that the correlation between the A terms is set to 1.0, because it is assumed that MZ twins have the same alleles for all genes.   Therefore, the estimates of variance for MZ twins is the same as for DZ twins, but the estimates of covariance between twin 1 and twin 2 is now:

    CovMZ =  a2 + c2
If we used standardized variables, then the total variance for each twin will be one, and a2 will be a direct measure of the proportion of variance that can be accounted for in terms of additive genetic influences, i.e. heritability.  The formulae from path-tracing indicate that we can estimate the size of a2, c2 and e2 just from a knowledge of the correlations between twin 1 and twin 2 in DZ and MZ pairs. Because correlations are standardized, we will get the estimates in standard units representing proportion of variance accounted for.

Thus simple algebra allows us to estimate:

    (CorMZ-CorDZ) = .5 *  a2
so
   a2 = 2 *(CorMZ-CorDZ)

   c2 = CorMZ - a2
   e2 = 1 - a2 - c2

You might start to wonder why we should do complicated model-fitting when it is easy to get these estimates just from a couple of correlations!  There are three reasons.  First, model-fitting provides a more stringent test, because it will be sensitive to any violations of the assumptions of the model.  Model-fitting usually estimates covariances rather than correlations, so that we can confirm, for instance, that the variances are comparable for MZ and DZ twin pairs.  The model assumes they are the same, and so the fit of the model will be reduced if this assumption is not met.   Second, with model-fitting we can not only estimate the paths, but also obtain confidence intervals around our estimates, and compare the fit of nested models, as will be illustrated more fully below. Third, with a model-fitting approach, we can easily scale up models to account for multivariate data, as well as formulating more complex models that include, for instance, other variables, measured environmental influences, or specific allelic effects.
ACE model in OpenMx 
As we shall see, there are two approaches to modeling twin data in OpenMx.  The first uses the RAM path method that was illustrated above. The second uses a matrix algebra representation . Both will be illustrated here and readers can decide which approach they prefer.  For beginners, it can also be useful to specify a model using both methods to check that they give the same results. 

Traditional approaches to twin modeling used covariance matrices for DZ and MZ twin pairs as input to the model, but more recently it has become standard to have raw data as the input.  This can make data input easier (since the original data can be used) and also means that cases with missing data can be included.  We will see that with OpenMx models using the FIML optimization approach, we are required to provide estimates for means as well as covariances.

For the next example, we will use simulated data on twins. Instructions for how to read in your own data will be given after we have gone through the ACE model, so you can try it out with real life data.
The following script simulates data on 1000 pairs of MZ and DZ twins, assuming a2 of .5, c2 of .3 and e2 of .2.

#----------------------------------------------------------------------------------------------------------------------

# DB_Twin simulate

# Based on script in OpenMx documentation, p 15
# NB original script had error; data initially called MZ or DZ, then DataMZ and DataDZ?

#----------------------------------------------------------------------------------------------------------------------

require(OpenMx)   # not needed for the simulation, but will be needed when we come to model specification

require(MASS)    # needed for multivariate random number generation

set.seed(200)        # specified seed ensures same random number set generated on each run

mya2<-0.5 #Additive genetic variance component (a squared)

myc2<-0.3 #Common environment variance component (c squared)

mye2<-1-mya2-myc2 #Specific environment variance component (e squared)

my_rMZ <-mya2+myc2          # correlation between MZ twin1 and twin2

my_rDZ <- .5*mya2+myc2     # correlation between DZ twin 1 and twin 2

myDataMZ <- mvrnorm (1000, c(0,0), matrix(c(1,my_rMZ,my_rMZ,1),2,2))

myDataDZ <- mvrnorm (1000, c(0,0), matrix(c(1,my_rDZ,my_rDZ,1),2,2))

mylabels = c('twin1', 'twin2')

dimnames(myDataMZ) <- list(NULL,mylabels)

dimnames(myDataDZ) <- list(NULL,mylabels)

summary(myDataMZ)

summary(myDataDZ)

colMeans(myDataMZ,na.rm=TRUE)

colMeans(myDataDZ,na.rm=TRUE)

cov(myDataMZ,use="complete")

cov(myDataDZ,use="complete")
# do scatterplots for MZ and DZ
split.screen(c(1,2))        # split display into two screens side by side

                            # (use c(2,1) for screens one above the other)

screen(1)

plot(myDataMZ,main='MZ')    # main specifies overall plot title

screen(2)

plot(myDataDZ, main='DZ')

#use drag and drop to resize the plot window if necessary
#--------------------------------------------------------------------------------------------
We start with fitting a saturated model, estimating means, variances and covariances separately by order of the twins (twin 1 vs twin 2) and by zygosity (MZ vs DZ pairs), to establish the likelihood of the data. The saturated model will have two matrices for the expected means of MZs and DZs, and two for the expected covariances, generated from multiplying a lower triangular matrix with its transpose (i.e. the Cholesky decomposition). The raw data are read in using the mxData command. The function for optimization is mxFIMLObjective applied.  We start with the submodel for MZ twins, as follows:
mxModel("MZ",

mxMatrix(

type="Full",

nrow=1,

ncol=2,

free=TRUE,
values=c(0,0),

name="expMeanMZ"),

mxMatrix(

type="Lower",

nrow=2,

ncol=2,

free=TRUE,  #(NB missing comma here in original script on p 16)
values=.5,

name="CholMZ"),

mxAlgebra(

CholMZ %*% t(CholMZ),

name="expCovMZ"),

mxData(

myDataMZ,

type="raw"),

mxFIMLObjective(

"expCovMZ",

"expMeanMZ"))
The mxModel statement for the DZ twins is almost identical to that for MZ twins, except for the names of the objects and data. If the arguments to the OpenMx command are given in the default order (see i.e. ?mxMatrix to go to the help/reference page for that command), then it is not necessary to include the name of the argument. Given we skip a few optional arguments, the argument name name= is included to refer to the right arguments. For didactic purposes, we prefer the formatting used for the MZ group, with soft tabs and each argument on a separate line, etc. (see list of formatting rules). However, the experienced user may want to use a more compact form, as illustrated here for the DZ group. 

mxModel("DZ",

mxMatrix("Full", 1, 2, T, c(0,0), name="expMeanDZ"),

mxMatrix("Lower", 2, 2, T, .5, name="CholDZ"),

mxAlgebra(CholDZ %*% t(CholDZ), name="expCovDZ"),

mxData(myDataDZ, type="raw"),

mxFIMLObjective("expCovDZ", "expMeanDZ", mylabels))
The two models are then combined in a 'super' model, which includes them as arguments. To obtain the overall likelihood of data for MZ and DZ twins, we simply add together the likelihoods for MZ and DZ submodels. The super-model includes an mxAlgebra statement to do this.  This is given the name 'twin'.

To evaluate the models simultaneously, we use the mxAlgebraObjective with 'twin' as its argument.

The mxRun command is used to start optimization.

#---------------------------------------------------------------------------------------------

twinSatModel <- mxModel("twinSat",

 
mxModel("MZ",

mxMatrix("Full", 1, 2, T, c(0,0), name="expMeanMZ"),

mxMatrix("Lower", 2, 2, T, .5, name="CholMZ"),

mxAlgebra(CholMZ %*% t(CholMZ), name="expCovMZ"),

mxData(myDataMZ, type="raw"),

mxFIMLObjective("expCovMZ", "expMeanMZ", mylabels)),
mxModel("DZ",

mxMatrix("Full", 1, 2, T, c(0,0), name="expMeanDZ"),

mxMatrix("Lower", 2, 2, T, .5, name="CholDZ"),

mxAlgebra(CholDZ %*% t(CholDZ), name="expCovDZ"),

mxData(myDataDZ, type="raw"),

mxFIMLObjective("expCovDZ", "expMeanDZ", mylabels)),
mxAlgebra(MZ.objective + DZ.objective, name="twin"),

mxAlgebraObjective("twin"))
#-----------------------------------------------------------------------------------------------
twinSatFit <- mxRun(twinSatModel)

ExpMeanMZ <- mxEval(MZ.expMeanMZ, twinSatFit)

ExpCovMZ <- mxEval(MZ.expCovMZ, twinSatFit)

ExpMeanDZ <- mxEval(DZ.expMeanDZ, twinSatFit)

ExpCovDZ <- mxEval(DZ.expCovDZ, twinSatFit)

LL_Sat <- mxEval(objective, twinSatFit)

summary(mxRun(twinSatModel))
#-----------------------------------------------------------------------------------------------
Before we move on to fit the ACE model to the same data, we may want to test some of the assumptions of the twin model, i.e. that the means and variances are the same for twin 1 and twin 2, and that they are the same for MZ and DZ twins. This can be done as an omnibus test, or stepwise. Let us start by equating the means for both twins, separately in the two groups. We accomplish this by using the same label (just one label which will be reused by R) for the two free parameters for the means per group. As the majority of the previous script stays the same, we start by copying the old model into a new one. We then include the arguments of the model that require a change.

twinSatModelSub1 <- mxModel(twinSatModel,

mxModel("MZ",

mxMatrix("Full", 1, 2, T, 0, "mMZ", name="expMeanMZ"),

mxModel("DZ",

mxMatrix("Full", 1, 2, T, 0, "mDZ", name="expMeanDZ"))

twinSatFitSub1 <- mxModel(twinSatModelSub1)

If we want to test if we can equate both means and variances across twin order and zygosity at once, we will end up

with the following specification. Note that we use the same label across models for elements that need to be equated.

twinSatModelSub2 <- mxModel(twinSatModelSub1,

mxModel("MZ",

mxMatrix("Full", 1, 2, T, 0, "mean", name="expMeanMZ"),

mxMatrix("Lower", 2, 2, T, .5, labels= c("var","MZcov","var"), name="CholMZ"),

mxModel("DZ",

mxMatrix("Full", 1, 2, T, 0, "mean", name="expMeanDZ"),

mxMatrix("Lower", 2, 2, T, .5, labels= c("var","DZcov","var"), name="CholDZ"))

twinSatFitSub2 <- mxRun(twinSatModelSub2)

We can compare the likelihood of this submodel to that of the fully saturated model or the previous submodel using

the results from mxEval commands with regular R algebra. A summary of the model parameters, estimates and

goodness-of-fit statistics can also be obtained using summary(twinSatFit).

LL_Sat <- mxEval(objective, twinSatFit)

LL_Sub1 <- mxEval(objective, twinSatFitSub1)

LRT1= LL_Sub1 - LL_Sat

LL_Sub2 <- mxEval(objective, twinSatFitSub1)

LRT2= LL_Sub2 - LL_Sat
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