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How and why do we fit an SEM model?

Maximum Likelihood for Covariance

Maximum Likelihood for Covariance and Means

Full Information Maximum Likelihood

Assumptions

Model Comparison Fit Statistics

>
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Minus 2 Log Likelihood (-2LL or Chi Square or x?)
Root Mean Square Error of Approximation (RMSEA)
Akaike Information Criterion (AIC)

Bayes Information Criterion (BIC)
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How and why do we fit an SEM model?

Have a theory.

» Gather or find data.
» Construct several alternative models designed to test aspects of

vV v v v

the theory.

> Are these models the same as theories?
» Models say how theories would account for these data given a
particular set of statistical assumptions.

Check whether the data violate the assumptions.
Fit the alternative models.
Compare fit statistics of the alternative models.

Improve your understanding of the theory and perhaps make
changes to the theory.
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How and why do we fit an SEM model?

» Check whether the data violate the assumptions.
» Fit the alternative models.

» Compare fit statistics of the alternative models.
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Fitting a Model

. Data has an observed covariance (and possibly a vector of
means).

2. The model has a specified structure and starting values.

3. Calculate the expected covariance matrix (and expected vector of

means).

. The difference between the observed and expected covariance
matrices (and means) is calculated.

» This difference is called the “function value”.

5. Specify new starting values so as to reduce the function value.

6. If the function value is still getting smaller, go back to step 3.

7. Report the parameter estimates, the function value, and fit

statistics.
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Fitting a Model

4. The difference between the observed and expected covariance
matrices (and means) is calculated.

» This difference is called the “function value”.

7. Report the parameter estimates, the function value, and fit
statistics.
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Five Fit Functions

1. Unweighted Least Squares (ULS).
> Scales for all variables must be the same.
2. Generalized Least Squares (GLS).
» Assumes multivariate normal.
3. Maximum Likelihood (ML and FIML).
» Assumes multivariate normal.
4. Asymptotic Distribution Free (ADF).

» Does not make distributional assumptions, but sample size must
be large.

ot

. Bayesian Estimation Methods.

» Slow estimation, but best when there are unequal model priors.
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Five Fit Functions

3. Maximum Likelihood (ML and FIML).

» Assumes multivariate normal.
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Maximum Likelihood

Maximum Likelihood

» Suppose we have data.
» Suppose we have a specified model structure.

» For this model structure there are many model instances, each
with different parameter values.

» For this model structure, we wish to select the parameter values
that have the greatest likelihood to have produced the data.
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Maximum Likelihood

Maximum Likelihood

» Suppose I wish to predict the outcome of a coin toss.
» [ have three models:
1. The probability of heads is p(heads) = 1.00.
2. The probability of heads is p(heads) = 0.50.
3. The probability of heads is p(heads) = 0.00.
» I flip the coin 20 times and it comes up heads 13 times.
> So, p(heads) = 13/20 = 0.65
» By inspection, it looks like Model 2 is the most likely model to

have produced the data.
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Maximum Likelihood

Maximum Likelihood

v

But now suppose I only had two models:

1. The probability of heads is p(heads) = 1.00.
2. The probability of heads is p(heads) = 0.00.

I flip the coin 20 times and it comes up heads 13 times.
So, p(heads) = 13/20 = 0.65 in the data.

Now it looks like Model 1 is the most likely model to have
produced the data.

v

v

v

v

The model that is chosen as having maximum likelihood is
dependent on which models are in the set!
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Maximum Likelihood

Maximum Likelihood for Coin Toss

» The likelihood function is the joint probability of observing the
data.

» For a coin toss with heads probability p, this is a Bernoulli
distribution

folzi) =p (1 —p)'—"
» The likelihood L of the data given p is the product

N
L(p) = prm)

N

Lp)=[]r"(1-p)

i=1

N o N
L(p) = p=i= (1 —p)N =
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Maximum Likelihood

Maximum Likelihood for Coin Toss

» Let’s go back to our example and calculate the likelihood for each
of the three models.

1. The probability of heads is p(heads) = 1.00.

2. The probability of heads is p(heads) = 0.50.
L£(.5) = 5" x .5" = 0.00000095
3. The probability of heads is p(heads) = 0.00.
L£0)=0"x1"=0

» This is usually expressed in terms of -2 times the natural log of
the likelihood (written -2LL).

—21n(L£(.5)) = 27.72
(I o D W
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Maximum Likelihood

Maximum Likelihood for Coin Toss

» The closer the -2LL is to zero, the more likely are the data given
the chosen model.

» Let’s use R to calculate the -2LL for all the model probabilities
from 0.5 to .95 stepping by .05.

11 <- rep(NA, 19)

model <- rep(NA, 19)

i<-1

for(p in seq(.05, .95, by=.05)) {
model[i] <- p
11[i] <= -2 * ((13 * log(p)) + ((20 - 13) * log(1 - p)))
i<-1i+1

}

pdf ("LogLikelihoodCoin.pdf", height=5, width=6)
plot(model,1ll, lwd=2, col="blue",

xlab = "Model",

ylab="-2 log likelihood")
dev.off ()
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Maximum Likelihood

Maximum Likelihood for Coin Toss

o
© °
o _
=
°
o
g 8-
=
©
=
= o |
o W
o
R
o
<
o _|
o

Model

0.8

Unive



Maximum Likelihood

Maximum Likelihood for Coin Toss
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Maximum Likelihood

Maximum Likelihood

» We would like to select the most likely model given the data.

max p(Model|Data)

v

But what we are actually choosing is the maximum probability of
the data given the model.

max p(Data|Model)

v

By Bayes theorem we know that

p(Data|Model)p(Model)
p(Data)

p(Model|Data) =

v

But we know that p(Data) is constant.

v

So, if every model in our set is equally probable, maximum
likelihood would choose the most likely model.




Maximum Likelihood

Maximum Likelihood

» Suppose we have two models:

1. A person is President Obama.
2. A person is not President Obama.

» Suppose in the population of the U.S. we find that
p(BrownHair) = .7 and p(Male) = .5

» The probability of A and B occurring is the probability of A
occurring times the probability of B occurring given that A has
already occurred. p(A N B) = p(A)p(B|A)

» I now have two models:

1. The probability of brown hair and male if a person is President
Obama is p(BrownHair N Male) = 1.0 x 1.0 = 1.0.

2. The probability of brown hair and male if a person is not
President Obama is p(BrownHair N Male) = 0.7 x 0.5 = 0.35.

» If we select a person that is a male and has brown hair, then
given these models, by maximum likelihood I will select the
model that says that person is President Obamal HoLas
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Maximum Likelihood

Maximum Likelihood Base Rate Fallacy

v

What went wrong with our logic?

v

Let’s look again at the two models
1. A person is President Obama.
2. A person is not President Obama.
» In the 2000 U.S. Census, the population of the U.S. was
281,421,906.
» There is only one President Obama.
» So, the prior probability of each model is
1. p(ObamaModel) = 1/281421906 = 0.00000000355
2. p(NotObamaModel) = 281421905/281421906 = 0.99999999645
» When the prior probability of models is different from one
another, then Bayesian estimation techniques maximize

p(Data|Model)p(Model)

and so we would always choose the NotObamaModel since
p(ObamaModel) is so low. Holas
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Maximum Likelihood

Maximum Likelihood Base Rate Fallacy

» A more subtle version of this fallacy involves when you pick
comparison models that are “straw man” models to compare to
your preferred model.

» If you know that there is almost no chance that the comparison
model is correct, then you have set up a comparison with a base
rate fallacy.

» If you want to believe the model comparison statistics, then you
must be willing to say that each model in the comparison has an
equal prior probability.

» Model comparison statistics are not valid if you already know the
answer!

» One way to know the answer is to look at your data before you
build your theory and your models.

> In that case, the model comparison statistics are not informative:

They don’t add any more evidence than you already had.
Holas
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Maximum Likelihood

Maximum Likelihood for Continuous Variables

» So far, we have only looked at discrete outcomes (heads/tails,
Obama,/NotObama).

» What happens when we move to continuous outcomes?

» Now we have a very large number of possible outcomes and
possible model parameters.

» One way to deal with this is to use means, variances and
covariances.

» We calculate the likelihood of the data given a model-predicted
covariance structure.

» There is no way to calculate the likelihood of all of them.
> So, we use search strategies to find a model with minimum -2LL.

» But at the heart of it we are still doing the same thing:

max p(Data|Model)
Holas
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Maximum Likelihood

Maximum Likelihood Local Minimum
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Maximum Likelihood

Maximum Likelihood for Univariate Normal

» Suppose we have a data matrix composed of independent rows
where each row was drawn from the same distribution.

» Then the likelihood L of the data given a set of parameters © is
the product of the univariate probability densities

N
£0) =[] fo(a

» This calculation can be simplified by taking the log of each side
so that the products turn into sums

N

In(£(6)) =Y In(fo(x:))

=1




Maximum Likelihood

Maximum Likelihood for Univariate Normal

» The normal distribution with mean=mu and variance o2 has a
probability density function

(z —p)?
202

f@(x|ﬂ,0'2)= )

exp(—

1
V2ro
» Then for a sample matrix with N independent identically

distributed rows we have

>N€Xp (va_l(xi —2)° +N(x—u)2>

202

£luo?) = (

2mo

» Taking the log doesn’t change the maximum of this function, so
an easier form to calculate is

1 ) X (@i )2+ N (@ — p)?
fng Hol A

In(L(p,0%) = NIn <

o270 202




Maximum Likelihood for Covariance Matrices

» This same logic can be extended to multivariate normal data.

» Suppose we have a data set with IV rows and p variables with an
observed covariance matrix S.

» Suppose we have a model that results in an expected covariance
matrix 3.

» Then the maximum likelihood function value can be defined as

—2InL = (N —-1)(In|Z| —In|S| + tr(SE=~!) — p)




ML with Means

Maximum Likelihood for Covariance and Means

» This same logic can be extended to multivariate normal data
when you have a model for the means.

» Suppose we have a data set with IV rows and p variables with an
observed covariance matrix S and vector of means x.

» Suppose we have a model that results in an expected covariance
matrix ¥ and expected mean vector p.

» Then the maximum likelihood function value can be defined as
—2InL =(N-1) (In|Z|-In|S|+tr(SZ™) —p+

(x—p)EHx—p)+1)

N-1




FIML

Full Information Maximum Likelihood

» This logic can also be applied to create a likelihood calculation
for each row in the data matrix.

» The advantage here is that if some variable is missing for one row
in the data matrix, the model expectation can be used for the
data that does exist.

» Thus, for data that are missing at random, each row of the data
contributes to the misfit to the extent that they do have data.

» In order to use FIML you must have a model for the means as
well as the covariances.
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FIML

Full Information Maximum Likelihood

» If person 7 is observed on k variables in a vector x;, the
maximum likelihood function value looks like this.

—2InL = Z —kIn(27) +In |2 + (i — ) B (xi — 1))

» Note that the expected covariance matrix 3 and expected mean
vector p have only the rows and columns that exist in the &
variables that exist for person 3.
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SEM Statistical Assumptions

» Linearity. For each unit change in the independent variable,
there is some proportional change in the dependent variable.

Yi = bo + b1z + e
» The expected value of x is the mean of =
E@)=M, =7 = p,
» The expected value of the error is 0

Ele)=M,=é=pe =0
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Assumptions

SEM Statistical Assumptions

» The expected value of the square of the deviation scores is the
variance

E((z—2)(z—2)) =Ve

» The expected value of the square of the error is the variance of
the error (Homoscedasticity)

E((e)(e)) = Ve

» The independent variable x and the error e have an expected
covariance of 0 (predictor variables and the residuals are

uncorrelated).
E((w—7)(e))) =0

» The error is approximately normally distributed with a mean of 0
and normal variance.
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Assumptions

SEM Statistical Assumptions

» Multivariate Normality. The multivariate extension of the
normality assumption in regression.

> Sample Size. Widely varies depending on the number of
indicators (measured variables), the number of latent variables
and the strength of loadings (coefficients). Simple models may be
estimated with fewer than 100 cases, more complex models may
require 500 or more cases.

» No Multicollinearity. This can result in problems like singular
matrices when two variables are correlated too highly (> .9 or so).
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Fit Statistics

Model Comparison Fit Statistics

» Model Comparison Fit Statistics

» Minus 2 Log Likelihood (-2LL or Chi Square or x?)
Root Mean Square Error of Approximation (RMSEA)
Akaike Information Criterion (AIC)
Bayes Information Criterion (BIC)

vYyy
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Fit Statistics

Minus 2 Log Likelihood

This can be used to perform a Likelihood Ratio Difference Test
when you have nested models.

The difference between two nested models’ Minus 2 Log
Likelihoods is distributed as Chi Square with p degrees of
freedom where p is the difference between the degrees of freedom
in the two models.

Nested models are ones where you only constrained parameters
or you only released constraints on parameters.

I tend to use the -2LL in a slightly different way.

I test several models including one that has many constraints (a
Null Comparison Model) up to a model that has released all of
the constraints that are interesting (a Nearly Saturated Model). I
look carefully at places where there are large jumps in the -2LL.




Minus 2 Log Likelihood

-2 Log Likelihood

Age in Months
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Root Mean Square Error of Approximation

» RMSEA was proposed as a goodness of fit index by Steiger &
Lind in 1980.

» RMSEA attempts to make a fit statistic that is relatively
independent of sample size.

» It is calculated as

(=2In L — df)

RMSEA = N df

» One way to think about RMSEA is as an index of being “close”.

» Rules of thumb have grown to be < 0.05 is “good” fit and > 0.10
is "poor” fit.

» Rules of thumb are great but one person can only count up to
two with their thumbs.
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Fit Statistics

AIC and BIC

» The AIC and BIC attempt to compare non—nested models.

There is still some controversy about their use.

Akaike’s Information Criterion is defined as
AIC=-2lnL+2(p+1)

where p is the number of free parameters in the model

The Bayes Information Criterion is defined as
BIC =-2InL+2(p+1)In(N)

As you can see, BIC attempts to account for the sample size as
well as the complexity of the model.

Again, lower AIC and BIC are better.
» AIC and BIC are also used with FIML.




Next Lecture

» Data Screening.

» Graphical Diagnostics.
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