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Elementary Matrix Concepts and Operations

I A matrix is a rectangular table of values.

I A matrix may be designated by a single symbol, such as the letter
A. Frequently, capital letters will be used to designate matrices.

I The cell entries of a matrix may be designated by a symbol with two
subscripts, the first subscript indicating the row and the second
subscript indicating the column location of the cell. Frequently,
lower case letters are used to designate cell entries of matrices. For
any matrix designated by a capital letter, the corresponding lower
case letter will be used for the cell entries. Thus, the cell entries in
matrix A are designated by aij where i indicates the row location
and j indicates the column location.
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Elementary Matrix Concepts and Operations

I The size of a matrix is the number of rows and the number of
columns of the matrix and is termed the order of the matrix. Thus,
a matrix with m rows and n columns is of order m by n, or m × n.

I Two matrices are equal only when they are of the same order and
each cell entry in one matrix equals the cell entry in the same row
and column of the other matrix.

I A matrix equals zero only when every cell entry equals zero. Such a
matrix is frequently termed a null matrix .

I The transpose of a matrix is a new matrix produced by writing the
entries in each row of the original matrix as entries in the
corresponding column of the transpose matrix. An equivalent
operation is to write the entries in each column of the original matrix
as entries in the corresponding row of the transpose matrix. The
transpose matrix is designated by a symbol for the original matrix
with a prime; for example, A′ designates the transpose of matrix A.
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Elementary Matrix Concepts and Operations

I The transpose of the transpose of a matrix equals the original
matrix:

(A′)′ = A

I Addition and subtraction of matrices may be performed on
matrices of the same order by performing the addition and
subtraction of cell entries in identical locations in the matrices to
produce the cell entries in the resulting matrix. Thus, the equation

A + B− C = R

implies
aij + bij − cij = rij

for each and every cell.
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Elementary Matrix Concepts and Operations

I Matrix addition and subtraction obey the commutative and
associative laws, thus:

A + B = B + A

A + B− C = A− C + B

A + (B + C) = (A + B) + C

A + (B− C) = (A + B)− C

I Matrix addition and subtraction obey the cancellation law; thus, if

A + B = A + C

then
B = C.
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Elementary Matrix Concepts and Operations

I Two matrices, such as A and B, may be multiplied when the
number of columns in the first matrix (A) equals the number of
rows in the second matrix (B) by obtaining for each combination of
a row of the first matrix and a column of the second matrix the sum
of products between corresponding cell entries in the row and
column, thus producing the cell entry in that row and column of the
product matrix. Thus, AB = C implies that

a11b11 + a12b21 + a13b31 + · · ·+ a1mbm1 = c11

a31b15 + a32b25 + a33b35 + · · ·+ a3mbm5 = c35

n∑
j=1

aijbjk = cik .
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Elementary Matrix Concepts and Operations

. =

4 x 22 x 4 2 x 2

Steven M. Boker University of Virginia

Matrix Algebra Review



H LD AB

Matrices Vectors Inverse Transformations Eigenvalues PCA Covariance of a Linear Combination

Elementary Matrix Concepts and Operations

I The product matrix resulting from multiplication of two matrices has
number of rows corresponding to number of rows of the first matrix
and number of columns corresponding to number of columns of the
second matrix forming the product. Thus, the product of an n ×m
matrix A and an m × p matrix B will be an n × p matrix.

I Matrix multiplication obeys the associative law but not the
commutative law; that is:

A(BC) = (AB)C

AB 6= BA.
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Elementary Matrix Concepts and Operations

I In a matrix product, the first matrix is termed a pre-multiplier and
the second matrix is termed a post-multiplier. Thus, in the matrix
product AB, A is a pre-multiplier and B is a post-multiplier. A is
post-multiplied by B and B is pre-multiplied by A.

I Matrix multiplication does not necessarily obey the cancellation law.
Thus, if

AB = AC

then B may or may not equal C.

I Matrix addition (and subtraction) and multiplication obey the
distribution law. Thus,

A(B + C) = AB + AC

A(B− C) = AB− AC

(A + B)C = AC + BC
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Elementary Matrix Concepts and Operations

I The transpose of a product matrix equals the product of the
transposes of the original matrices in reverse order. Thus, if

AB = C

then
B′A′ = C′

I The transpose of a sum of matrices is the sum of the transposes of
the original matrices. Thus, if

A + B− C = R

then
A′ + B′ − C′ = R′
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Elementary Matrix Concepts and Operations

I The square root of the sum of squares of the entries in a matrix, say
A, is called the norm of the matrix and is indicated by Norm(A).

Norm(A) =

√√√√ N∑
i=1

n∑
j=1

a2
ij

where i = 1, 2, 3, . . . ,N and j = 1, 2, 3, . . . , n.

I A matrix that has as many rows as it has columns is called a square
matrix; otherwise the matrix is a rectangular matrix.

I In a square matrix the diagonal of the cells running from upper left
to lower right is termed the principal diagonal of the matrix. This
terminology is frequently shortened to the diagonal of the matrix.
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Elementary Matrix Concepts and Operations

I The sum of the entries in the principal diagonal of a square matrix is
termed the trace of the matrix and is designated by Trace(A) where
A is the matrix.

Trace(A) =
N∑

i=1

aii

where i = 1, 2, 3, . . . ,N

I A square matrix with zero entries in all cells not on the principal
diagonal is termed a diagonal matrix. Thus, if D is a diagonal
matrix then

dij = 0

for i 6= j
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Elementary Matrix Concepts and Operations

I Premultiplication of a matrix, say A, by a diagonal matrix, say D,
multiplies the entries in each row of A by the diagonal entry in D in
the diagonal cell corresponding to that row of A.

DA = B

then
diiaij = bij

I Post-multiplication of a matrix, say A by a diagonal matrix, say D,
multiplies the entries in each column of A by the diagonal entry in D
in the diagonal cell corresponding to that column of A.

AD = B

then
aijdjj = bij
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Elementary Matrix Concepts and Operations

I The product of two diagonal matrices, say D and E, is a third
diagonal matrix, say F, with diagonal entries equal to the products
of corresponding entries in the first two diagonal matrices.

DE = F

diieii = fii

for i = 1, 2, 3, . . . ,N

I The product of diagonal matrices is invariant over reversal in the
order of multiplication. Let D, E, and F be diagonal matrices where

DE = F,

then
ED = F.
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Elementary Matrix Concepts and Operations
I A diagonal matrix with all diagonal entries equal to a single value is

termed a scalar matrix.
dii = k

for i = 1, 2, 3, . . . ,N
I Multiplication, either pre-multiplication or post-multiplication, of a

matrix, say A, by a scalar matrix, say K, results in each entry of A
being multiplied by the constant in the diagonal cells of K.

AK = B

aijk = bij

I Multiplication by a scalar matrix is invariant with reversal of order of
multiplication. Let K be a scalar matrix, then

AK = KA

Note: A need not be square but the matrix K is to be made of
appropriate order separately on each side of the equation to perform
the indicated multiplication.
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Elementary Matrix Concepts and Operations

I A scalar matrix with its constant diagonal entry equal to unity is
termed an identity matrix and is designated by the capital letter I.

K = I

if kii = 1 for i = j and kii = 0 for i 6= j

I The product of a matrix, say A, with an identity matrix equals the
matrix A.

AI = IA = A

I A square matrix having each entry on one side of the principal
diagonal equal to the symmetrically located entry on the other side
of the principal diagonal is termed a symmetric matrix.

aij = ahk

for k = i and h = j
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Elementary Matrix Concepts and Operations

I All symmetric matrices, and only symmetric matrices equal their
transposes.

A = A′

I A triangular matrix is a square matrix with zero entries on one side
of the diagonal. If the non-zero entries are below the diagonal, it will
be termed a lower triangular matrix. If the non-zero entries are
above the diagonal, it will be termed an upper triangular matrix.
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Elementary Matrix Concepts and Operations

I The product of a matrix, say A, post-multiplied by its transpose, A′,
is a symmetric matrix which will be termed the rows product
matrix of A and designated by PR .

PR = P′R = AA′

I The product of a matrix, say A, pre-multiplied by its transpose, A′,
is a symmetric matrix which will be termed the columns product
matrix of A and designated by PC .

PC = P′C = A′A

I The trace of the rows product matrix of A equals the trace of the
columns product matrix of A and each trace equals the square of
the norm of matrix A.

Trace(PR) = Trace(PC ) = Norm(A)2.
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Elementary Vector Concepts and Operations

I An array of n numbers (x1, x2, . . . , xn) is termed a vector Vx in an n
dimensional space. Each number is taken as the coordinate of the
terminus of the vector on one reference axis. The vector is taken to
start at the origin.

I A row of numbers is termed a row vector.
I A column of numbers is termed a column vector.

I A matrix of order n ×m may be interpreted as either:
I n row vectors in a space of m dimensions, or
I m column vectors in a space of n dimensions.

I Addition of two vectors is accomplished by addition of
corresponding coordinates.

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn).

Vx + Vy = V(x+y).
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Elementary Vector Concepts and Operations

I Scalar multiplication of a vector by a scalar is accomplished by
multiplying each coordinate of the vector by the scalar.

c(x1, x2, . . . , xn) = (cx1, cx2, . . . , cxn).

cVx = Vcx .

I Linear combination of vectors is accomplished as a joint use of
scalar multiplication of vectors and addition of vectors.

cx(x1, x2, . . . , xn) + cy (y1, y2, . . . , yn) +

· · ·+ cz(z1, z2, . . . , zn)

= cxx1 + cyy1 + . . .+ czz1,

cxx2 + cyy2 + . . .+ czz2, · · · ,
cxxn + cyyn + . . .+ czzn).

cxVx + cy Vy + · · ·+ czVz = V(cxx+cy y+···+czz).
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Elementary Vector Concepts and Operations

I A vector Vu is termed as linearly dependent on a group of vectors,
Vx ,Vy , . . . ,Vz if scalars cx , cy , . . . , cz can be found so that Vu is a
linear combination of Vx ,Vy , . . . ,Vz :

Vu = cxVx + cy Vy + · · ·+ czVz ,

otherwise, Vu is linearly independent of the given groups of vectors.

I The subspace composed exclusively of all vectors produced by linear
combinations of a given group of vectors is said to be spanned by
this group of vectors.

I A group of vectors is termed a basis for a subspace if (1) the
subspace is spanned by the group of vectors, and (2) each vector in
the group is linearly independent of the remaining vectors in the
group.
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Elementary Vector Concepts and Operations

I The number of vectors in a basis for a subspace is termed the
dimensionality of the subspace.

I The rank of a matrix is the dimensionality of the subspace spanned
by the vectors composing the matrix.

I The length, Lx , of a vector, Vx , is the positive square root of the
sum of squares of the coordinates of the vector.

Lx = (x2
1 + x2

2 + · · ·+ x2
n )1/2

I The inner product, Pxy , of two vectors, Vx and Vy , is the sum of
products between corresponding coordinates of the two vectors and
equals the product of the lengths of the two vectors and the cosine
of the angle between the two vectors.

Pxy = (x1y1 + x2y2 + · · ·+ xnyn) = LxLy cos Θxy
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Elementary Vector Concepts and Operations

I Two vectors are orthogonal if their inner product is zero provided
that neither vector has a zero length.

I Two subspaces are orthogonal if every vector in the basis of one
subspace is orthogonal to every vector in the basis of the other
subspace.

I An orthogonal basis of a subspace is composed of mutually
orthogonal vectors.

I A vector with unit length is termed a unit vector, or a normal
vector.

I An orthonormal basis of a subspace contains mutually orthogonal
unit vectors.
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Elementary Vector Concepts and Operations

I When the basis for two subspaces combined form the basis of the
whole space the two subspaces are termed complementary
subspaces.

I Two orthogonal subspaces which are also complementary are termed
orthogonal complementary subspaces.

I A subspace of dimensionality n − 1 in an n dimensional space is
termed a hyperplane and its orthogonal complementary subspace is
termed the normal to the hyperplane.
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Inverse Matrices

I Let A be a square 2× 2 matrix. The determinant of A is written as
|A| or det(A), and is defined as

|A| = a11a22 − a12a21 .

(a12,a22)

(a11,a21)
det(A)

a11

a21

a21

a11

a12

a12

a22

a22

The determinant of A is represented by the gray area of the
parallelogram defined by the vectors (a11, a21) and (a12, a22).
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Inverse Matrices

I The area in gray can be calculated as

|A| = (a11 − a12)(a21 + a22)− (−a12a22 + a11a21)

= (a11a21 − a12a21 + a11a22 − a12a22)− (−a12a22 + a11a21)

= −a12a21 + a11a22

= a11a22 − a12a21

Steven M. Boker University of Virginia

Matrix Algebra Review



H LD AB

Matrices Vectors Inverse Transformations Eigenvalues PCA Covariance of a Linear Combination

Inverse Matrices

I Let A be a square matrix, if matrix B exists such that

AB = I

where I is the identity matrix, then

BA = I;

B is called the inverse of A and designated A−1 ; A is said to be
non-singular which is symbolized by |A| 6= 0.

I A square matrix which is non-singular has its rank equal to its order.
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Inverse Matrices
I A group of n non-homogeneous linear equations in m unknowns:

a11x1 + a12x2 + · · · + a1mxm = c1

a21x1 + a22x2 + · · · + a2mxm = c2

...
...

. . .
...

...
an1x1 + an2x2 + · · · + anmxm = cn

May be written in matrix form as:

AX = C

where A is the n×m matrix of coefficients, a; X is an m× 1 column
vector of unknowns, x , and C is an n × 1 column vector of
constants, c .

I When the coefficient matrix A for a group of non-homogeneous
equations is square and non-singular the solution for these equations
is given by :

X = A−1C.
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Inverse Matrices

I When there are more equations than unknowns in a group of
non-homogeneous equations, n > m, then a least squares
approximation

AX̃ = C̃

is given by
A′AX = A′C

where C̃ is a column vector such that E = C− C̃ is also a column
vector and has a minimum length,

LE = a minimum.

I In case the rows product moment matrix, (A′A), is non-singular, the
solution for X̃ is given by:

X̃ = (A′A)−1A′C.
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Inverse Matrices

I When there are more unknowns than equations in a group of
non-homogeneous equations, m > n, and the columns product
matrix (AA′) is non-singular, the solution for X is given by

X = A′(AA′)−1C

for which
LX = a minimum.

I The matrix (A′A)−1A′ is termed a left quasi-inverse, having the
property that

(A′A)−1A′A = I

and the matrix A′(AA′)−1 is termed a right quasi-inverse, having
the property that

AA′(AA′)−1 = I.
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Linear Transformations

I A transformation matrix, T, is square and non-singular.

I Any matrix A can be transformed into a matrix B by multiplication
by a transformation matrix T. If A is premultiplied by T

TA = B

a row transformation has been performed and if A is postmultiplied
by T

AT = B

a column transformation has been performed.

I A group of vectors produced by a transformation of another group of
vectors will span the identical subspace spanned by the original
group of vectors.
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Linear Transformations
I A group of non-homogeneous equations

AX = C

may be row transformed into an equivalent group of equations by

AT = TA

CT = TC

then
ATX = CT

I If a square matrix A is transformed into an identity matrix by a
series of transformations, the corresponding transformations on an
identity matrix will produce the inverse of A. If

(TR1 · TR2 . . .) A (TC1 · TC2 . . .) = I

then
(TR1 · TR2 . . .) I (TC1 · TC2 . . .) = A−1
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Linear Transformations

I An orthogonal transformation matrix U is a transformation matrix
such that

U′ = U−1.

I The row vectors (or column vectors) contained in an orthogonal
transformation matrix, U, are of unit length and are mutually
orthogonal so that:

UU′ = U′U = I.

I A columns (or rows) transformation by an orthogonal transformation
matrix of a matrix of row (or column) vectors will produce an
orthogonal rotation of axes.

I An orthogonal rotation of axes will not alter:

I the lengths of the vectors in the space;
I the inner product between vectors in the space;
I the dimensionality of the subspace spanned by a group of vectors in

the space.
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Characteristic Roots and Vectors

I Almost any square matrix, say A, of order n, can be expressed as the
product of three matrices of the following form:

[aij ] = [vim] · [λm] · [v (mj)]
A = V · Λ · V−1

where Λ is a diagonal matrix with diagonal entries λm, V is a square
matrix with entries vim, and V−1 has entries indicated by
superscripts vmj .

I The λm are termed the characteristic roots of A and the column
vectors, Vm, in V are termed the characteristic vectors of A.
Alternative terminology includes eigenvalues and eigenvectors or
latent roots and latent vectors .

I The number of non-zero characteristic roots of A equals the rank of
A.
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Characteristic Roots and Vectors

I Each characteristic root, λm , and corresponding vector, Vm, is
related to the matrix A in the following form:

AVm = λmVm,

or
(A− λmI)Vm = 0

I The forms of (4) imply n homogeneous linear equations in the
elements vim of Vm which when manipulated algebraically to
eliminate these elements vim yield a polynomial equation in λm of
rank n

λn
m + α(n−1)λ

(n−1)
m + · · ·+ αtλ

t
m + · · ·+ α0 = 0

where the αs are the coefficients of this equation and depend on the
matrix A. This equation is termed the characteristic equation of A.
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Characteristic Roots and Vectors
I Any characteristic vector may be multiplied by a constant and still

retain its properties of (1) and (4).

AVm = λmVm,

let
V?

m = cVm,

then,
AV?

m = λmV?
m.

By convention, a characteristic vector is usually defined to be of unit
length.

V′mVm = I

I Solution of the equation of (1) for Λ, yields the following form

V−1AV = Λ

which is termed the diagonalization of A.
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Characteristic Roots and Vectors

I Let At and Bt be matrices related to A by the equation

B−1
t ABt = At

and let G(t−1)t be a matrix such that

G−1
(t−1)tA(t−1)G(t−1)t = At

then
B(t−1)G(t−1)t = Bt ;

or, if there exists a series of matrices for t = 1, 2, . . . , s and

B0 = I,

then,
Bs = G0,1G1,2 · · ·G(s−1),s .
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Characteristic Roots and Vectors

I If G(t−1) is chosen for each t so that At is more nearly a diagonal
matrix in some sense than is A(t−1), then as s →∞

As → Λ

and
Bs → V

I For every characteristic root λm′ , which does not equal any other
characteristic root λm , (m 6= m′; m = 1, 2, 3 . . . , n) the
corresponding characteristic vector is unique.
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Characteristic Roots and Vectors

I If two or more characteristic roots, say λp, λ(p+1), . . . , λ(p+q−1) for q
roots, of matrix A are equal,

λp = λ(p+1) = · · · = λ(p+q−1),

then a q dimensional subspace will be uniquely defined but the q
vectors in any basis of this space will have the properties of
characteristic vectors. Let one such group of vectors be column
vectors in a matrix Vq and let T be a non-singular square matrix of
order q, then

VqT = V?
q

yields a new group of vectors in V?
q which have the properties of

characteristic vectors of A.
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Characteristic Roots and Vectors

I Addition of a scalar matrix with constant element k to a matrix A
does not alter the characteristic vectors but adds the constant k to
each root.

A = VΛV−1

(A + K) = V(Λ + K)V−1.

I If two matrices, say A and B, have identical characteristic vectors,
then their sum will have the same characteristic vectors and will
have characteristic roots equal to the sum of the corresponding
roots for A and B.

A = VΛAV−1

B = VΛBV−1

(A + B) = V(ΛA + ΛB)V−1.
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Characteristic Roots and Vectors

I If a matrix A is multiplied by a scalar matrix K with constant
element k, then the characteristic vectors will remain unchanged and
the characteristic roots will be multiplied by the same constant.

A = VΛV−1

(KA) = V(KΛ)V−1.

I If a matrix A is raised to a power p by multiplying it by itself p
times, the characteristic vectors will remain unchanged but the
characteristic roots will be raised to the power p.

A = VΛV−1

A2 = AA = VΛ2V−1

A3 = AAA = VΛ3V−1, etc.
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Characteristic Roots and Vectors
I If a matrix A is inverted, then the characteristic vectors will remain

unchanged but the characteristic roots will be inverted.

I If the matrix A is symmetric:

A = A′,

then the matrix V of characteristic vectors will be an orthogonal
transformation so that

V′ = V−1,

and
A = VΛV′.

I If the matrix A is symmetric (A = A′), then the trace of A equals
the sum of the characteristic roots.

Trace(A) =
n∑

i=1

aii =
n∑

m=1

λm.
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Characteristic Roots and Vectors

I If the matrix A is symmetric (A = A′), then the square of the norm
of A equals the sum of the squares of the characteristic roots.

Norm2(A) =
n∑

i=1

n∑
j=1

a2
ij =

n∑
m=1

λ2
m.
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Characteristic Roots and Vectors

I If matrix A is symmetric (A′ = A), let Bt be an orthogonal matrix

B′t = B−1
t

and let At be defined as

B′tABt = At

then At is symmetric
A′t = At ,

and
Trace(At) = Trace(A),

Norm2(At) = Norm2(A).
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Characteristic Roots and Vectors

I Further, let G(t−1)t be an orthogonal matrix such that

G′(t−1)t = G−1
(t−1)t

G′(t−1)tA(t−1)G(t−1) = At

then
B(t−1)G(t−1)t = Bt

or, if there exists a series of matrices for t = 1, 2, . . . , s and

B0 = I

then
Bs = G0,1G1,2G2,3 · · ·G(s−1)s ;
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Characteristic Roots and Vectors

I and, if G(t−1)t is chosen for each t so that∑
i

∑
j 6=1

a2
(t−1)ij >

∑
i

∑
j 6=1

a2
tij

(these sums being of the squares of off-diagonal entries in A(t−1)

and At), then as s →∞
As → Λ

Bs → V.

Steven M. Boker University of Virginia

Matrix Algebra Review



H LD AB

Matrices Vectors Inverse Transformations Eigenvalues PCA Covariance of a Linear Combination

Principal Roots and Vectors
I Any rectangular matrix, say X, of order N × n, can be expressed as

the product of three matrices of the following form:
1 .  .  .  .  .  j  .  .  .  .   n

1
.
.
.
r
.
.
n

1 .  .  .  .  .  .  r  .  .  .   n
1
.
.
.
r
.
.
.
N

0

0

0

1 .  .  .  .  .  .  r  .  .  .  .  .  N
1
.
.
.
i
.
.
.
N

xij

1  .  .  .  .  .  j  .  .  .  .  n
1
.
.
.
i
.
.
.
N

X U Γ W

=

= . .

γm
0

0

where U and W are orthogonal matrices so that

U−1 = U′

W−1 = W′

and Γ is zero except for a diagonal matrix of order r in the upper left
corner with diagonal entries γm such that

γ1 ≥ γ2 ≥ γ3 ≥ . . . ≥ γr ≥ 0

where r ≤ N and r ≤ n.
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Principal Roots and Vectors

I The columns of U will be called the left principal vectors of X and
be designated Um; similarly, the rows of W will be called the right
principal vectors of X and be designated Wm and, correspondingly,
the γm will be called the principal roots of X.

I For each m = {1 . . . r} the product of the corresponding left
principal vector, principal root, and right principal vector will
produce a matrix Y(m), of order N × n, which will be designated the
mth principal component matrix of X.

Y(m) = UmγmWm.

Elements of Y(m) will be designated y(m)ij .
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Principal Roots and Vectors

I Any two different principal component matrices of X, say Y(m) and
Y(m?), where m and m? are unequal, are orthogonal in that every
row vector in one is orthogonal to every row vector in the other and
every column vector in one is orthogonal to every column vector in
the other; thus:

Y(m)Y
′
(m?) = 0

Y′(m)Y(m?) = 0

I The matrix X is the sum of its principal component matrices,

X =
r∑

m=1

Y(m)
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Principal Roots and Vectors

I The square of the norm of a principal component matrix equals the
square of the corresponding principal root.

[Norm(Y(m))]2 = γ2
m.

I The square of the norm of the matrix X is equal to the sum of the
squares of the norm of the principal component matrices and to the
sum of the squares of the principal roots.

[Norm(X)]2 =
r∑

m=1

[Norm(Y(m))]2 =
r∑

m=1

γ2
m.

I The rank of matrix X equals r , the number of non-zero principal
roots of X.
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Principal Roots and Vectors
I Let ρ be an integer in the range

0 ≤ ρ ≤ r ,

the ρth approximation to X is designated by X̂(ρ) and is defined as
the sum of the first ρ principal component matrices:

X̂(ρ) =

ρ∑
m=1

Y(m).

I The error of approximating X by X̂(ρ) is designated by E(ρ) so that

X = X̂(ρ) + E(ρ).

which implies

E(ρ) =
r∑

m=ρ+1

Y(m)
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Principal Roots and Vectors

I The square of the norm of X is resolved into the squares of the
norms of X(ρ) and E(ρ) in a manner parallel to the resolution of X
into X(ρ) and E(ρ) above; thus:

[Norm(X̂(ρ))]
2

=

ρ∑
m=1

γ2
m

[Norm(E(ρ))]2 =
r∑

m=ρ+1

γ2
m

[Norm(X)]2 = [Norm(X̂(ρ))]
2

+ [Norm(E(ρ))]2

I The matrix X(ρ) provides a least squares approximation matrix of
rank ρ to the given matrix X.

Steven M. Boker University of Virginia

Matrix Algebra Review



H LD AB

Matrices Vectors Inverse Transformations Eigenvalues PCA Covariance of a Linear Combination

Principal Roots and Vectors

I The characteristic roots and vectors of the rows product matrix of X,

P(i) = XX′

are related to the principal roots and the left principal vectors of X
in the following manner.

P(i) = Uβ(N)U
′

where β(N) is a diagonal matrix of order N containing the
characteristic roots of P(i) and U is the orthogonal matrix
containing the characteristic vectors of P(i), then

βm = γ2
m for m = 1, 2, 3, . . . , r ;

βm∗ = 0 for m∗ = (r + 1), . . . ,N;

and U contains the left principal vectors of X.
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Principal Roots and Vectors

I The characteristic roots and vectors of the columns product matrix
of X,

P(j) = X′X

are related to the principal roots and right principal vectors of X in
the following manner.

P(j) = W′β(n)W

where βn is a diagonal matrix of order n containing the
characteristic roots of P(j) and W′ is the orthogonal matrix
containing the characteristic vectors of P(j), then

βm = γ2
m for m = 1, 2, 3, . . . , r ;

βm∗∗ = 0 for m∗∗ = (r + 1), . . . , n;

and W contains the right principal vectors of X.
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Principal Roots and Vectors

I An orthogonal rotation of column axes of X by the matrix W′

produces a matrix Z(c),
XW′ = Zc ,

such that
Zc = UΓ

and the columns product matrix of Z(c) equals the diagonal matrix
β(n),

Z′(c)Z(c) = β(n).
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Principal Roots and Vectors

I A similar orthogonal rotation of row axes of X may be performed
with matrix U′ to Z(r) so that

U′X = Z(r),

Z(r) = ΓW,

Z(r)Z
′
(r) = β(N) .

I The m∗∗ columns of Z(c), m∗∗ = (r + 1), ..., n, will contain all zero
coordinates of the row vectors of X. (Similarly, the m∗ rows of Z(r),
m∗ = (r + 1), ...,N, will contain all zero coordinates of the column
vectors of X.)
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Covariance of a Linear Combination

I Suppose we have an N × 2 data matrix X where each column has a
mean of zero.

I Further suppose we construct a multivariate linear combination Y
such that

yi1 = b11xi1 + b21xi2 + ei1

yi2 = b12xi1 + b22xi2 + ei2

which we write in matrix format as

Y = XB + E

where

B =

[
b11 b12

b21 b22

]
and E is an N × 2 matrix of residuals with zero mean.
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Covariance of a Linear Combination

I We now wish to calculate the covariance matrix of the linear
combination.

I Variance of a variable x1 is the mean square deviation from the
variable’s mean

1/N
N∑

i=1

(x1 − x̄1)2

I Covariance of two variables x1 and x2 is the mean square
crossproduct from each variable’s mean

1/N
N∑

i=1

(x1 − x̄1)(x2 − x̄2)
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Covariance of a Linear Combination

I Since x1 and x2 had mean of zero, this reduces to.
I Variance of x1

1/N
NX

i=1

x2
1

I Covariance of x1 and x2

1/N
NX

i=1

x1x2
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Covariance of a Linear Combination

I Now, note that if we premultiply Y by its transpose

Z = Y′Y

we create a 2× 2 matrix Z, the columns product matrix of Y.

I What are in the elements of Z?
I z11 contains the sum of squares of y1

I z22 contains the sum of squares of y2

I z12 and z21 contain the sum of crossproducts between y1 and y2.

I Now, if we premultiply Z by 1/N what is in the elements of Z?
I z11 contains the mean square of y1

I z22 contains the mean square of y2

I z12 and z21 contain the mean crossproducts between y1 and y2.

I If the variables of Y have mean zero, then 1/N(Y′Y) is the
covariance matrix of Y.
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Covariance of a Linear Combination

I So, since
Y = XB + E

let’s try to substitute and work out the covariance of Y.

CYY = 1/N(Y′Y)

= 1/N((XB + E)′(XB + E))

= 1/N(((XB)′ + E′)(XB + E))

= 1/N((B′X′ + E′)(XB + E))

= 1/N(B′X′XB + B′X′E + E′XB + E′E)

= 1/N(B′X′XB + B′0 + 0B + E′E)

= 1/N(B′X′XB + E′E)

= B′(1/NX′X)B + 1/NE′E

= B′CXXB + CEE
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Next Week

I Path Analysis.

I Components of Covariance.

I Running Mx.
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