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CHAPTER

ONE

INTRODUCTION

1.1 Beginners Guide to OpenMx

This document will walk the reader through the basic concepts used in the OpenMx library. It will assume that
you have successfully installed the R statistical programming language [http://www.r-project.org/] and the OpenMx
library for R [http://openmx.psyc.virginia.edu]. Before we begin, let us start with a mini-lecture on the R programming
language. Our experience has found that this exercise will greatly increase your understanding of subsequent sections
of the introduction. Detailed introductions to R can be found on the internet.

The OpenMx scripts for the examples in this guide are available in the following files:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorPathDemo.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorMatrixDemo.R

1.1.1 Pass By Value

1 addone <- function(number) {
2 number <- number + 1
3 return(number)
4 }
5

6 avariable <- 5
7

8 print(addone(avariable))
9 print(avariable)

In the previous code block, the variables addone and avariable are defined. The value assigned to addone is a
function, while the value assigned to avariable is the number 5. The function addone takes a single argument,
adds one to the argument, and returns the argument back to the user. What is the result of executing this code block?
Try it. The correct result is 6 and 5. But why is the variable avariable still 5, even after the addone function was
called? The answer to this question is that R uses pass-by-value function call semantics.

In order to understand pass-by-value semantics, we must understand the difference between variables and values. The
variables declared in this example are addone, avariable, and number. The values refer to the things that are
stored by the variables. In programming languages that use pass-by-value semantics, at the beginning of a function
call it is the values of the argument list that are passed to the function. The variable avariable cannot be modified
by the function addone. If I wanted to update the value stored in the variable, I would have needed to replace line 8
with the expression print(avariable <- addone(avariable)). Try it. The updated example prints out 6
and 6. The lesson from this exercise is that the only way to update a variable in a function call is to capture the result
of the function call 1. This lesson is sooo important that we’ll repeat it:

1 There are a few exceptions to this rule, but you can be assured such trickery is not used in the OpenMx library.

3

http://www.r-project.org/
http://openmx.psyc.virginia.edu
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorPathDemo.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorMatrixDemo.R
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• the only way to update a variable in a function call is to capture the result of the function call.

R has several built-in types of values that you are familiar with: numerics, integers, booleans, characters, lists, vectors,
and matrices. In addition, R supports S4 object values to facilitate object-oriented programming. Most of the functions
in the OpenMx library return S4 object values. You must always remember that R does not discriminate between built-
in types and S4 object types in its call semantics. Both built-in types and S4 object types are passed by value in R
(unlike many other languages).

1.1.2 Path Model Specification

Below is a figure of a one factor model with five indicators. The script reads data from disk, creates the one factor
model, fits the model to the observed covariances, and prints a summary of the results.

1 require(OpenMx)
2

3 data(demoOneFactor)
4 manifests <- names(demoOneFactor)
5 latents <- c("G")
6

7 factorModel <- mxModel(name="One Factor",
8 type="RAM",
9 manifestVars = manifests,

10 latentVars = latents,
11 mxPath(from=latents, to=manifests),
12 mxPath(from=manifests, arrows=2),
13 mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
14 mxData(observed=cov(demoOneFactor), type="cov", numObs=500)
15 )
16

17 factorFit <- mxRun(factorModel)
18 summary(factorFit)

This example uses a RAM-style specification technique. Let’s break down what is happening in each section of this
example.

Preamble

Every OpenMx script must begin with either library(OpenMx) or require(OpenMx). These commands will
load the OpenMx library.

4 Chapter 1. Introduction
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Reading Data

The data function can be used to read sample data that has been pre-packaged into the R library. In order to read
your own data, you will most likely use the read.table, read.csv, read.delim functions, or other specialized
functions available from CRAN to read from 3rd party sources.

Model Creation

The mxModel function is used to create a model. By specifying the type argument to equal ‘RAM’, we create a
path style model. A RAM style model must include a vector of manifest variables (manifestVars=) and a vector
for latent variables (latentVars=). In this case the manifest variables are c("x1", "x2", "x3", "x4",
"x5") and the latent variable is c("G").

Path Creation

Paths are created using the mxPath function. Multiple paths can be created with a single invocation of the mxPath
function. The from argument specifies the path sources, and the to argument specifies the path sinks. If the to
argument is missing, then it is assumed to be identical to the from argument. By default, the ith element of the
from argument is matched with the ith element of the to argument, in order to create a path. The arrows argument
specifies whether the path is unidirectional (single-headed arrow, 1) or bidirectional (double-headed arrow, 2). The
next three arguments are vectors: free, is a boolean vector that specifies whether a path is free or fixed; values is
a numeric vector that specifies the starting value of the path; labels is a character vector that assigns a label to each
free or fixed parameter.

Objective Function Creation

When using a path specification of the model, the objective function is always RAM.

Data Source Creation

A mxData function is used to construct a data source for the model. In this example, we are specifying a covariance
matrix. In addition to reading in the actual covariance matrix as the first (observed) argument, we specify the type
(one of cov,‘‘cor‘‘,‘‘sscp‘‘ and raw) and if required the number of observations (numObs).

Model Population

The mxModel function is somewhat of a swiss-army knife. The first argument to the mxModel function can be a
name, in case it is a newly generated model or a previously defined model. In the latter case, the new model ‘inherit’s
all the characteristics (arguments) of the old model, which can be changed with additional arguments. An mxModel
can contain mxPath, mxData, mxObjective and other mxModel statements as arguments.

Model Execution

The mxRun function will run a model through the optimizer. The return value of this function is an identical model,
with all the free parameters in the elements of the matrices of the model assigned to their final values. The summary
function (summary(modelname)) is a convenient method for displaying the highlights of a model after it has been
executed.

1.1. Beginners Guide to OpenMx 5
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1.1.3 Matrix Model Specification

1 require(OpenMx)
2

3 data(demoOneFactor)
4

5 factorModel <- mxModel(name="One Factor",
6 mxMatrix(type="Full", nrow=5, ncol=1, free=TRUE, values=0.2, name="A"),
7 mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
8 mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U"),
9 mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),

10 mxMLObjective(covariance="R", dimnames = names(demoOneFactor)),
11 mxData(observed=cov(demoOneFactor), type="cov", numObs=500)
12 )
13

14 factorFit <- mxRun(factorModel)
15 summary(factorFit)

We will now re-create the model from the previous section, but this time we will use a matrix specification technique.
The script reads data from disk, creates the one factor model, fits the model to the observed covariances, and prints a
summary of the results. Let’s break down what is happening in each section of this example.

Preamble

Every OpenMx script must begin with either library(OpenMx) or require(OpenMx). These commands will
load the OpenMx library.

Reading Data

The data function can be used to read sample data that has been pre-packaged into the R library. In order to read
your own data, you will most likely use the read.table, read.csv, read.delim functions, or other specialized
functions available from CRAN to read from 3rd party sources.

Model Creation

The basic unit of abstraction in the OpenMx library is the model. A model serves as a container for a collection
of matrices, algebras, constraints, objective functions, data sources, and nested sub-models. In the parlance of R, a
model is a value that belongs to the class MxModel that has been defined by the OpenMx library. The following table
indicates what classes are defined by the OpenMx library.

entity S4 class
model MxModel
algebra MxAlgebra
objective function MxObjectiveFunction
constraint MxConstraint
data source MxData

All of the entities listed in the table are identified by the OpenMx library by the name assigned to them. A name
is any character string that does not contain the ”.” character. In the parlance of the OpenMx library, a model is a
container of named entities. The name of an OpenMx entity bears no relation to the R variable that is used to identify
the entity. In our example, the variable factorModel is created with the mxModel function and stores a value that
is a “MxModel” object with the name One Factor.

6 Chapter 1. Introduction
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Matrix Creation

The next three lines create three MxMatrix objects, using the mxMatrix function. The first argument declares the
type of the matrix, the second argument declares the number of rows in the matrix (nrow), and the third argument
declares the number of columns (ncol). The free argument specifies whether a element is a free or fixed parameter.
The values argument specifies the starting values for the elements in the matrix. and the name argument specifies
the name of the matrix.

Each MxMatrix object is a container that stores five matrices of equal dimensions. The five matrices stored in a
MxMatrix object are: values, free, labels, lbound, and ubound. Values stores the current values of
each element in the matrix. Free stores a boolean that determines whether a element is free or fixed. Labels
stores a character label for each element in the matrix. And lbound and ubound store the lower and upper bounds,
respectively, for each element that is a free parameter. If a element has no label, lower bound, or upper bound, then an
NA value is stored in the element of the respective matrix.

Algebra Creation

An mxAlgebra function is used to construct an expression for any algebra, i.e. the expected covariance algebra.
The first argument (expression) is the algebra expression that will be evaluated by the numerical optimizer. The
matrix operations and functions that are permitted in an MxAlgebra expression are listed in the help for the mxAlgebra
function (obtained by ?mxAlgebra). The algebra expression refers to entities according to their names.

Objective Function Creation

MxObjective constructs an objective function for the model. For this example, we are using a maximum likelihood
objective function and specifying an expected covariance algebra and omitting an expected means algebra. The ex-
pected covariance algebra is referenced according to its name. The objective function for a particular model is given
the name objective. Consequently there is no need to specify a name for objective function objects. We need to
assign dimnames for the rows and columns of the covariance matrix, such that a correspondence can be determined
between the expected and the observed mean vectors / covariance matrices.

Data Source Creation

An mxData function provides a data source for the model. In this example, we are specifying a covariance matrix.
The data source for a particular model is given the name data. Consequently there is no need to specify a name for
data objects.

Model Population

The mxModel function is somewhat of a swiss-army knife. If the first argument to the mxModel function is an
existing model, then the result of the function call is a new model with the remaining arguments to the function call
added or removed from the model (depending on the ‘remove’ argument, which defaults to FALSE). Alternatively, we
can give it a name and populate the model with matrices, algebras, an objective function, and a data source, which are
all arguments of the mxModel.

Model Execution

The mxRun function will run a model through the optimizer. The return value of this function is an identical model,
with all the free parameters in the elements of the matrices of the model assigned to their final values. The summary
function (summary(modelname)) is a convenient method for displaying the highlights of a model after it has been
executed.

1.1. Beginners Guide to OpenMx 7
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Alternative Formulation

Rather than adding the paths/matrices/algebras, objective function and data as arguments to the mxModel, which we
will use primarily throughout the documentation, we can also create separate objects for each of the parts of the model,
which can then be combined in an mxModel statement at the end. To repeat ourselves, the name of an OpenMx entity
bears no relation to the R variable that is used to identify the entity. In our example, the variable matrixA stores a
value that is a MxMatrix object with the name “A”.

1 require(OpenMx)
2

3 data(demoOneFactor)
4

5 factorModel <- mxModel(name="One Factor")
6

7 matrixA <- mxMatrix(type="Full", nrow=5, ncol=1, free=TRUE, values=0.2, name="A")
8 matrixL <- mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L")
9 matrixU <- mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U")

10

11 algebraR <- mxAlgebra(expression=A %*% L %*% t(A) + U, name="R")
12

13 objective <- mxMLObjective(covariance="R", dimnames = names(demoOneFactor))
14 data <- mxData(observed=cov(demoOneFactor), type="cov", numObs=500)
15

16 factorModel <- mxModel(
17 factorModel, matrixA, matrixL, matrixU, algebraR, objective, data)
18

19 factorFit <- mxRun(factorModel)
20 summary(factorFit)

Note that lines 5 and 16 could have been combined with the following call:

factorModel <- mxModel(
matrixA, matrixL, matrixU, algebraR, objective, data, name="One Factor")

1.2 Quick Overview

This document provides a quick overview of the capabilities of OpenMx in handling everything from simple calcu-
lations to optimization of complex multiple group models. Note that this overview focuses on matrix specification
of OpenMx models, and that all these models can equally well be developed using path specification. We start with
a matrix algebra example, followed by an optimization example. We end this quick overview with a twin analysis
example, as the majority of prior Mx users will be familiar with this type of analysis. We plan to expand this overview
with examples more relevant to other applications of structural equation modeling. While we provide the scripts here,
we will not discuss every detail, as that is done more systematically in the next chapters with examples shown in two
model styles and two data styles. We describe in detail a series of models using path specification in chapter two,
followed by the same examples in matrix specification in chapter three.

The OpenMx scripts for the examples in this overview are available in the following files:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MatrixAlgebra.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateCorrelation.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateTwinAnalysis.R

8 Chapter 1. Introduction
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1.2.1 Simple OpenMx Script

We will start by showing some of the main features of OpenMx using simple examples. For those familiar with Mx, it
is basically a matrix interpreter combined with a numerical optimizer to allow fitting statistical models. Of course you
do not need OpenMx to perform matrix algebra as that can already be done in R or by hand. However, to accommodate
flexible statistical modeling of the type of models typically fit in Mx, Mplus or other SEM packages, special kinds of
matrices and functions are required which are bundled in OpenMx. We will introduce key features of OpenMx using
a matrix algebra example. Remember that R is object-oriented, such that the results of operations are objects, rather
than just matrices, with various properties/characteristics attached to them. We will describe the script line by line; a
link to the complete script is here.

Say, we want to create two matrices, A and B, each of them a ‘Full’ matrix with 3 rows and 1 column and with the
values 1, 2 and 3, as follows:

A =

 1
2
3

 B =

 1
2
3


we use the mxMatrix command, and define the type of the matrix (type=), number of rows (nrow=) and
columns (ncol=), its specifications (free=) and starting values (values=), optionally labels (labels=), upper
(ubound=) and lower (lbound=) bounds, and a name (name=).

mxMatrix(
type="Full",
nrow=3,
ncol=1,
values=c(1,2,3),
name=’A’

)

The matrix A can be stored as the R object A by assigning the MxMatrix to the string A

A <- mxMatrix(
type="Full",
nrow=3,
ncol=1,
values=c(1,2,3),
name=’A’

)

or we can include the mxMatrix statement as an argument in an mxModel - here saved as the R object exercise
and given the name declare matrices - together with other matrices and possibly calculations based on those
matrices using mxAlgebra statements. All the arguments of an mxModel are separated by a comma. The model
below contains just two matrices, A and B. Note that the last argument is not followed by a comma, but rather by an
right bracket to close the mxModel.

exercise <- mxModel("declare matrices",
mxMatrix(

type="Full",
nrow=3,
ncol=1,
values=c(1,2,3),
name=’A’

),
mxMatrix(

type="Full",
nrow=3,
ncol=1,
values=c(1,2,3),
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name=’B’
)

)

Assume we want to calculate the (q1) the sum of the matrices A and B, (q2) the element by element multiplication
(Dot product) of A and B, (q3) the transpose of matrix A, and the (q4) outer and (q5) inner products of the matrix A,
using regular matrix multiplication, i.e.:

q1 = A+B (1.1)
q2 = A.A (1.2)
q3 = t(A) (1.3)
q4 = A ∗ t(A) (1.4)
q5 = t(A) ∗A (1.5)

we invoke the mxAlgebra command which performs an algebra operation between previously declared matrices,
which are all included within an mxModel. Note that in R, transpose is represented by t(), regular matrix multipli-
cation \%*\% and dot multiplication as *. We also assign the algebras a name to refer back to them later:

mxAlgebra(
expression=A + B,
name=’q1’

)

mxAlgebra(
expression=A * A,
name=’q2’

)

mxAlgebra(
expression=t(A),
name=’q3’

)

mxAlgebra(
expression=A %*% t(A),
name=’q4’

)

mxAlgebra(
expression=t(A) %*% A,
name=’q5’

)

For the algebras to be evaluated, they become arguments of the mxModel command, as do the declared matrices, each
separated by comma’s. The model, which is here saved as the R object algebraExercises and given the name
perform algebra on matrices, is then executed by the mxRun command, as shown in the full code below,
saved in an R file matrixAlgebra.R:

require(OpenMx)

algebraExercises <- mxModel("perform algebra on matrices",
mxMatrix(type="Full", nrow=3, ncol=1, values=c(1,2,3), name=’A’),
mxMatrix(type="Full", nrow=3, ncol=1, values=c(1,2,3), name=’B’),
mxAlgebra(expression=A+B, name=’q1’),
mxAlgebra(expression=A*A, name=’q2’),
mxAlgebra(expression=t(A), name=’q3’),
mxAlgebra(expression=A%*%t(A), name=’q4’),
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mxAlgebra(expression=t(A)%*%A, name=’q5’)
)

answers <- mxRun(algebraExercises)
answers@algebras
result <- mxEval(list(q1,q2,q3,q4,q5),answers)

The resulting R object answers from running the OpenMx script algebraExercises contains the same matrices
and algebras with the values in the algebras being the result of the calculations on the matrices.

As you notice, we added some lines at the end to generate the desired output. As the resulting matrices and algebras
are stored in answers; we can refer back to them by specifying answers@matrices or answers@algebras.
We can also calculate any additional quantities or perform extra matrix operations on the results using the mxEval
command. For example, if we want to see a list of all the answers to the questions in matrixAlgebra.R, the results
would look like this:

[[1]]
[,1]

[1,] 2
[2,] 4
[3,] 6

[[2]]
[,1]

[1,] 1
[2,] 4
[3,] 9

[[3]]
[,1] [,2] [,3]

[1,] 1 2 3

[[4]]
[,1] [,2] [,3]

[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9

[[5]]
[,1]

[1,] 14

So far, we have introduced five new commands: mxMatrix, mxAlgebra, mxModel, mxRun and mxEval. These
commands allow us to run a wide range of jobs, from simple matrix algebra to rather complicated SEM models. Let’s
move to an example involving optimizing the likelihood of observed data.

1.2.2 Optimization Script

When collecting data to test a specific hypothesis, one of the first things one typically does is to check the basic
descriptive statistics, such as the means, variances and covariances/correlations. We can use basic functions in R, i.e.,
summary(Data) - or the alternative describe(Data) from the package psych - meanCol(Data), cov(Data) or cor(Data)
to perform these operations. We can even get R to provide significance levels for the correlations etc. However, if we
want to test specific hypotheses about the data by maximum likelihood (ML), for example, test whether the correlation
between two variables is significantly different from zero, we need to compare the likelihood of the data when the
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correlation is freely estimated with the likelihood of the data when the correlation is fixed to zero. Let’s work through
a specific example.

Say, we have collected data on two variables X and Y in 1000 individuals, and R descriptive statistics has shown that
the correlation between them is 0.5. For the sake of this example, we used another built-in function in the R package
MASS, namely mvrnorm, to generate multivariate normal data for 1000 individuals with means of 0.0, variances of
1.0 and a correlation (rs) of 0.5 between X and Y. Note that the first argument of mvrnorm is the sample size, the
second the vector of means, and the third the covariance matrix to be simulated. We save the data in the object xy and
create a vector of labels for the two selected variables, hence selVars, which is used in the dimnames statement
later on. The dimnames‘ are expected to be a list with rows corresponding to subjects and columns to variables. The
rows are typically not labeled thus we use NULL, the columns get the labels of the variables from selVars. The R
functions summary() and cov() are used to verify that the simulations appear OK.

#Simulate Data
require(MASS)
set.seed(200)
rs=.5
xy <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
testData <- xy
selVars <- c(’X’,’Y’)
dimnames(testData) <- list(NULL, selVars)
summary(testData)
cov(testData)

To evaluate the likelihood of a set of correlated data using SEM, we estimate a saturated model with free means,
free variances and a covariance. It is called a saturated model as estimated as many parameters as there are observed
statistics (including both means and (co)variances). Let’s start with specifying the mean vector. We use the mxMatrix
command, provide the type, here Full, the number of rows and columns (nnow= and ncol=), respectively 1 and
2, the specification of free/fixed parameters (free=T/F), the starting values (values=), and a name. Given all
the elements of this 1x2 matrix are free, we can use free=TRUE. The starting values are provided using a list, i.e.
c(0,0). Finally, we are explicit in naming this matrix expMean. Thus the matrix command looks like this. Note
the soft tabs to improve readability.

bivCorModel <- mxModel("bivCor",
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=TRUE,
values=c(0,0),
name="expMean"

),

Next, we need to specify the expected covariance matrix. As this matrix is symmetric, we could estimate it directly as
a symmetric matrix. However, to avoid solutions that are not positive definite (and get us into optimization trouble),
we will use a Cholesky decomposition. Thus, we specify a lower triangular matrix (matrix with free elements on
the diagonal and below the diagonal, and zero’s above the diagonal), and multiply it with its transpose to generate
a symmetric matrix. We will use a mxMatrix command to specify the lower triangular matrix and a mxAlgebra
command to set up the symmetric matrix. The matrix is a 2x2 free lower matrix with starting values of 0.5 and the
name “Chol”. We can now refer back to this matrix by its name in the mxAlgebra statement. We use a regular
multiplication of Chol with its transpose t(Chol), and name this as expCov. Note that we do not directly estimate
the two variances and one covariance, but rather the three elements of a lower triangle of a matrix of the same size. The
number of elements in the lower triangle of a matrix are always the same as the number of elements in a symmetric
matrix.

mxMatrix(
type="Lower",
nrow=2,
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ncol=2,
free=TRUE,
values=0.5,
name="Chol"

),
mxAlgebra(

expression=Chol %*% t(Chol),
name="expCov"

),

Now that we have specified our ‘model’, we need to supply the data. This is done with the mxData command. The
first argument includes the actual data, in the type given by the second argument. Type can be a covariance matrix
(cov), a correlation matrix (cor), a matrix of cross-products (sscp) or raw data (raw). We will use the latter option and
read in the raw data directly from the simulated dataset testData.

mxData(
observed=testData,
type="raw"

),

Next, we specify which objective function we wish to use to obtain the likelihood of the data. Given we fit to the raw
data, we use the full information maximum likelihood (FIML) objective function mxFIMLObjective. Its arguments
are the expected covariance matrix (covariance=), generated using the mxMatrix and mxAlgebra commands
as expCov, and the expected means vector (means=), generated using the mxMatrix command as expMeans, and
dimnames. The dimnames are a type of label that is required to recognize the expected mean vector and expected
covariance matrix and match up the rows and columns of the model with those of the data. For a mean vector, the first
element is always NULL given mean vectors always have one row. The second element of the list should have the labels
for the two variables c(’X’,’Y’) which we have previously assigned to the object selVars. For a covariance
matrix, both elements are the labels for the two variables, thus selVars. Given the key piece of information for the
columns of the mean vector and the rows and columns of the covariance matrix is the list of variables, that is the only
element required for dimnames.

mxFIMLObjective(
covariance="expCov",
means="expMean",
dimnames=selVars)

)

All these elements become arguments of the mxModel command, seperated by comma’s. The first argument can be a
name, as in this case “bivCor” or another model (see below). The model is saved in an R object ‘bivCorModel’. This
MxModel object - note the capital M in MxModel for the resulting R object compared to the lower case m in mxModel
for the command - becomes the argument of the mxRun command, which evaluates the model and provides output -
if the model ran successfully - using the following command. Note that we have shrunk every command to one line to
provide a better overview of the script here.

bivCorModel <- mxModel("bivCor",
mxMatrix( type="Full", nrow=1, ncol=2, free=TRUE, values=c(0,0), name="expMean" ),
mxMatrix( type="Lower", nrow=2, ncol=2, free=TRUE, values=0.5, name="Chol" ),
mxAlgebra( expression=Chol %*% t(Chol), name="expCov", ),
mxData( observed=testData, type="raw" ),
mxFIMLObjective( covariance="expCov", means="expMean", dimnames=selVars)

)

bivCorFit <- mxRun(bivCorModel)

We can request various final values of the output using summary(bivCorFit) or the mxEval command. In the
following example, the simplest use case of mxEval is seen. The name of a matrix or algebra is used, and mxEval
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returns the current value of that matrix or algebra. See the OpenMx Style Guide for more advanced uses of the mxEval
command.

EM <- mxEval(expMean, bivCorFit)
EC <- mxEval(expCov, bivCorFit)
LL <- mxEval(objective,bivCorFit)

These commands generate the following output:

EM
X Y

[1,] 0.03211646 -0.004883803

EC
X Y

X 1.0092847 0.4813501
Y 0.4813501 0.9935387

LL
[,1]

[1,] 5415.772

Standard lists of data summary, parameter estimates and goodness-of-fit statistics can be obtained with the summary
command.:

> summary(bivCorFit)
X Y

Min. :-2.942561 Min. :-3.296159
1st Qu.:-0.633711 1st Qu.:-0.596177
Median :-0.004139 Median :-0.010538
Mean : 0.032116 Mean :-0.004884
3rd Qu.: 0.739236 3rd Qu.: 0.598326
Max. : 4.173841 Max. : 4.006771

name matrix row col parameter estimate error estimate
1 <NA> expMean 1 1 0.032116456 0.02228409
2 <NA> expMean 1 2 -0.004883803 0.02235021
3 <NA> Chol 1 1 1.004631642 0.01575904
4 <NA> Chol 2 1 0.479130899 0.02099642
5 <NA> Chol 2 2 0.874055066 0.01376876

Observed statistics: 2000
Estimated parameters: 5
Degrees of freedom: 1995
-2 log likelihood: 5415.772
Saturated -2 log likelihood:
Chi-Square:
p:
AIC (Mx): 1425.772
BIC (Mx): -4182.6
adjusted BIC:
RMSEA: 0

If we want to test whether the covariance/correlation between X and Y is significantly different from zero, we could
fit a submodel and compare it with the previous saturated model. Given that this model is essentially the same as the
original, except for the covariance, we create a new mxModel (named bivCorModelSub) with as first argument the
old model (named bivCorModel). Then we only have to specify the matrix that needs to be changed, in this case
the lower triangular matrix becomes essentially a diagonal matrix, obtained by fixing the off-diagonal elements to zero
in the free and values arguments
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#Test for Covariance=Zero
bivCorModelSub <-mxModel(bivCorModel,

mxMatrix(
type="Diag",
nrow=2,
ncol=2,
free=TRUE,
name="Chol"

))

Or we can write it more succintly as follows:

bivCorModelSub <-mxModel(bivCorModel,
mxMatrix( type="Diag", nrow=2, ncol=2, free=TRUE, name="Chol" ))

bivCorFitSub <- mxRun(bivCorModelSub)

We can output the same information as for the saturated job, namely the expected means and covariance matrix and
the likelihood, and then use R to calculate other statistics, such as the Chi-square goodness-of-fit.

EMs <- mxEval(expMean, bivCorFitSub)
ECs <- mxEval(expCov, bivCorFitSub)
LLs <- mxEval(objective, bivCorFitSub)
Chi= LLs-LL;
LRT= rbind(LL,LLs,Chi); LRT

1.2.3 More in-depth Example

Now that you have seen the basics of OpenMx, let us walk through an example in more detail. We decided to use
a twin model example for several reasons. Even though you may not have any background in behavior genetics or
genetic epidemiology, the example illustrates a number of features you are likely to encounter at some stage. We will
present the example in two ways: (i) path analysis representation, and (ii) matrix algebra representation. Both give
exactly the same answer, so you can choose either one or both to get some familiarity with the two approaches.

We will not go into detail about the theory of this model, as that has been done elsewhere (refs). Briefly, twin studies
rely on comparing the similarity of identical (monozygotic, MZ) and fraternal (dizygotic, DZ) twins to infer the role
of genetic and environmental factors on individual differences. As MZ twins have identical genotypes, similarity
between MZ twins is a function of shared genes, and shared environmental factors. Similarity between DZ twins is a
function of some shared genes (on average they share 50% of their genes) and shared environmental factors. A basic
assumption of the classical twin study is that the MZ and DZ twins share environmental factors to the same extent.

The basic model typically fit to twin data from MZ and DZ twins reared together includes three sources of latent
variables: additive genetic factors (A), shared environmental influences (C) and unique environmental factors (E), We
can estimate these three sources of variance from the observed variances, the MZ and the DZ covariance. The expected
variance is the sum of the three variance components (A + C + E). The expected covariance for MZ twins is (A + C)
and that of DZ twins is (.5A + C). As MZ and DZ twins have different expected covariances, we have a multiple group
model.

It has been standard in twin modeling to fit models to the raw data, as often data are missing on some co-twins. When
using FIML, we also need to specify the expected means. There is no reason to expect that the variances are different
for twin 1 and twin 2, neither are the means for twin 1 and twin 2 expected to differ. This can easily be verified by
fitting submodels to the saturated model, prior to fitting the ACE model.

Let us start by simulating twin data followed by fitting a series of models. The code includes both the twin data
simulation and several OpenMx scripts to analyze the data. We will describe each of the parts in turn and include
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the code for the specific part in the code blocks. Note that a more extensive example is discussed later in Genetic
Epidemiology, Matrix Specification.

First, we simulate twin data using the mvrnorm R function. If the additive genetic factors (A) account for 50% of the
total variance and the shared environmental factors (C) for 30%, thus leaving 20% explained by specific environmental
factors (E), then the expected MZ twin correlation is a^2 + c^2 or 0.8 in this case, and the expected DZ twin
correlation is 0.55, calculated as .5*a^2 + c^2. We simulate 1000 pairs of MZ and DZ twins each with zero
means and a correlation matrix according to the values listed above. We run some basic descriptive statistics on the
simulated data, using regular R functions.

require(OpenMx)
require(psych)
require(MASS)

set.seed(200)
a2<-0.5 #Additive genetic variance component (a squared)
c2<-0.3 #Common environment variance component (c squared)
e2<-0.2 #Specific environment variance component (e squared)
rMZ <- a2+c2
rDZ <- .5*a2+c2
DataMZ <- mvrnorm (1000, c(0,0), matrix(c(1,rMZ,rMZ,1),2,2))
DataDZ <- mvrnorm (1000, c(0,0), matrix(c(1,rDZ,rDZ,1),2,2))

selVars <- c(’t1’,’t2’)
colnames(DataMZ) <- selVars
colnames(DataDZ) <- selVars

describe(DataMZ)
describe(DataDZ)
colMeans(DataMZ,na.rm=TRUE)
colMeans(DataDZ,na.rm=TRUE)
cov(DataMZ,use="complete")
cov(DataDZ,use="complete")

We typically start with fitting a saturated model, estimating means, variances and covariances separately by order of
the twins (twin 1 vs twin 2) and by zygosity (MZ vs DZ pairs), to establish the likelihood of the data. This is essentially
similar to the optimization script discussed above, except that we now have two variables (same variable for twin 1
and twin 2) and two groups (MZ and DZ). Thus, the saturated model will have two matrices for the expected means
of MZs and DZs, and two for the expected covariances, generated from multiplying a lower triangular matrix with its
transpose, one for each group. The raw data are read in using the mxData command, and the corresponding objective
function mxFIMLObjective applied.

mxModel("MZ",
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=TRUE,
values=c(0,0),
name="expMeanMZ"),

mxMatrix(
type="Lower",
nrow=2,
ncol=2,
free=TRUE,
values=.5,
name="CholMZ"),

mxAlgebra(
expression=CholMZ %*% t(CholMZ),
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name="expCovMZ"),
mxData(

observed=DataMZ,
type="raw"),

mxFIMLObjective(
covariance="expCovMZ",
means="expMeanMZ",
dimnames=selVars)

)

Note that the mxModel statement for the DZ twins is almost identical to that for MZ twins, except for the names of
the objects and data. If the arguments to the OpenMx command are given in the default order (see i.e. ?mxMatrix to
open the help/reference page for that command), then it is not necessary to include the name of the argument. Given
we skip a few optional arguments, such as lbound and ubound, the argument name name= is included to refer to
the right argument. For didactic purposes, we prefer the formatting used for the MZ group, with soft tabs and each
argument on a separate line, etc. (see list of formatting rules). However, the experienced user may want to use a more
compact form, as the one used for the DZ group.

mxModel("DZ",
mxMatrix("Full", 1, 2, T, c(0,0), name="expMeanDZ"),
mxMatrix("Lower", 2, 2, T, .5, name="CholDZ"),
mxAlgebra(CholDZ %*% t(CholDZ), name="expCovDZ"),
mxData(DataDZ, "raw"),
mxFIMLObjective("expCovDZ", "expMeanDZ", selVars))

The two models are then combined in a ‘super’model which includes them as arguments. Additional arguments are
an mxAlgebra statement to add the objective funtions/likelihood of the two submodels. To evaluate them simultane-
ously, we use the mxAlgebraObjective with the previous algebra as its argument. The mxRun command is used
to start optimization.

twinSatModel <- mxModel("twinSat",
mxModel("MZ",

mxMatrix("Full", 1, 2, T, c(0,0), name="expMeanMZ"),
mxMatrix("Lower", 2, 2, T, .5, name="CholMZ"),
mxAlgebra(CholMZ %*% t(CholMZ), name="expCovMZ"),
mxData(DataMZ, type="raw"),
mxFIMLObjective("expCovMZ", "expMeanMZ", selVars)),

mxModel("DZ",
mxMatrix("Full", 1, 2, T, c(0,0), name="expMeanDZ"),
mxMatrix("Lower", 2, 2, T, .5, name="CholDZ"),
mxAlgebra(CholDZ %*% t(CholDZ), name="expCovDZ"),
mxData(DataDZ, type="raw"),
mxFIMLObjective("expCovDZ", "expMeanDZ", selVars)),

mxAlgebra(MZ.objective + DZ.objective, name="minus2loglikelihood"),
mxAlgebraObjective("minus2loglikelihood")

)
twinSatFit <- mxRun(twinSatModel)

It is always helpful/advised to check the model specifications before interpreting the output. Here we are interested
in the values for the expected mean vectors and covariance matrices, and the goodness-of-fit statistics, including the
likelihood, degrees of freedom, and any other derived indices, such as i.e. Akaike’s Information Criterion, which can
be obtained by summary(twinSatFit).

ExpMeanMZ <- mxEval(MZ.expMeanMZ, twinSatFit)
ExpCovMZ <- mxEval(MZ.expCovMZ, twinSatFit)
ExpMeanDZ <- mxEval(DZ.expMeanDZ, twinSatFit)
ExpCovDZ <- mxEval(DZ.expCovDZ, twinSatFit)
LL_Sat <- mxEval(objective, twinSatFit)
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Before we move on to fit the ACE model to the same data, we may want to test some of the assumptions of the twin
model, i.e. that the means and variances are the same for twin 1 and twin 2, and that they are the same for MZ and DZ
twins. This can be done as an omnibus test, or stepwise. Let us start by equating the means for both twins, separately
in the two groups. We accomplish this by using the same label (just one label which will be reused by R) for the two
free parameters for the means per group. As the majority of the previous script stays the same, we start by copying the
old model into a new one. We then include the arguments of the model that require a change.

twinSatModelSub1 <- mxModel(twinSatModel, name = "twinSatSub1")
twinSatModelSub1$MZ$expMeanMZ <- mxMatrix("Full", 1, 2, TRUE, 0, "mMZ")
twinSatModelSub1$MZ$expMeanMZ <- mxMatrix("Full", 1, 2, TRUE, 0, "mDZ")
twinSatFitSub1 <- mxRun(twinSatModelSub1)

If we want to test if we can equate both means across twin order and zygosity at once, we will end up with the following
specification. Note that we use the same label across models for elements that need to be equated.

twinSatModelSub2 <- mxModel(twinSatModelSub1, name = "twinSatSub2")
twinSatModelSub2$MZ$expMeanMZ <- mxMatrix("Full", 1, 2, TRUE, 0, "mean")
twinSatModelSub2$DZ$expMeanDZ <- mxMatrix("Full", 1, 2, TRUE, 0, "mean")
twinSatFitSub2 <- mxRun(twinSatModelSub2)

We can compare the likelihood of this submodel to that of the fully saturated model or the previous submodel using
the results from mxEval commands with regular R algebra. A summary of the model parameters, estimates and
goodness-of-fit statistics can also be obtained using summary(twinSatFit).

LL_Sat <- mxEval(objective, twinSatFit)
LL_Sub1 <- mxEval(objective, twinSatFitSub1)
LRT1 <- LL_Sub1 - LL_Sat
LL_Sub2 <- mxEval(objective, twinSatFitSub1)
LRT2 <- LL_Sub2 - LL_Sat

One assumption of the classical twin study is that the variances of twin 1 and twin 2 are not significantly different, nor
that they differ between MZ and DZ twins. Although the principle of testing equality of variances across twin order
and zygosity are the same as those of testing equality of means, in practice the test of variances are more complicated,
because we do not directly estimate the variances, but rather use a Cholesky decomposition. We thus first have to
use algebra to extract the expected variances and then use constraints to equate the correct elements of the expected
covariance matrices. As this is an introductory chapter, we will leave that treatment for a later example and move to
the latent variable model example.

Now, we are ready to specify the ACE model to test which sources of variance significantly contribute to the phenotype
and estimate their best value. The structure of this script is going to mimic that of the saturated model. The main
difference is that we no longer estimate the variance-covariance matrix directly, but express it as a function of the three
sources of variance, A, C and E. As the same sources are used for the MZ and the DZ group, the matrices which will
represent them are part of the ‘super’model. As these sources are variances, which need to be positive, we typically
use a Cholesky decomposition of the standard deviations (and effectively estimate a rather then a^2, see later for more
in depth coverage). Thus, we specify three separate matrices for the three sources of variance using the mxMatrix
command and ‘calculate’ the variance components with the mxAlgebra command. Note that there are a variety of
ways to specify this model, we have picked one that corresponds well to previous Mx code, and has some intuitive
appeal.

#Specify ACE Model
twinACEModel <- mxModel("twinACE",

mxModel("ACE",
# Matrix expMean for expected mean vector for MZ and DZ twins
mxMatrix( type="Full", nrow=1, ncol=2, free=TRUE, values=20, label="mean",

name="expMean"),
# Matrices a, c, and e to store the a, c, and e path coefficients
mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="a11",

name="a"),
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mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="c11",
name="c"),

mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="e11",
name="e"),

# Matrixes A, C, and E to compute A, C, and E variance components
mxAlgebra( expression=a * t(a), name="A"),
mxAlgebra( expression=c * t(c), name="C"),
mxAlgebra( expression=e * t(e), name="E"),
# Matrix expCovMZ for expected covariance matrix for MZ twins
mxAlgebra( expression= rbind( cbind(A+C+E, A+C),

cbind(A+C, A+C+E)),
name="expCovMZ"),

# Matrix expCovMZ for expected covariance matrix for DZ twins
mxAlgebra( expression= rbind( cbind(A+C+E, .5%x%A+C),

cbind(.5%x%A+C, A+C+E)),
name="expCovDZ")

),
mxModel("MZ",

mxData( observed=DataMZ, type="raw"),
mxFIMLObjective( covariance="ACE.expCovMZ", means="ACE.expMean",

dimnames=selVars)
),
mxModel("DZ",

mxData( observed=DataDZ, type="raw"),
mxFIMLObjective( covariance="ACE.expCovDZ", means="ACE.expMean",

dimnames=selVars)
),
# Algebra to combine objective function of MZ and DZ groups
mxAlgebra(MZ.objective + DZ.objective, name="minus2loglikelihood"),
mxAlgebraObjective("minus2loglikelihood")

)
twinACEFit <- mxRun(twinACEModel)

Relevant output can be generated with print or summary statements or specific output can be requested using the
mxEval command. Typically we would compare this model back to the saturated model to interpret its goodness-
of-fit. Parameter estimates are obtained and can easily be standardized. A typical analysis would likely include the
following output.

LL_ACE <- mxEval(objective, twinACEFit)
LRT_ACE= LL_ACE - LL_Sat

#Retrieve expected mean vector and expected covariance matrices
MZc <- mxEval(ACE.expCovMZ, twinACEFit)
DZc <- mxEval(ACE.expCovDZ, twinACEFit)
M <- mxEval(ACE.expMean, twinACEFit)

#Retrieve the A, C, and E variance components
A <- mxEval(ACE.A, twinACEFit)
C <- mxEval(ACE.C, twinACEFit)
E <- mxEval(ACE.E, twinACEFit)

#Calculate standardized variance components
V <- (A+C+E)
a2 <- A/V
c2 <- C/V
e2 <- E/V

#Build and print reporting table with row and column names
ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
ACEest <- data.frame(ACEest, row.names=c("Variance Components","Standardized VC"))
names(ACEest)<-c("A", "C", "E")
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ACEest; LL_ACE; LRT_ACE

Similarly to fitting submodels from the saturated model, we typically fit submodels of the ACE model to test the
significance of the sources of variance. One example is testing the significance of shared environmental factors by
dropping the free parameter for c (fixing it to zero). We call up the previous model and include the new specification
for the matrix to be changed, and rerun.

twinAEModel <- mxRename(twinACEModel, "twinAE")
twinAEModel$ACE.c <- mxMatrix(type="Full", nrow=1, ncol=1,

free=FALSE, values=.6, label="c11", name="c")

twinAEFit <- mxRun(twinAEModel)

We discuss twin analysis examples in more detail in the detailed example code. We hope we have given you some idea
of the features of OpenMx.

1.3 Two Model Styles - Two Data Styles

In this first detailed example, we introduce the different styles available to specify models and data, which were briefly
discussed in the ‘Beginners Guide’. There are currently two supported approaches to specifying models: (i) path
specification and (ii) matrix specification. Each example is presented using both approaches, so you can get a sense of
their advantages/disadvantages, and see which best fits your style. In the ‘path specification’ model style you specify
a model in terms of paths; the ‘matrix specification’ model style relies on matrices and matrix algebra to produce
OpenMx code. For either approach you must specify data, and the two supported data styles are (a) summary format,
i.e. covariance matrices and possibly means, and (b) raw data format. We will illustrate both, as arguments of functions
may differ. Thus, we will describe each example four ways:

• i.a Path Specification - Covariance Matrices (optionally including means)

• i.b Path Specification - Raw Data

• ii.a Matrix Specification - Covariance Matrices (optionally including means)

• ii.b Matrix Specification - Raw Data

Our first example fits a simple model to one variable, estimating its variance and then both the mean and the variance
- a so called saturated model. We start with a univariate example, and also work through a more general bivariate
example which forms the basis for later examples.

1.3.1 Univariate Saturated Model

The four univariate examples are available here, and you may wish to access them while working through this manual.
The last file includes all four example in one.

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateSaturated_PathCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateSaturated_PathRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateSaturated_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateSaturated_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateSaturated.R

The bivariate examples are available in the following files:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateSaturated_PathCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateSaturated_PathRaw.R
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• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateSaturated_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateSaturated_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateSaturated_MatrixCovCholesky.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateSaturated_MatrixRawCholesky.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateSaturated.R

Note that we have additional versions of these matrix-style examples which use a Cholesky decomposition to estimate
the expected covariance matrices, which is preferable to directly estimating the symmetric matrices as it avoids the
possibility of non positive-definite matrices.

Data

To avoid reading in data from an external file, we simulate a simple dataset directly in R, and use some of its great
capabilities. As this is not an R manual, we just provide the code here with minimal explanation. There are several
helpful sites for learning R, for instance http://www.statmethods.net/

#Simulate Data
set.seed(100)
x <- rnorm (1000, 0, 1)
testData <- as.matrix(x)
selVars <- c("X")
dimnames(testData) <- list(NULL, selVars)
summary(testData)
mean(testData)
var(testData)

The first line is a comment (starting with a #). We set a seed for the simulation so that we generate the same data each
time and get a reproducible answer. We then create a variable x for 1000 subjects, with mean of 0 and a variance of 1,
using R’s normal distribution function rnorm. We read the data in as a matrix into an object testData and give the
variable a name "X" using the dimnames command. We can easily produce some descriptive statistics in R using
built-in functions summary, mean and var, just to make sure the data look like what we expect. We also define
selVars here with the names of the variable(s) to be analyzed.

1.3.2 Covariance Matrices and Path-style Input

Model Specification

The model estimates the mean and the variance of the variable X. We call this model saturated because there is a free
parameter corresponding to each and every observed statistic. Here we have covariance matrix input only, so we can
estimate one variance. Below is the path diagram and the complete script:
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require(OpenMx)

#example 1: Saturated Model with Cov Matrices and Path-Style Input
univSatModel1 <- mxModel("univSat1",

type="RAM",
manifestVars= selVars,
mxPath(

from=c("X"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels="vX"

),
mxData(

observed=var(testData),
type="cov",
numObs=1000

)
)

Each of of the commands are discussed separately beside excerpts of the OpenMx code. We use the mxModel
command to specify the model. Its first argument is a name. All arguments are separated by commas.

univSatModel1 <- mxModel("univSat1",

When using the path specification, it is easiest to work from an existing path diagram. Assuming you are familiar
with path analysis (for those who are not, there are several excellent introductions, see refs), we have a box for the
observed/manifest variable x, specified with the manifestVars argument, and one double headed arrow on the box
to represent its variance, specified with the mxPath command. The mxPath command indicates where the path
originates ( from=) and where it ends (to). If the to= argument is omitted, the path ends at the same variable
where it started. The arrows argument distinguishes one-headed arrows (if arrows=1) from two-headed arrows
(if arrows=2). The free command is used to specify which elements are free or fixed with a TRUE or FALSE
option. If the mxPath command creates more than one path, a single T implies that all paths created here are free. If
some of the paths are free and others fixed, a list is expected. The same applies for the values command which is
used to assign starting values or fixed final values, depending on the corresponding ‘free’ status. Optionally, lower and
upper bounds can be specified (using lbound and ubound, again generally for all the paths or specifically for each
path). Labels can also be assigned using the labels command which expects as many labels (in quotes) as there are
elements.

type="RAM",
manifestVars=selVars,

mxPath(
from=c("X"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels="vX"

),

We specify which data the model is fitted to with the mxData command. Its first argument, observed=, reads in
the data from an R matrix or data.frame, with the type= given in the second argument. Given we read a covariance
matrix here, we use the var() function (as there is no covariance for a single variable). When summary statistics are
used as input, the number of observations (numObs=) needs to be supplied.
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mxData(
observed=var(testData),
type="cov",
numObs=1000

))

With the path specification, the ‘RAM’ objective function is used by default, as indicated by the type argument.
Internally, OpenMx translates the paths into RAM notation in the form of the matrices A, S, and F [see refs].

Model Fitting

So far, we have specified the model, but nothing has been evaluated. We have ‘saved’ the specification in the object
univSatModel1. This object is evaluated when we invoke the mxRun command with the object as its argument.

univSatFit1 <- mxRun(univSatModel1)

There are a variety of ways to generate output. We will promote the use of the mxEval command, which takes two
arguments: an expression and a model name. The expression can be a matrix or algebra name defined in the
model, new calculations using any of these matrices/algebras, the objective function, etc. We can then use any regular
R function to generate derived fit statistics, some of which will be built in as standard. When fitting to covariance
matrices, the saturated likelihood can be easily obtained and subtracted from the likelihood of the data to obtain a
Chi-square goodness-of-fit.

EC1 <- mxEval(S, univSatFit1) #univSatFit1[[’S’]]@values
LL1 <- mxEval(objective, univSatFit1)
SL1 <- univSatFit1@output$other$Saturated
Chi1 <- LL1-SL1

The output of these objects like as follows:

> EC1
[,1]

[1,] 1.062112
> LL1

[,1]
[1,] 1.060259

> SL1
[1] 1.060259

> Chi1
[,1]

[1,] 2.220446e-16

In addition to providing a covariance matrix as input data, we could add a means vector. As this requires a few minor
changes, lets highlight those. We have one additional mxPath command for the means. In the path diagram, the
means are specified by a triangle which as a fixed value of one, reflected in the from="one" argument, with the to=
argument referring to the variable which mean is estimated. Note that paths for means are always single headed.

univSatModel1m <- mxModel(univSatModel1, name = "univSat1m",
mxPath(

from="one",
to="X",
arrows=1,
free=T,
values=0,
labels="mX"

),
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The other required change is in the mxData command, which now takes a fourth argument means for the vector of
observed means from the data, calculated using the R mean command.

mxData(
observed=var(testData),
type="cov",
numObs=1000,
means=colMeans(testData)

)
)

When a mean vector is supplied and a parameter added for the estimated mean, the RAM matrices A, S and F are
augmented with an M matrix which can be referred to in the output in a similar way as the expected variance before.

univSatFit1m <- mxRun(univSatModel1m)
EM1m <- mxEval(M, univSatFit1m)

1.3.3 Raw Data and Path-style Input

Instead of fitting models to summary statistics, it is now popular to fit models directly to the raw data and using full
information maximum likelihood (FIML). Doing so requires specifying not only a model for the covariances, but also
one for the means, just as in the case of fitting to covariance matrices and mean vectors described above. The path
diagram for this model, now including means (path from triangle of value 1) is as follows:

The only change required is in the mxData command, which now takes either an R matrix or a data.frame with the
observed data as first argument, and the type="raw" as the second argument.

mxData(
observed=testData,
type="raw"

)

A nice feature of OpenMx is that an existing model can be easily modified. So univSatModel1 can be modified as
follows:

univRawModel1 <- mxModel(univSatModel1,
mxData(

observed=testData,
type="raw"

)
)

The resulting model can be run as usual using mxRun:

univRawFit1 <- mxRun(univSatModel1)

Note that the output now includes the expected means, as well as the expected covariance matrix and -2 x log-likelihood
of the data.:
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> EM2
[,1]

[1,] 0.01680498
> EC2

[,1]
[1,] 1.061049

> LL2
[,1]

[1,] 2897.135

1.3.4 Covariance Matrices and Matrix-style Input

The next example replicates these models using matrix-style coding. The code to specify the model includes four
commands, (i) mxModel, (ii) mxMatrix, (iii) mxData and (iv) mxMLObjective.

Starting with the model fitted to the summary covariance matrix, we need to create a matrix for the expected covariance
matrix using the mxMatrix command. The first argument is its type, symmetric for a covariance matrix. The second
and third arguments are the number of rows (nrow) and columns (ncol) – one for a univariate model. The free and
values parameters work as in the path specification. If only one element is given, it is applied to all elements of the
matrix. Alternatively, each element can be assigned its free/fixed status and starting value with a list command. Note
that in the current example, the matrix is a simple 1x1 matrix, but that will change rapidly in the following examples.
The mxData is identical to that used in path stlye models. A different objective function is used, however, namely
the mxMLObjective command which takes two arguments, covariance to hold the expected covariance matrix
(which we specified above using mxMatrix as expCov), and dimnames which allow the mapping of the observed
data to the expected covariance matrix, i.e. the model.

univSatModel3 <- mxModel("univSat3",
mxMatrix(

type="Symm",
nrow=1,
ncol=1,
free=T,
values=1,
name="expCov"

),
mxData(

observed=var(testData),
type="cov",
numObs=1000

),
mxMLObjective(

covariance="expCov",
dimnames=selVars

)
)

univSatFit3 <- mxRun(univSatModel3)

A means vector can also be added as the fourth argument of the mxData command. When means are requested
to be modeled, a second mxMatrix command is required to specify the vector of expected means. In this case a
matrix of type=’Full’, with 1 row and column, is assigned free=T with start value 0, and the name expMean.
The second change is an additional argument mean to the mxMLObjective function for the expected mean, here
expMean.

mxMatrix(
type="Full",
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nrow=1,
ncol=1,
free=TRUE,
values=0,
name="expMean"

)
mxData(

observed=var(testData),
type="cov",
numObs=1000,
means=colMeans(testData)

)
mxMLObjective(

covariance="expCov",
means="expMean",
dimnames=selVars

)

1.3.5 Raw Data and Matrix-style Input

Finally, if we want to use the matrix specification with raw data, we specify matrices for the means and covari-
ances using mxMatrix(). The mxData command now, however takes a matrix (or data.frame) of raw data and
the mxFIMLObjective function replaces mxMLObjective to evaluate the likelihood of the data using FIML
(Full Information Maximum Likelihood). This function takes three arguments: the expected covariance matrix
covariance; the expected mean vector, means; and a third for the dimnames.

univSatModel4 <- mxModel("univSat4",
mxMatrix(

type="Symm",
nrow=1,
ncol=1,
free=T,
values=1,
name="expCov"

),
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=T,
values=0,
name="expMean"

),
mxData(

observed=testData,
type="raw"

),
mxFIMLObjective(

covariance="expCov",
means="expMean",
dimnames=selVars

)
)

Note that the output generated for the paths and matrices specification are completely equivalent.
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1.3.6 Bivariate Saturated Model

Rarely will we analyze a single variable. As soon as a second variable is added, not only can we estimate both means
and variances, but also a covariance between the two variables, as shown in the following path diagram:

The path diagram for our bivariate example includes two boxes for the observed variables ‘X’ and ‘Y’, each with a
two-headed arrow for the variance of each variables. We also estimate a covariance between the two variables with
the two-headed arrow connecting the two boxes. The optional means are represented as single-headed arrows from a
triangle to the two boxes.

Data

The data used for the example were generated using the multivariate normal function (mvrnorm in the R package
MASS). We have simulated data on two variables named ‘X’ and ‘Y’ with means of zero, variances of one and a
covariance of 0.5 using the following R code, and saved is as testData. Note that we can now use the R function
cov to generate the observed covariance matrix.

#Simulate Data
require(MASS)
set.seed(200)
rs=.5
xy <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
testData <- xy
selVars <- c(’X’,’Y’)
dimnames(testData) <- list(NULL, selVars)
summary(testData)
cov(testData)

Model Specification

The mxPath commands look as follows. The first one specifies two-headed arrows from X and Y to themselves. This
command now generates two free parameters, each with start value of 1 and lower bound of .01, but with a different
label indicating that these are separate free parameters. Note that we could test whether the variances are equal by
specifying a model with the same label for the two variances and comparing it with the current model. The second
mxPath command specifies a two-headed arrow from X to Y for the covariance, which is also assigned ‘free’ and
given a start value of .2 and a label.

mxPath(
from=c("X", "Y"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels=c("varX","varY")

)
mxPath(

from="X",
to="Y",
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arrows=2,
free=T,
values=.2,
lbound=.01,
labels="covXY"

)

When observed means are included in addition to the observed covariance matrix, we add an mxPath command with
single-headed arrows from one to the variables to represent the two means.

mxPath(
from="one",
to=c("X", "Y"),
arrows=1,
free=T,
values=.01,
labels=c("meanX","meanY")

)

Changes required for fitting to raw data are to the mxData command to read in the data directly with type=raw.

Using matrices instead of paths, our mxMatrix command for the expected covariance matrix now specifies a 2x2
matrix with all elements free. Start values have to be given only for the unique elements (diagonal elements plus upper
or lower diagonal elements), in this case we provide a list with values of 1 for the variances and 0.5 for the covariance

mxMatrix(
type="Symm",
nrow=2,
ncol=2,
free=T,
values=c(1,0.5,1),
name="expCov"

)

The optional expected means command specifies a 1x2 row vector with two free parameters, each given a 0 start value.

mxMatrix(
type="Full",
nrow=1,
ncol=2,
free=T,
values=c(0,0),
name="expMean"

)

Combining these two mxMatrix commands with the raw data, specified in the mxData command and the
mxFIMLObjective command with the appropriate arguments is all that is needed to fit a saturated bivariate model.
So far, we have specified the expected covariance matrix directly as a symmetric matrix. However, this may cause
optimization problems as the matrix could become not positive-definite which would prevent the likelihood to be eval-
uated. To overcome this problem, we can use a Cholesky decomposition of the expected covariance matrix instead, by
multiplying a lower triangular matrix with its transpose. To obtain this, we use a mxMatrix command and specify
type="Lower". We then use an mxAlgebra command to multiply this matrix, named Chol with its transpose (R
function t()).

mxMatrix(
type="Lower",
nrow=2,
ncol=2,
free=T,
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values=.5,
name="Chol"

)
mxAlgebra(

Chol %*% t(Chol),
name="expCov",

)

The following sections describe OpenMx examples in detail beginning with regression, factor analysis, time series
analysis, multiple group models, including twin models, and analysis using definition variables. Each is presented in
both path and matrix styles and where relevant, contrasting data input from covariance matrices versus raw data input
are also illustrated. Additional examples will be added as they are implemented in OpenMx.

1.4 OpenMx Style Guide

The goal of the OpenMx Style Guide is to make our OpenMx scripts easier to read, share, and verify.

1.4.1 The ‘$’ Operator

MxModel objects support the ‘$’ operator, also known as the list indexing operator, to access all the components
contained within a model. Here is an example collection of models that will help explain the uses of the ‘$’ operator:

model <- mxModel(’topmodel’,
mxMatrix(type=’Full’, nrow=1, ncol=1, name=’A’),
mxAlgebra(A, name=’B’),
mxModel(’submodel1’,

mxConstraint(topmodel1.A == topmodel1.B, name = ’C’),
mxModel(’undersub1’,

mxData(diag(3), type=’cov’, numObs=10)
)

),
mxModel(’submodel2’,

mxAlgebraObjective(’topmodel1.A’)
)

)

Accessing Elements

The first useful trick is entering the string model$ in the R interpreter and then pressing the TAB key. You should see
a list of all the named entities contained within the model object:

> model$
model$A model$submodel2
model$B model$submodel2.objective
model$submodel1 model$undersub1
model$submodel1.C model$undersub1.data

The named entities of the model are displayed in one of three modes. In the first mode, all of the submodels con-
tained within the parent model are accessed by using their unique model name (submodel1, submodel2, and
undersub1). In the second mode, all of the named entities contained within the parent model are displayed by
their names (A and B). In the third mode, all of the named entities contained by the submodels are displayed in the
modelname.entityname format (submodel1.C, submodel2.objective, and undersub1.data). The
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three models will become even more important in the next section, Modifying Elements, so make sure you are com-
fortable with them before moving on.

Modifying Elements

The list indexing operator can also be used to modify the components of an existing model. There are three modes
of using the list indexing operator to perform modifications, and they correspond to the three models for accessing
elements.

In the first mode, a submodel can be replaced using the unique name of the submodel, or even eliminated:

# eliminate ’undersub1’ and all children models
model$undersub1 <- NULL
# replace ’submodel1’ with the contents of the mxModel() expression
model$submodel1 <- mxModel(...)

In the second mode, the named entities of the parent model are modified using their names:

# eliminate matrix ’A’
model$A <- NULL
# create matrix ’D’
model$D <- mxMatrix(...)

In the third mode, named entities of a submodel can be modified using the modelname.entityname format:

# eliminate constraint ’C’ from submodel1
model$submodel1.C <- NULL
# create algebra ’D’ in undersub1
model$undersub1.D <- mxAlgebra(...)
# create ’undersub2’ as a child model of submodel1
model$submodel1.undersub2 <- mxModel(...)

Keep in mind that when using the list indexing operator to modify a named entity within a model, the name of the
created or modified entity is always the name on the left-hand side of the <- operator. This feature can be convenient,
as it avoids the need to specify a name of the entity on the right-hand side of the <- operator.

1.4.2 mxEval()

The mxEval() function should be your primary tool for observing and manipulating the final values stored within
a MxModel object. The simplest form of the mxEval function takes two arguments: an expression and a model. The
expression can be any arbitrary expresssion to be evaluated in R. That expression is evaluated, but the catch is that any
named entities or parameter names are replaced with their current values from the model.

model <- mxModel(’topmodel’,
mxMatrix(’Full’, 1, 1, values=1, free=TRUE, labels=’p1’, name=’A’),
mxModel(’submodel1’,

mxMatrix(’Full’, 1, 1, values=2, free=FALSE, labels=’p2’, name=’B’)
),
mxModel(’submodel2’,

mxMatrix(’Full’, 1, 1, values=3, name = ’B’)
)

)

modelOut <- mxRun(model)
mxEval(A + submodel1.B + submodel2.B + p1 + p2, model) # initial values
mxEval(A + submodel1.B + submodel2.B + p1 + p2, modelOut) # final values
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To reinforce an earlier point, it is not necessary to restrict the expression to only valid MxAlgebra expressions. In the
following example, we use the harmonic.mean function from the psych package.

library(psych)
nVars <- 3
mxEval(nVars * harmonic.mean(c(A, submodel1.B, submodel2.B)), model)

When the name of an entity in a model collides with the name of a built-in or user-defined function in R, the named
entity will supercede the function. We strongly advice against naming entities with the same name as the predefined
functions or values in R, such as c, T, and F among others.

The mxEval() function allows the user to inspect the values of named entities without explicitly poking at the
internals of the components of a model. We encourage the use of mxEval() to look at the state of a model either before
the execution of a model or after execution.
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CHAPTER

TWO

EXAMPLES, PATH SPECIFICATION

2.1 Regression, Path Specification

This example will show how regression can be carried out from a path-centric structural modeling perspective. This
example is in three parts; a simple regression, a multiple regression, and multivariate regression. There are two
versions of each example available; one where the data is supplied as a covariance matrix and vector of means, and
one with raw data. These examples are available in the following files:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_PathCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_PathRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_PathCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_PathRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_PathCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_PathRaw.R

Parallel versions of these examples, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_MatrixRaw.R

and are discussed here (Regression, Matrix Specification).

2.1.1 Simple Regression

We begin with a single dependent variable (y) and a single independent variable (x). The relationship between these
variables takes the following form:

y = β0 + β1 ∗ x+ ε

33

http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_PathCov.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_PathRaw.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_PathCov.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_PathRaw.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_PathCov.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_PathRaw.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_MatrixCov.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_MatrixRaw.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_MatrixCov.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_MatrixRaw.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_MatrixCov.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_MatrixRaw.R


OpenMx User Guide, Release 1.2.0-1919

In this model, the mean of y is dependent on both regression coefficients (and by extension, the mean of x). The
variance of y depends on both the residual variance (σ2

ε ) and the product of the regression slope (β1) and the variance
of x (σ2

x). This model contains five parameters from a structural modeling perspective β0, β1, σ2
ε , and the mean and

variance of x, µ2
x and σ2

x. We are modeling a covariance matrix with three degrees of freedom (two variances and one
covariance) and a means vector with two degrees of freedom (two means). Because the model has as many parameters
(5) as the data have degrees of freedom, this model is fully saturated.

Data

Our first step to running this model is to include the data to be analyzed. The data must first be placed in a variable or
object. For raw data, this can be done with the read.table function. The data provided has a header row, indicating
the names of the variables.

data(myRegDataRaw)

The names of the variables provided by the header row can be displayed with the names() function.

names(myRegDataRaw)

As you can see, our data has four variables in it. However, our model only contains two variables, x and y. To use only
them, we will select only the variables we want and place them back into our data object. That can be done with the R
code below.

SimpleDataRaw <- myRegDataRaw[,c("x","y")]

For covariance data, we do something very similar. We create an object to house our data. Instead of reading in raw
data from an external file, we can include a covariance matrix. This requires the matrix() function, which needs to
know what values are in the covariance matrix, how big it is, and what the row and column names are. As our model
also references means, we will include a vector of means in a separate object. Data is selected in the same way as
before.

myRegDataCov <- matrix(
c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),

nrow=4,
dimnames=list(

c("w","x","y","z"),
c("w","x","y","z"))
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)

SimpleDataCov <- myRegDataCov[c("x","y"),c("x","y")]

myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)
names(myRegDataMeans) <- c("w","x","y","z")

SimpleDataMeans <- myRegDataMeans[c(2,3)]

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require() or library() function. All objects required for estimation (data,
paths, and a model type) are included in their own arguments or functions. This code uses the mxModel function to
create an MxModel object, which we will then run. Note the difference in capitalization for the first letter.

require(OpenMx)

uniRegModel <- mxModel("Simple Regression Path Specification",
type="RAM",
mxData(

observed=SimpleDataRaw,
type="raw"

),
manifestVars=c("x", "y"),
# variance paths
mxPath(

from=c("x", "y"),
arrows=2,
free=TRUE,
values = c(1, 1),
labels=c("varx", "residual")

),
# regression weights
mxPath(

from="x",
to="y",
arrows=1,
free=TRUE,
values=1,
labels="beta1"

),
# means and intercepts
mxPath(

from="one",
to=c("x", "y"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("meanx", "beta0")

)
) # close model

This mxModel function can be split into several parts. First, we give the model a title. The first argument in an
mxModel function has a special function. If an object or variable containing an MxModel object is placed here, then
mxModel adds to or removes pieces from that model. If a character string (as indicated by double quotes) is placed
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first, then that becomes the name of the model. Models may also be named by including a name argument. This
model is named “Simple Regression Path Specification”.

The next part of our code is the type argument. By setting type="RAM", we tell OpenMx that we are specifying
a RAM model for covariances and means, and that we are doing so using the mxPath function. With this setting,
OpenMx uses the specified paths to define the expected covariance and means of our data.

The third component of our code creates an MxData object. The example above, reproduced here in parts, first
references the object where our data is, then uses the type argument to specify that this is raw data.

mxData(
observed=SimpleDataRaw,
type="raw"
)

If we were to use a covariance matrix and vector of means as data, we would replace the existing mxData function
with this one:

mxData(
observed=SimpleDataCov,
type="cov",
numObs=100,
means=SimpleDataMeans

)

We must also specify the list of observed variables using the manifestVars argument. In the code below, we
include a list of both observed variables, x and y.

manifestVars=c("x", "y")

The last features of our code are three mxPath functions, which describe the relationships between variables. Each
function first describes the variables involved in any path. Paths go from the variables listed in the from argument,
and to the variables listed in the to argument. When arrows is set to 1, then one-headed arrows (regressions) are
drawn from the from variables to the to variables. When arrows is set to 2, two headed arrows (variances or
covariances) are drawn from the the from variables to the to variables. If arrows is set to 2, then the to argument
may be omitted to draw paths both to and from the list of from variables.

The variance terms of our model (that is, the variance of x and the residual variance of y) are created with the following
mxPath function. We want two headed arrows from x to x, and from y to y. These paths should be freely estimated
(free=TRUE), have starting values of 1, and be labeled "varx" and "residual", respectively.

# variance paths
mxPath(

from=c("x", "y"),
arrows=2,
free=TRUE,
values = c(1, 1),
labels=c("varx", "residual")

)

The regression term of our model (that is, the regression of y on x) is created with the following mxPath function.
We want a single one-headed arrow from x to y. This path should be freely estimated (free=TRUE), have a starting
value of 1, and be labeled "beta1".

# regression weights
mxPath(

from="x",
to="y",
arrows=1,
free=TRUE,
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values=1,
labels="beta1"

)

We also need means and intercepts in our model. Exogenous or independent variables have means, while endogenous
or dependent variables have intercepts. These can be included by regressing both x and y on a constant, which
can be refered to in OpenMx by "one". The intercept terms of our model are created with the following mxPath
function. We want single one-headed arrows from the constant to both x and y. These paths should be freely estimated
(free=TRUE), have a starting value of 1, and be labeled meanx and "beta1", respectively.

# means and intercepts
mxPath(

from="one",
to=c("x", "y"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("meanx", "beta0")

)

Our model is now complete!

Model Fitting

We’ve created an MxModel object, and placed it into an object or variable named uniRegModel. We can run this
model by using the mxRun function, and the output is placed in the object uniRegFit in the code below. We then
view the output by referencing the output slot, as shown here.

uniRegFit <- mxRun(uniRegModel)

The output slot contains a great deal of information, including parameter estimates and information about the matrix
operations underlying our model. A more parsimonious report on the results of our model can be viewed using the
summary function, as shown here.

uniRegFit@output
summary(uniRegFit)

2.1.2 Multiple Regression

In the next part of this demonstration, we move to multiple regression. The regression equation for our model looks
like this:

y = β0 + βx ∗ x+ βz ∗ z + ε
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Our dependent variable y is now predicted from two independent variables, x and z. Our model includes 3 regression
parameters (β0, βx, βz), a residual variance (σ2

ε ) and the observed means, variances and covariance of x and z, for a
total of 9 parameters. Just as with our simple regression, this model is fully saturated.

We prepare our data the same way as before, selecting three variables instead of two.

MultipleDataRaw <- myRegDataRaw[,c("x","y","z")]

MultipleDataCov <- myRegDataCov[c("x","y","z"),c("x","y","z")]

MultipleDataMeans <- myRegDataMeans[c(2,3,4)]

Now, we can move on to our code. It is identical in structure to our simple regression code, but contains additional
paths for the new parts of our model.

require(OpenMx)

multiRegModel <- mxModel("Multiple Regression Path Specification",
type="RAM",
mxData(

observed=MultipleDataRaw,
type="raw"

),
manifestVars=c("x", "y", "z"),
# variance paths
mxPath(

from=c("x", "y", "z"),
arrows=2,
free=TRUE,
values = c(1, 1, 1),
labels=c("varx", "residual", "varz")

),
# covariance of x and z
mxPath(

from="x",
to="z",
arrows=2,
free=TRUE,
values=0.5,
labels="covxz"

),
# regression weights
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mxPath(
from=c("x","z"),
to="y",
arrows=1,
free=TRUE,
values=1,
labels=c("betax","betaz")

),
# means and intercepts
mxPath(

from="one",
to=c("x", "y", "z"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("meanx", "beta0", "meanz")

)
) # close model

multiRegFit <- mxRun(multiRegModel)

multiRegFit@output
summary(multiRegFit)

The first bit of our code should look very familiar. require(OpenMx) makes sure the OpenMx library is loaded
into R. This only needs to be done at the first model of any R session. The type="RAM" argument is identical.
The mxData function references our multiple regression data, which contains one more variable than our simple
regression data. Similarly, our manifestVars list contains an extra label, "z".

The mxPath functions work just as before. Our first function defines the variances of our variables. Whereas our
simple regression included just the variance of x and the residual variance of y, our multiple regression includes the
variance of z as well.

Our second mxPath function specifies a two-headed arrow (covariance) between x and z. We’ve omitted the to
argument from two-headed arrows up until now, as we have only required variances. Covariances may be specified
by using both the from and to arguments. This path is freely estimated, has a starting value of 0.5, and is labeled
covxz.

# covariance of x and z
mxPath(

from="x",
to="z",
arrows=2,
free=TRUE,
values=0.5,
labels="covxz"

)

The third and fourth mxPath functions mirror the second and third mxPath functions from our simple regression,
defining the regressions of y on both x and z as well as the means and intercepts of our model.

The model is run and output is viewed just as before, using the mxRun function, and @output and the summary
function to run, view and summarize the completed model.

2.1.3 Multivariate Regression

The structural modeling approach allows for the inclusion of not only multiple independent variables (i.e., multiple
regression), but multiple dependent variables as well (i.e., multivariate regression). Versions of multivariate regression
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are sometimes fit under the heading of path analysis. This model will extend the simple and multiple regression
frameworks we’ve discussed above, adding a second dependent variable w.

y = βy + βyx ∗ x+ βyz ∗ z + εy

w = βw + βwx ∗ x+ βwz ∗ z + εw

We now have twice as many regression parameters, a second residual variance, and the same means, variances and
covariances of our independent variables. As with all of our other examples, this is a fully saturated model.

Data import for this analysis will actually be slightly simpler than before. The data we imported for the previous
examples contains only the four variables we need for this model. We can use myRegDataRaw, myRegDataCov,
and myRegDataMeans in our models.

data(myRegDataRaw)

myRegDataCov <- matrix(
c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),

nrow=4,
dimnames=list(

c("w","x","y","z"),
c("w","x","y","z"))

)

myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)

Our code should look very similar to our previous two models. It includes the same type argument, mxData function,
and manifestVars argument as previous models, with a different version of the data and additional variables in the
latter two components.

multivariateRegModel <- mxModel("MultiVariate Regression Path Specification",
type="RAM",
mxData(

observed=myRegDataRaw,
type="raw"

),
manifestVars=c("w", "x", "y", "z"),
# variance paths
mxPath(

from=c("w", "x", "y", "z"),
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arrows=2,
free=TRUE,
values = c(1, 1, 1, 1),
labels=c("residualw", "varx", "residualy", "varz")

),
# covariance of x and z
mxPath(

from="x",
to="z",
arrows=2,
free=TRUE,
values=0.5,
labels="covxz"

),
# regression weights for y
mxPath(

from=c("x","z"),
to="y",
arrows=1,
free=TRUE,
values=1,
labels=c("betayx","betayz")

),
# regression weights for w
mxPath(

from=c("x","z"),
to="w",
arrows=1,
free=TRUE,
values=1,
labels=c("betawx","betawz")

),
# means and intercepts
mxPath(

from="one",
to=c("w", "x", "y", "z"),
arrows=1,
free=TRUE,
values=c(1, 1, 1 , 1),
labels=c("betaw", "meanx", "betay", "meanz")

)
) # close model

multivariateRegFit <- mxRun(multivariateRegModel)

multivariateRegFit@output
summary(multivariateRegFit)

The only additional components to our mxPath functions are the inclusion of the w variable and the additional set of
regression coefficients for w. Running the model and viewing output works exactly as before.

These models may also be specified using matrices instead of paths. See Regression, Matrix Specification for matrix
specification of these models.
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2.2 Factor Analysis, Path Specification

This example will demonstrate latent variable modeling via the common factor model using path-centric model spec-
ification. We’ll walk through two applications of this approach: one with a single latent variable, and one with two
latent variables. As with previous examples, these two applications are split into four files, with each application
represented separately with raw and covariance data. These examples can be found in the following files:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_PathCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_PathRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/TwoFactorModel_PathCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/TwoFactorModel_PathRaw.R

Parallel versions of this example, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/TwoFactorModel_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/TwoFactorModel_MatrixRaw.R

2.2.1 Common Factor Model

The common factor model is a method for modeling the relationships between observed variables believed to measure
or indicate the same latent variable. While there are a number of exploratory approaches to extracting latent factor(s),
this example uses structural modeling to fit confirmatory factor models. The model for any person and path diagram
of the common factor model for a set of variables x1-x6 are given below.

xij = µj + λj ∗ ηi + εij

While 19 parameters are displayed in the equation and path diagram above (6 manifest variances, six manifest means,
six factor loadings and one factor variance), we must constrain either the factor variance or one factor loading to a
constant to identify the model and scale the latent variable. As such, this model contains 18 parameters. Unlike the
manifest variable examples we’ve run up until now, this model is not fully saturated. The means and covariance matrix
for six observed variables contain 27 degrees of freedom, and thus our model contains 9 degrees of freedom.

Data

Our first step to running this model is to include the data to be analyzed. The data for this example contain nine
variables. We’ll select the six we want for this model using the selection operators used in previous examples. Both
raw and covariance data are included below, but only one is required for any model.
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data(myFADataRaw)
names(myFADataRaw)

oneFactorRaw <- myFADataRaw[,c("x1", "x2", "x3", "x4", "x5", "x6")]

myFADataCov <- matrix(
c(0.997, 0.642, 0.611, 0.672, 0.637, 0.677, 0.342, 0.299, 0.337,

0.642, 1.025, 0.608, 0.668, 0.643, 0.676, 0.273, 0.282, 0.287,
0.611, 0.608, 0.984, 0.633, 0.657, 0.626, 0.286, 0.287, 0.264,
0.672, 0.668, 0.633, 1.003, 0.676, 0.665, 0.330, 0.290, 0.274,
0.637, 0.643, 0.657, 0.676, 1.028, 0.654, 0.328, 0.317, 0.331,
0.677, 0.676, 0.626, 0.665, 0.654, 1.020, 0.323, 0.341, 0.349,
0.342, 0.273, 0.286, 0.330, 0.328, 0.323, 0.993, 0.472, 0.467,
0.299, 0.282, 0.287, 0.290, 0.317, 0.341, 0.472, 0.978, 0.507,
0.337, 0.287, 0.264, 0.274, 0.331, 0.349, 0.467, 0.507, 1.059),

nrow=9,
dimnames=list(

c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3"),
c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3")),

)

oneFactorCov <- myFADataCov[c("x1","x2","x3","x4","x5","x6"),
c("x1","x2","x3","x4","x5","x6")]

myFADataMeans <- c(2.988, 3.011, 2.986, 3.053, 3.016, 3.010, 2.955, 2.956, 2.967)
names(myFADataMeans) <- c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3")

oneFactorMeans <- myFADataMeans[1:6]

Model Specification

Creating a path-centric factor model will use many of the same functions and arguments used in previous path-centric
examples. However, the inclusion of latent variables adds a few extra pieces to our model. Before running a model, the
OpenMx library must be loaded into R using either the require() or library() function. All objects required
for estimation (data, paths, and a model type) are included in their own arguments or functions. This code uses the
mxModel function to create an MxModel object, which we will then run.

require(OpenMx)

oneFactorModel <- mxModel("Common Factor Model Path Specification",
type="RAM",
mxData(

observed=oneFactorRaw,
type="raw"

),
manifestVars=c("x1","x2","x3","x4","x5","x6"),
latentVars="F1",
# residual variances
mxPath(

from=c("x1","x2","x3","x4","x5","x6"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c("e1","e2","e3","e4","e5","e6")

),
# latent variance
mxPath(
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from="F1",
arrows=2,
free=TRUE,
values=1,
labels ="varF1"

),
# factor loadings
mxPath(

from="F1",
to=c("x1","x2","x3","x4","x5","x6"),
arrows=1,
free=c(FALSE,TRUE,TRUE,TRUE,TRUE,TRUE),
values=c(1,1,1,1,1,1),
labels =c("l1","l2","l3","l4","l5","l6")

),
# means
mxPath(

from="one",
to=c("x1","x2","x3","x4","x5","x6","F1"),
arrows=1,
free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE),
values=c(1,1,1,1,1,1,0),
labels =c("meanx1","meanx2","meanx3","meanx4","meanx5","meanx6",NA)

)
) # close model

As with previous examples, this model begins with a name (“Common Factor Model Path Specification”) for the model
and a type="RAM" argument. The name for the model may be omitted, or may be specified in any other place in the
model using the name argument. Including type="RAM" allows the mxModel function to interpret the mxPath
functions that follow and turn those paths into an expected covariance matrix and means vector for the ensuing data.
The mxData function works just as in previous examples, and the following raw data specification is included in the
code:

mxData(
observed=oneFactorRaw,
type="raw"

)

can be replaced with a covariance matrix and means, like so:

oneFactorModel<-mxModel("Common Factor Model Path Specification",
type="RAM",
mxData(

observed=oneFactorCov,
type="cov",
numObs=500,
means=oneFactorMeans

),

The first departure from our previous examples can be found in the addition of the latentVars argument after
the manifestVars argument. The manifestVars argument includes the six variables in our observed data.
The latentVars argument provides names for the latent variables (here just one), so that it may be referenced in
mxPath functions.

manifestVars=c("x1","x2","x3","x4","x5","x6"),
latentVars="F1",

Our model is defined by four mxPath functions. The first defines the residual variance terms for our six observed
variables. The to argument is not required, as we are specifiying two headed arrows both from and to the same
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variables, as specified in the from argument. These six variances are all freely estimated, have starting values of 1,
and are labeled e1 through e6.

# residual variances
mxPath(

from=c("x1","x2","x3","x4","x5","x6"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c("e1","e2","e3","e4","e5","e6")

),

We also must specify the variance of our latent variable. This code is identical to our residual variance code above,
with the latent variable "F1" replacing our six manifest variables. Alternatively, both could be combined.

# latent variance
mxPath(

from="F1",
arrows=2,
free=TRUE,
values=1,
labels ="varF1"

),

Next come the factor loadings. These are specified as asymmetric paths (regressions) of the manifest variables on the
latent variable "F1". As we have to scale the latent variable, the first factor loading has been given a fixed value of
one by setting the first elements of the free and values arguments to FALSE and 1, respectively. Alternatively, the
latent variable could have been scaled by fixing the factor variance to 1 in the previous mxPath function and freely
estimating all factor loadings. The five factor loadings that are freely estimated are all given starting values of 1 and
labels l2 through l6.

# factor loadings
mxPath(

from="F1",
to=c("x1","x2","x3","x4","x5","x6"),
arrows=1,
free=c(FALSE,TRUE,TRUE,TRUE,TRUE,TRUE),
values=c(1,1,1,1,1,1),
labels =c("l1","l2","l3","l4","l5","l6")

),

Lastly, we must specify the mean structure for this model. As there are a total of seven variables in this model (six
manifest and one latent), we have the potential for seven means. However, we must constrain at least one mean to a
constant value, as there is not sufficient information to yield seven mean and intercept estimates from the six observed
means. The six observed variables receive freely estimated intercepts, while the factor mean is fixed to a value of zero
in the code below.

# means
mxPath(

from="one",
to=c("x1","x2","x3","x4","x5","x6","F1"),
arrows=1,
free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE),
values=c(1,1,1,1,1,1,0),
labels =c("meanx1","meanx2","meanx3","meanx4","meanx5","meanx6",NA)

))

The model can now be run using the mxRun function, and the output of the model can be accessed from the output
slot of the resulting model. A summary of the output can be reached using summary().
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oneFactorFit <- mxRun(oneFactorModel)

oneFactorFit@output
summary(oneFactorFit)

2.2.2 Two Factor Model

The common factor model can be extended to include multiple latent variables. The model for any person and path
diagram of the common factor model for a set of variables x1-x3 and y1-y3 are given below.

xij = µj + λj ∗ η1i + εij

yij = µj + λj ∗ η2i + εij

Our model contains 21 parameters (6 manifest variances, six manifest means, six factor loadings, two factor variances
and one factor covariance), but each factor requires one identification constraint. Like in the common factor model
above, we will constrain one factor loading for each factor to a value of one. As such, this model contains 19 parame-
ters. The means and covariance matrix for six observed variables contain 27 degrees of freedom, and thus our model
contains 8 degrees of freedom.

The data for the two factor model can be found in the myFAData files introduced in the common factor model. For
this model, we will select three x variables (x1-x3) and three y variables (y1-y3).

twoFactorRaw <- myFADataRaw[,c("x1","x2","x3","y1","y2","y3")]

twoFactorCov <- myFADataCov[c("x1","x2","x3","y1","y2","y3"),
c("x1","x2","x3","y1","y2","y3")]

twoFactorMeans <- myFADataMeans[c(1:3,7:9)]

Specifying the two factor model is virtually identical to the single factor case. The last three variables of our
manifestVars argument have changed from "x4","x5","x6" to "y1","y2","y3", which is carried
through references to the variables in later mxPath functions.

twofactorModel<-mxModel("Two Factor Model Path Specification",
type="RAM",
mxData(

observed=twoFactorRaw,
type="raw"

),
manifestVars=c("x1","x2","x3","y1","y2","y3"),
latentVars=c("F1","F2"),
# residual variances
mxPath(
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from=c("x1","x2","x3","y1","y2","y3"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c("e1","e2","e3","e4","e5","e6")

),
# latent variances and covariance
mxPath(

from=c("F1","F2"),
arrows=2,
connect="unique.pairs",
free=TRUE,
values=c(1, .5,1),
labels=c("varF1","cov","varF2")

),
# factor loadings for x variables
mxPath(

from="F1",
to=c("x1","x2","x3"),
arrows=1,
free=c(FALSE,TRUE,TRUE),
values=c(1,1,1),
labels=c("l1","l2","l3")

),
#factor loadings for y variables
mxPath(

from="F2",
to=c("y1","y2","y3"),
arrows=1,
free=c(FALSE,TRUE,TRUE),
values=c(1,1,1),
labels=c("l4","l5","l6")

),
#means
mxPath(

from="one",
to=c("x1","x2","x3","y1","y2","y3","F1","F2"),
arrows=1,
free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE),
values=c(1,1,1,1,1,1,0,0),
labels=c("meanx1","meanx2","meanx3","meany1","meany2","meany3",NA,NA)

)
)

We’ve covered the type argument, mxData function and manifestVars and latentVars arguments previ-
ously, so now we will focus on the changes this model makes to the mxPath functions. The first and last mxPath
functions, which detail residual variances and intercepts, accomodate the changes in manifest and latent variables but
carry out identical functions to the common factor model.

# residual variances
mxPath(

from=c("x1","x2","x3","y1","y2","y3"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c("e1","e2","e3","e4","e5","e6")

)
#means
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mxPath(
from="one",
to=c("x1","x2","x3","y1","y2","y3","F1","F2"),
arrows=1,
free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE),
values=c(1,1,1,1,1,1,0,0),
labels=c("meanx1", "meanx2", "meanx3", "meany1","meany2","meany3",NA,NA)

)

The second, third and fourth mxPath functions provide some changes to the model. The second mxPath func-
tion specifies the variances and covariance of the two latent variables. Like previous examples, we’ve omitted the
to argument for this set of two-headed paths. Unlike previous examples, we’ve set the connect argument to
unique.pairs, which creates all unique paths between the variables. As omitting the to argument is identical
to putting identical variables in the from and to arguments, we are creating all unique paths from and to our two
latent variables. This results in three paths: from F1 to F1 (the variance of F1), from F1 to F2 (the covariance of the
latent variables), and from F2 to F2 (the variance of F2).

# latent variances and covariance
mxPath(

from=c("F1","F2"),
arrows=2,
connect="unique.pairs",
free=TRUE,
values=c(1, .5, 1),
labels=c("varF1","cov","varF2")

)

The third and fourth mxPath functions define the factor loadings for each of the latent variables. We’ve split these
loadings into two functions, one for each latent variable. The first loading for each latent variable is fixed to a value of
one, just as in the previous example.

# factor loadings for x variables
mxPath(

from="F1",
to=c("x1","x2","x3"),
arrows=1,
free=c(FALSE,TRUE,TRUE),
values=c(1,1,1),
labels=c("l1","l2","l3")

)
#factor loadings for y variables
mxPath(

from="F2",
to=c("y1","y2","y3"),
arrows=1,
free=c(FALSE,TRUE,TRUE),
values=c(1,1,1),
labels=c("l4","l5","l6")

)

The model can now be run using the mxRun function, and the output of the model can be accessed from the @output
slot of the resulting model. A summary of the output can be reached using summary().

oneFactorFit <- mxRun(oneFactorModel)

oneFactorFit@output
summary(oneFactorFit)

These models may also be specified using matrices instead of paths. See Factor Analysis, Matrix Specification for

48 Chapter 2. Examples, Path Specification



OpenMx User Guide, Release 1.2.0-1919

matrix specification of these models.

2.3 Time Series, Path Specification

This example will demonstrate a growth curve model using path-centric specification. As with previous examples, this
application is split into two files, one each raw and covariance data. These examples can be found in the following
files:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/LatentGrowthCurveModel_PathRaw.R

Parallel versions of this example, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/LatentGrowthCurveModel_MatrixRaw.R

2.3.1 Latent Growth Curve Model

The latent growth curve model is a variation of the factor model for repeated measurements. For a set of manifest
variables xi1 - xi5 measured at five discrete times for people indexed by the letter i, the growth curve model can be
expressed both algebraically and via a path diagram as shown here:

xij = Intercepti + λj ∗ Slopei + εi

The values and specification of the λ parameters allow for alterations to the growth curve model. This example will
utilize a linear growth curve model, so we will specify λ to increase linearly with time. If the observations occur at
regular intervals in time, then λ can be specified with any values increasing at a constant rate. For this example, we
will use [0, 1, 2, 3, 4] so that the intercept represents scores at the first measurement occasion, and the slope represents
the rate of change per measurement occasion. Any linear transformation of these values can be used for linear growth
curve models.

Our model for any number of variables contains 6 free parameters; two factor means, two factor variances, a factor
covariance and a (constant) residual variance for the manifest variables. Our data contains five manifest variables, and
so the covariance matrix and means vector contain 20 degrees of freedom. Thus, the linear growth curve model fit to
these data has 14 degrees of freedom.

Data

The first step to running our model is to import data. The code below is used to import both raw data and a covariance
matrix and means vector, either of which can be used for our growth curve model. This data contains five variables,

2.3. Time Series, Path Specification 49

http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/LatentGrowthCurveModel_PathRaw.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/LatentGrowthCurveModel_MatrixRaw.R


OpenMx User Guide, Release 1.2.0-1919

which are repeated measurements of the same variable "x". As growth curve models make specific hypotheses about
the variances of the manifest variables, correlation matrices generally aren’t used as data for this model.

data(myLongitudinalData)

myLongitudinalDataCov<-matrix(
c(6.362, 4.344, 4.915, 5.045, 5.966,

4.344, 7.241, 5.825, 6.181, 7.252,
4.915, 5.825, 9.348, 7.727, 8.968,
5.045, 6.181, 7.727, 10.821, 10.135,
5.966, 7.252, 8.968, 10.135, 14.220),

nrow=5,
dimnames=list(

c("x1","x2","x3","x4","x5"),
c("x1","x2","x3","x4","x5"))

)

myLongitudinalDataMeans <- c(9.864, 11.812, 13.612, 15.317, 17.178)
names(myLongitudinalDataMeans) <- c("x1","x2","x3","x4","x5")

Model Specification

We’ll create a path-centric factor model with the same functions and arguments used in previous path-centric examples.
This model is a special type of two-factor model, with fixed factor loadings, constant residual variance and manifest
means dependent on latent means.

Before running a model, the OpenMx library must be loaded into R using either the require() or library()
function. This code uses the mxModel function to create an MxModel object, which we will then run.

require(OpenMx)

growthCurveModel <- mxModel("Linear Growth Curve Model Path Specification",
type="RAM",
mxData(

myLongitudinalData,
type="raw"

),
manifestVars=c("x1","x2","x3","x4","x5"),
latentVars=c("intercept","slope"),
# residual variances
mxPath(

from=c("x1","x2","x3","x4","x5"),
arrows=2,
free=TRUE,
values = c(1, 1, 1, 1, 1),
labels=c("residual","residual","residual","residual","residual")

),
# latent variances and covariance
mxPath(

from=c("intercept","slope"),
arrows=2,
connect="unique.pairs",
free=TRUE,
values=c(1, 1, 1),
labels=c("vari", "cov", "vars")

),
# intercept loadings
mxPath(
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from="intercept",
to=c("x1","x2","x3","x4","x5"),
arrows=1,
free=FALSE,
values=c(1, 1, 1, 1, 1)

),
# slope loadings
mxPath(

from="slope",
to=c("x1","x2","x3","x4","x5"),
arrows=1,
free=FALSE,
values=c(0, 1, 2, 3, 4)

),
# manifest means
mxPath(

from="one",
to=c("x1", "x2", "x3", "x4", "x5"),
arrows=1,
free=FALSE,
values=c(0, 0, 0, 0, 0)

),
# latent means
mxPath(

from="one",
to=c("intercept", "slope"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("meani", "means")

)
) # close model

The model begins with a name, in this case “Linear Growth Curve Model Path Specification”. If the first argument
is an object containing an MxModel object, then the model created by the mxModel function will contain all of the
named entities in the referenced model object. The type="RAM" argument specifies a RAM model, allowing the
mxModel to define an expected covariance matrix from the paths we supply.

Data is supplied with the mxData function. This example uses raw data, but the mxData function in the code above
could be replaced with the function below to include covariance data.

mxData(
myLongitudinalDataCov,
type="cov",
numObs=500,
means=myLongitudinalDataMeans

)

Next, the manifest and latent variables are specified with the manifestVars and latentVars arguments. The
two latent variables in this model are named "Intercept" and "Slope".

There are six mxPath functions in this model. The first two specify the variances of the manifest and latent variables,
respectively. The manifest variables are specified below, which take the form of residual variances. The to argument
is omitted, as it is not required to specify two-headed arrows. The residual variances are freely estimated, but held to
a constant value across the five measurement occasions by giving all five variances the same label, residual.

# residual variances
mxPath(

from=c("x1","x2","x3","x4","x5"),
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arrows=2,
free=TRUE,
values = c(1, 1, 1, 1, 1),
labels=c("residual","residual","residual","residual","residual")

)

Next are the variances and covariance of the two latent variables. Like the last function, we’ve omitted the to argument
for this set of two-headed paths. However, we’ve set the connect argument to unique, which creates all unique
paths between the variables. As omitting the to argument is identical to putting identical variables in the from and
to arguments, we are creating all unique paths from and to our two latent variables. This results in three paths: from
intercept to intercept (the variance of the interecpts), from intercept to slope (the covariance of the latent variables),
and from slope to slope (the variance of the slopes).

# latent variances and covariance
mxPath(

from=c("intercept","slope"),
arrows=2,
connect="unique.pairs",
free=TRUE,
values=c(1, 1, 1),
labels=c("vari", "cov", "vars")

)

The third and fourth mxPath functions specify the factor loadings. As these are defined to be a constant value of 1
for the intercept factor and the set [0, 1, 2, 3, 4] for the slope factor, these functions have no free parameters.

# intercept loadings
mxPath(

from="intercept",
to=c("x1","x2","x3","x4","x5"),
arrows=1,
free=FALSE,
values=c(1, 1, 1, 1, 1)

)
# slope loadings
mxPath(

from="slope",
to=c("x1","x2","x3","x4","x5"),
arrows=1,
free=FALSE,
values=c(0, 1, 2, 3, 4)

)

The last two mxPath functions specify the means. The manifest variables are not regressed on the constant, and
thus have intercepts of zero. The observed means are entirely functions of the means of the intercept and slope. To
specify this, the manifest variables are regressed on the constant (denoted "one") with a fixed value of zero, and the
regressions of the latent variables on the constant are estimated as free parameters.

# manifest means
mxPath(

from="one",
to=c("x1", "x2", "x3", "x4", "x5"),
arrows=1,
free=FALSE,
values=c(0, 0, 0, 0, 0)

)
# latent means
mxPath(
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from="one",
to=c("intercept", "slope"),
arrows=1,
free=TRUE,
values=c(1, 1),
labels=c("meani", "means")

)

The model is now ready to run using the mxRun function, and the output of the model can be accessed from the
output slot of the resulting model. A summary of the output can be reached using summary().

growthCurveFit <- mxRun(growthCurveModel)

summary(growthCurveFit)

These models may also be specified using matrices instead of paths. See Time Series, Matrix Specification for matrix
specification of these models.

2.4 Multiple Groups, Path Specification

An important aspect of structural equation modeling is the use of multiple groups to compare means and covariances
structures between any two (or more) data groups, for example males and females, different ethnic groups, ages etc.
Other examples include groups which have different expected covariances matrices as a function of parameters in the
model, and need to be evaluated together for the parameters to be identified.

The example includes the heterogeneity model as well as its submodel, the homogeneity model, and is available in the
following file:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateHeterogeneity_PathRaw.R

A parallel version of this example, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateHeterogeneity_MatrixRaw.R

2.4.1 Heterogeneity Model

We will start with a basic example here, building on modeling means and variances in a saturated model. Assume we
have two groups and we want to test whether they have the same mean and covariance structure.

The path diagram of the heterogeneity model for a set of variables x and y are shown below.
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Data

For this example we simulated two datasets (xy1 and xy2) each with zero means and unit variances, one with a
correlation of 0.5, and the other with a correlation of 0.4 with 1000 subjects each. We use the mvrnorm function in
the MASS package, which takes three arguments: Sample Size, Means, Covariance Matrix). We check the
means and covariance matrix in R and provide dimnames for the dataframe. See attached R code for simulation and
data summary.

#Simulate Data
require(MASS)
#group 1
set.seed(200)
rs=.5
xy1 <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
set.seed(200)
#group 2
rs=.4
xy2 <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))

#Print Descriptive Statistics
selVars <- c(’X’,’Y’)
summary(xy1)
cov(xy1)
dimnames(xy1) <- list(NULL, selVars)
summary(xy2)
cov(xy2)
dimnames(xy2) <- list(NULL, selVars)

Model Specification

As before, we include the OpenMx package using a require statement. We first fit a heterogeneity model, allowing
differences in both the mean and covariance structure of the two groups. As we are interested whether the two
structures can be equated, we have to specify the models for the two groups, named group1 and group2 within
another model, named bivHet. The structure of the job thus look as follows, with two mxModel commands as
arguments of another mxModel command. Note that mxModel commands are unlimited in the number of arguments.

require(OpenMx)
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bivHetModel <- mxModel("bivHet",
mxModel("group1"),
mxModel("group2"),
mxAlgebra(group1.objective + group2.objective, name="h12"),
mxAlgebraObjective("h12")

)

For each of the groups, we fit a saturated model, by specifying paths with free parameters for the variances and
the covariance using two-headed arrows to generate the expected covariance matrix. Single-headed arrows from the
constant one to the manifest variables contain the free parameters for the expected means. Note that we have specified
different labels for all the free elements, in the two mxModel statements. The type is RAM by default.

#Fit Heterogeneity Model
bivHetModel <- mxModel("bivHet",

mxModel("group1",
manifestVars= selVars,
# variances
mxPath(

from=c("X", "Y"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels=c("vX1","vY1")

),
# covariance
mxPath(

from="X",
to="Y",
arrows=2,
free=T,
values=.2,
lbound=.01,
labels="cXY1"

),
# means

mxPath(
from="one",
to=c("X", "Y"),
arrows=1,
free=T,
values=0,
labels=c("mX1", "mY1")

),
mxData(

observed=xy1,
type="raw",

),
type="RAM"

),
mxModel("group2",

manifestVars= selVars,
# variances
mxPath(

from=c("X", "Y"),
arrows=2,
free=T,
values=1,
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lbound=.01,
labels=c("vX2","vY2")

),
# covariance
mxPath(

from="X",
to="Y",
arrows=2,
free=T,
values=.2,
lbound=.01,
labels="cXY2"

),
# means
mxPath(

from="one",
to=c("X", "Y"),
arrows=1,
free=T,
values=0,
labels=c("mX2", "mY2")

),
mxData(

observed=xy2,
type="raw",

),
type="RAM"

),

We estimate five parameters (two means, two variances, one covariance) per group for a total of 10 free parameters.
We cut the Labels matrix: parts from the output generated with bivHetModel$group1@matrices and
bivHetModel$group2@matrices:

in group1
$S

X Y
X "vX1" "cXY1"
Y "cXY1" "vY1"

$M
X Y

[1,] "mX1" "mY1"

in group2
$S

X Y
X "vX2" "cXY2"
Y "cXY2" "vY2"

$M
X Y

[1,] "mX2" "mY2"

To evaluate both models together, we use an mxAlgebra command that adds up the values of the objective functions
of the two groups, and assigns a name. The objective function to be used here is the mxAlgebraObjective which
uses as its argument the sum of the function values of the two groups, referred to by the name of the previously defined
mxAlgebra object h12.
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mxAlgebra(
group1.objective + group2.objective,
name="h12"

),
mxAlgebraObjective("h12")

)

Model Fitting

The mxRun command is required to actually evaluate the model. Note that we have adopted the following notation of
the objects. The result of the mxModel command ends in Model; the result of the mxRun command ends in Fit.
Of course, these are just suggested naming conventions.

bivHetFit <- mxRun(bivHetModel)

A variety of output can be printed. We chose here to print the expected means and covariance matrices, which the RAM
objective function generates based on the path specification, respectively in the matrices M and S for the two groups.
OpenMx also puts the values for the expected means and covariances in the means and covariance objects. We
also print the likelihood of the data given the model.

EM1Het <- bivHetFit$group1.objective@info$expMean
EM2Het <- bivHetFit$group2.objective@info$expMean
EC1Het <- bivHetFit$group1.objective@info$expCov
EC2Het <- bivHetFit$group2.objective@info$expCov
LLHet <- mxEval(objective, bivHetFit)

2.4.2 Homogeneity Model: a Submodel

Next, we fit a model in which the mean and covariance structure of the two groups are equated to one another, to test
whether there are significant differences between the groups. As this model is nested within the previous one, the data
are the same.

Model Specification

Rather than having to specify the entire model again, we copy the previous model bivHetModel into a new model
bivHomModel to represent homogeneous structures.

#Fit Homogeneity Model
bivHomModel <- bivHetModel

As the free parameters of the paths are translated into RAM matrices, and matrix elements can be equated by assigning
the same label, we now have to equate the labels of the free parameters in group1 to the labels of the corresponding
elements in group2. This can be done by referring to the relevant matrices using the ModelName$MatrixName
syntax, followed by @labels. Note that in the same way, one can refer to other arguments of the objects in the
model. Here we assign the labels from group1 to the labels of group2, separately for the ‘covariance’ matrices (in S)
used for the expected covariance matrices and the ‘means’ matrices (in M) for the expected mean vectors.

bivHomModel$group2.S@labels <- bivHomModel$group1.S@labels
bivHomModel$group2.M@labels <- bivHomModel$group1.M@labels

The specification for the submodel is reflected in the names of the labels which are now equal for the corresponding
elements of the mean and covariance matrices, as below:
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in group1
$S

X Y
X "vX1" "cXY1"
Y "cXY1" "vY1"

$M
X Y

[1,] "mX1" "mY1"

in group2
$S

X Y
X "vX1" "cXY1"
Y "cXY1" "vY1"

$M
X Y

[1,] "mX1" "mY1"

Model Fitting

We can produce similar output for the submodel, i.e. expected means and covariances and likelihood, the only differ-
ence in the code being the model name. Note that as a result of equating the labels, the expected means and covariances
of the two groups should be the same, and a total of 5 parameters is estimated.

bivHomFit <- mxRun(bivHomModel)
EM1Hom <- bivHomFit$group1.objective@info$expMean
EM2Hom <- bivHomFit$group2.objective@info$expMean
EC1Hom <- bivHomFit$group1.objective@info$expCov
EC2Hom <- bivHomFit$group2.objective@info$expCov
LLHom <- mxEval(objective, bivHomFit)

Finally, to evaluate which model fits the data best, we generate a likelihood ratio test from the difference between
-2 times the log-likelihood of the homogeneity model and -2 times the log-likelihood of the heterogeneity model.
This statistic is asymptotically distributed as a Chi-square, which can be interpreted with the difference in degrees of
freedom of the two models, in this case 5 df.

Chi <- LLHom-LLHet
LRT <- rbind(LLHet,LLHom,Chi)
LRT

These models may also be specified using matrices instead of paths. See Multiple Groups, Matrix Specification for
matrix specification of these models.

2.5 Genetic Epidemiology, Path Specification

Mx is probably most popular statistical modeling package in the behavior genetics field, as it was conceived with
genetic models in mind, which rely heavily on multiple groups. We introduce here an OpenMx script for the basic
genetic model in genetic epidemiologic research, the ACE model. This model assumes that the variability in a pheno-
type, or observed variable, can be explained by differences in genetic and environmental factors, with A representing
additive genetic factors, C shared/common environmental factors and E unique/specific environmental factors (see
Neale & Cardon 1992, for a detailed treatment). To estimate these three sources of variance, data have to be collected
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on relatives with different levels of genetic and environmental similarity to provide sufficient information to identify
the parameters. One such design is the classical twin study, which compares the similarity of identical (monozygotic,
MZ) and fraternal (dizygotic, DZ) twins to infer the role of A, C and E.

The example starts with the ACE model and includes one submodel, the AE model. It is available in the following file:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateTwinAnalysis_PathRaw.R

A parallel version of this example, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateTwinAnalysis_MatrixRaw.R

2.5.1 ACE Model: a Twin Analysis

A twin analysis is a typical example of multiple groups, in this case MZ twins and DZ twins, with different expectations
for the covariance structure (and possibly means). We illustrate the model here with the corresponding two path
diagrams:

Data

Let us assume you have collected data on a large sample of twin pairs for your phenotype of interest. For illustration
purposes, we use Australian data on body mass index (BMI) which are saved in a text file ‘myTwinData.txt’. We use
R to read the data into a data.frame and to create two subsets of the data for MZ females (mzData) and DZ females

2.5. Genetic Epidemiology, Path Specification 59

http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateTwinAnalysis_PathRaw.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateTwinAnalysis_MatrixRaw.R


OpenMx User Guide, Release 1.2.0-1919

(dzData) respectively with the code below. We also define the objects selVars for the variables selected for analysis,
and aceVars for the latent variables to simplify the OpenMx code.

require(OpenMx)

#Prepare Data
data(myTwinData)
twinVars <- c( ’fam’,’age’,’zyg’,’part’,

’wt1’,’wt2’,’ht1’,’ht2’,’htwt1’,’htwt2’,’bmi1’,’bmi2’)
summary(myTwinData)
selVars <- c(’bmi1’,’bmi2’)
aceVars <- c("A1","C1","E1","A2","C2","E2")
mzData <- as.matrix(subset(myTwinData, zyg==1, c(bmi1,bmi2)))
dzData <- as.matrix(subset(myTwinData, zyg==3, c(bmi1,bmi2)))
colMeans(mzData,na.rm=TRUE)
colMeans(dzData,na.rm=TRUE)
cov(mzData,use="complete")
cov(dzData,use="complete")

Model Specification

There are different ways to draw a path diagram of the ACE model. The most commonly used approach is with the
three latent variables in circles at the top, separately for twin 1 and twin 2 respectively called A1, C1, E1 and A2, C2,
E2. The latent variables are connected to the observed variables in boxes at the bottom, representing the measures for
twin 1 and twin 2: T1 and T2, by single-headed arrows from the latent to the manifest variables. Path coefficients
a, c and e are estimated but constrained to be the same for twin 1 and twin 2, as well as for MZ and DZ twins. As
MZ twins share all their genotypes, the double-headed path connecting A1 and A2 is fixed to one in the MZ diagram.
DZ twins share on average half their genes, and as a result the corresponding path is fixed to 0.5 in the DZ diagram.
As environmental factors that are shared between twins are assumed to increase similarity between twins to the same
extent in MZ and DZ twins (equal environments assumption), the double-headed path connecting C1 and C2 is fixed
to one in both diagrams above. The unique environmental factors are by definition uncorrelated between twins.

Let’s go through the paths specification step by step. First, we start with the require(OpenMx) statement. We
include the full code here. As MZ and DZ have to be evaluated together, the models for each will be arguments of
a bigger model. Given the diagrams for the MZ and the DZ group look rather similar, we start by specifying all the
common elements in yet another model, called ACEModel which will then be shared with the two submodels for
each of the twin types, defined in separate mxModel commands. The latter two MxModel objects (mzModel and
dzModel) are arguments of the overall twinACEmodel, and will be saved together in the R object twinACEModel
and thus be run together.

#Fit ACE Model with RawData and Path-Style Input
ACEModel <- mxModel("ACE",

type="RAM",
manifestVars=selVars,
latentVars=aceVars,
# variances of latent variables
mxPath(

from=aceVars,
arrows=2,
free=FALSE,
values=1

),
# means of latent variables
mxPath(

from="one",
to=aceVars,
arrows=1,
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free=FALSE,
values=0

),
# means of observed variables
mxPath(

from="one",
to=selVars,
arrows=1,
free=TRUE,
values=20,
labels="mean",

),
# path coefficients for twin 1
mxPath(

from=c("A1","C1","E1"),
to="bmi1",
arrows=1,
free=TRUE,
values=.6,
label=c("a","c","e")

),
# path coefficients for twin 2
mxPath(

from=c("A2","C2","E2"),
to="bmi2",
arrows=1,
free=TRUE,
values=.6,
label=c("a","c","e")

),
# covariance between C1 & C2
mxPath(

from="C1",
to="C2",
arrows=2,
free=FALSE,
values=1

)
)
mzModel <- mxModel(ACEModel, name="MZ",

# covariance between A1 & A2
mxPath(

from="A1",
to="A2",
arrows=2,
free=FALSE,
values=1

),
mxData(

observed=mzData,
type="raw"

)
)
dzModel <- mxModel(ACEModel, name="DZ",
# covariance between A1 & A2

mxPath(
from="A1",
to="A2",
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arrows=2,
free=FALSE,
values=.5

),
mxData(

observed=dzData,
type="raw"

)
)
twinACEModel <- mxModel("twinACE", mzModel, dzModel,

mxAlgebra(
expression=MZ.objective + DZ.objective,
name="minus2loglikelihood"

),
mxAlgebraObjective("minus2loglikelihood")

)

Now we will discuss the script line by line. For further details on RAM, see ref. Note that we left the comma’s
at the end of the lines which are necessary when all the arguments are combined prior to running the model. Each
line can be pasted into R, and then evaluated together once the whole model is specified. Models specifying paths
are translated into ‘RAM’ specifications for optimization, indicated by using the type="RAM". We start the path
diagram specification by providing the names for the manifest variables in manifestVars and the latent variables
in latentVars. We use here the selVars and aceVars objects that we created previously when preparing the
data.

mxModel("ACE",
type="RAM",
manifestVars=selVars,
latentVars=aceVars,

We start by specifying paths for the variances and means of the latent variables. These include double-headed arrows
from each latent variable back to itself, fixed at one.

# variances of latent variables
mxPath(

from=aceVars,
arrows=2,
free=FALSE,
values=1

),

and single-headed arrows from the triangle (with a fixed value of one) to each of the latent variables, fixed at zero.

# means of latent variables
mxPath(

from="one",
to=aceVars,
arrows=1,
free=FALSE,
values=0

),

Next we specify paths for the means of the observed variables using single-headed arrows from one to each of the
manifest variables. These are set to be free and given a start value of 20. As we use the same label (mean) for the two
means, they are constrained to be equal. Remember that R ‘recycles’.

# means of observed variables
mxPath(

from="one",
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to=selVars,
arrows=1,
free=TRUE,
values=20,
labels="mean"

),

The main paths of interest are those from each of the latent variables to the respective observed variable. These are
also estimated (thus all are set free), get a start value of 0.6 and appropriate labels.

# path coefficients for twin 1
mxPath(

from=c("A1","C1","E1"),
to="bmi1",
arrows=1,
free=TRUE,
values=0.6,
label=c("a","c","e")

),
# path coefficients for twin 2
mxPath(

from=c("A2","C2","E2"),
to="bmi2",
arrows=1,
free=TRUE,
values=0.6,
label=c("a","c","e")

),

As the common environmental factors are by definition the same for both twins, we fix the correlation between C1
and C2 to one.

# covariance between C1 & C2
mxPath(

from="C1",
to="C2",
arrows=2,
free=FALSE,
values=1

))

We add the paths that are specific to the MZ group or the DZ group into the respective models, mzModel and
dzModel, which are combined in twinACEModel. So we have two mxModel statements following the ACEModel
model statement. Each of the two models have access to all the paths already defined given ACEModel is the first
argument of mzModel and dzModel. In the MZ model we add the path for the correlation between A1 and A2 which
is fixed to one. That concludes the specification of the model for the MZ’s, thus we move to the mxData command
that calls up the data.frame with the MZ raw data, mzData, with the type specified explicitly. We also give the model
a name, MZ, to refer back to it later when we need to add the objective functions.

mzModel <- mxModel(ACEModel, name="MZ",
# covariance between A1 & A2 in MZ’s
mxPath(

from="A1",
to="A2",
arrows=2,
free=FALSE,
values=1

),
mxData(
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observed=mzData,
type="raw"

)
)

The mxModel command for the DZ group is very similar, except that the the correlation between A1 and A2 is fixed
to 0.5 and the DZ data, dzData are read in, and the model is named DZ. Note that OpenMx can handle constants in
algebra.

dzModel <- mxModel(ACEModel, name="DZ",
# covariance between A1 & A2 in DZ’s
mxPath(

from="A1",
to="A2",
arrows=2,
free=FALSE,
values=.5

),
mxData(

observed=dzData,
type="raw"

)
)

Finally, both models need to be evaluated simultaneously. We specify a new mxModel which has the mzModel
and dzModel as its arguments. We then generate the sum of the objective functions for the two groups, using
mxAlgebra, and use the result (minus2loglikelihood) as argument of the mxAlgebraObjective com-
mand.

twinACEModel <- mxModel("twinACE", mzModel, dzModel,
mxAlgebra(

expression=MZ.objective + DZ.objective,
name="minus2loglikelihood"

),
mxAlgebraObjective("minus2loglikelihood")

)

Model Fitting

We need to invoke the mxRun command to start the model evaluation and optimization. Detailed output will be
available in the resulting object, which can be obtained by a print() statement.

#Run ACE model
twinACEFit <- mxRun(twinACEModel)

Often, however, one is interested in specific parts of the output. In the case of twin modeling, we typically will
inspect the likelihood, the expected covariance matrices and mean vectors, the parameter estimates, and possibly some
derived quantities, such as the standardized variance components, obtained by dividing each of the components by
the total variance. Note in the code below that the mxEval command allows easy extraction of the values in the
various matrices/algebras which form the first argument, with the model name as second argument. Once these values
have been put in new objects, we can use any regular R expression to derive further quantities or organize them in
a convenient format for including in tables. Note that helper functions could easily (and will likely) be written for
standard models to produce ‘standard’ output.

MZc <- twinACEFit$MZ.objective@info$expCov # expected covariance matrix for MZ’s
DZc <- twinACEFit$DZ.objective@info$expCov # expected covariance matrix for DZ’s
M <- twinACEFit$MZ.objective@info$expMean # expected mean
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A <- mxEval(a*a, twinACEFit) # additive genetic variance, a^2
C <- mxEval(c*c, twinACEFit) # shared environmental variance, c^2
E <- mxEval(e*e, twinACEFit) # unique environmental variance, e^2
V <- (A+C+E) # total variance
a2 <- A/V # standardized A
c2 <- C/V # standardized C
e2 <- E/V # standardized E
ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2)) # table of estimates
LL_ACE <- mxEval(objective, twinACEFit) # likelihood of ACE model

2.5.2 Alternative Models: an AE Model

To evaluate the significance of each of the model parameters, nested submodels are fit in which the parameters of
interest are fixed to zero. If the likelihood ratio test between the two models (one including the parameter and the
other not) is significant, the parameter that is dropped from the model significantly contributes to the variance of the
phenotype in question. Here we show how we can fit the AE model as a submodel with a change in two mxPath
commands. First, we define a new model ‘AEModel’ with ‘ACEModel’ as its first argument. ACEModel included the
common parts of the model, necessary for both MZ and DZ group. Next we re-specify the path from C1 to bmi1 to be
fixed to zero, and do the same for the path from C2 to bmi2. We need to respecify the mzModel and the dzModel, so
that they are now built with the changed paths from the common AEModel. We can run this model in the same way
as before, by combining the objective functions of the two groups and generate similar summaries of the results.

#Run AE model
AEModel <- mxModel(ACEModel, name="twinAE",

mxPath(
from=c("A1","C1","E1"),
to="bmi1",
arrows=1,
free=c(T,F,T),
values=c(.6,0,.6),
label=c("a","c","e")

),
mxPath(

from=c("A2","C2","E2"),
to="bmi2",
arrows=1,
free=c(T,F,T),
values=c(.6,0,.6),
label=c("a","c","e")

)
)
mzModel <- mxModel(AEModel, name="MZ",

mxPath(
from="A1",
to="A2",
arrows=2,
free=FALSE,
values=1

),
mxData(

observed=mzData,
type="raw"

)
)
dzModel <- mxModel(AEModel, name="DZ",

mxPath(
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from="A1",
to="A2",
arrows=2,
free=FALSE,
values=.5

),
mxData(

observed=dzData,
type="raw"

)
)
twinAEModel <- mxModel("twinAE", mzModel, dzModel,

mxAlgebra(
expression=MZ.objective + DZ.objective,
name="twin"

),
mxAlgebraObjective("twin")

)

twinAEFit <- mxRun(twinAEModel)

MZc <- twinAEFit$MZ.objective@info$expCov
DZc <- twinAEFit$DZ.objective@info$expCov
M <- twinAEFit$MZ.objective@info$expMean
A <- mxEval(a*a, twinAEFit)
C <- mxEval(c*c, twinAEFit)
E <- mxEval(e*e, twinAEFit)
V <- (A+C+E)
a2 <- A/V
c2 <- C/V
e2 <- E/V
AEest <- rbind(cbind(A, C, E),cbind(a2, c2, e2))
LL_AE <- mxEval(objective, twinAEFit)

We use a likelihood ratio test (or take the difference between -2 times the log-likelihoods of the two models, for the
difference in degrees of freedom) to determine the best fitting model, and print relevant output.

LRT_ACE_AE <- LL_AE - LL_ACE

#Print relevant output
ACEest
AEest
LRT_ACE_AE

Note that the way to specify submodels using path specification is not straightforward and requires repeating code.
The OpenMx team is currently working on better alternatives. These models may also be specified using matrices
instead of paths, which allow for easier submodel specification. See Genetic Epidemiology, Matrix Specification for
matrix specification of these models.

2.6 Definition Variables, Path Specification

This example will demonstrate the use of OpenMx definition variables with the analysis of a simple two group dataset.
What are definition variables? Essentially, definition variables can be thought of as observed variables that are used to
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change the statistical model on an individual case basis. In essence, it is as though one or more variables in the raw data
vectors are used to specify the statistical model for that individual. Many different types of statistical model can be
specified in this fashion; some are readily specified in standard fashion, and some cannot. To illustrate, we implement
a two-group model. The groups differ in their means but not in their variances and covariances. This situation could
easily be modeled in a regular multiple group fashion - it is only implemented using definition variables to illustrate
their use. The results are verified using summary statistics and an Mx 1.0 script for comparison is also available.

2.6.1 Mean Differences

The example shows the use of definition variables to test for mean differences. It is available in the following file:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/DefinitionMeans_PathRaw.R

A parallel version of this example, using matrix specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/DefinitionMeans_MatrixRaw.R

Statistical Model

Algebraically, we are going to fit the following model to the observed x and y variables:

xi = µx + βx ∗ def + εxi

yi = µy + βy ∗ def + εyi

where def is the definition variable and the residual sources of variance, εxi and εyi covary to the extent ρ. So, the task
is to estimate: the two means µx and µy; the deviations from these means due to belonging to the group identified by
having def set to 1 (as opposed to zero), βx and βy; and the parameters of the variance covariance matrix: cov(εx, εy).

Our task is to implement the model shown in the figure below:

Data Simulation

Our first step to running this model is to simulate the data to be analyzed. Each individual is measured on two observed
variables, x and y, and a third variable def which denotes their group membership with a 1 or a 0. These values for
group membership are not accidental, and must be adhered to in order to obtain readily interpretable results. Other
values such as 1 and 2 would yield the same model fit, but would make the interpretation more difficult.

library(MASS) # to get hold of mvrnorm function

set.seed(200) # to make the simulation repeatable
N <- 500 # sample size, per group

2.6. Definition Variables, Path Specification 67

http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/DefinitionMeans_PathRaw.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/DefinitionMeans_MatrixRaw.R


OpenMx User Guide, Release 1.2.0-1919

Sigma <- matrix(c(1,.5,.5,1),2,2)
group1 <- mvrnorm(N, c(1,2), Sigma)
group2 <- mvrnorm(N, c(0,0), Sigma)

We make use of the superb R function mvrnorm in order to simulate N=500 records of data for each group. These
observations correlate .5 and have a variance of 1, per the matrix Sigma. The means of x and y in group 1 are 1.0 and
2.0, respectively; those in group 2 are both zero. The output of the mvrnorm function calls are matrices with 500
rows and 2 columns, which are stored in group 1 and group 2. Now we create the definition variable

# Put the two groups together, create a definition variable,
# and make a list of which variables are to be analyzed (selVars)
xy <- rbind(group1,group2)
dimnames(xy)[2] <- list(c("x","y"))
def <- rep(c(1,0),each=N)
selVars <- c("x","y")

The objects xy and def might be combined in a data frame. However, in this case we won’t bother to do it externally,
and simply paste them together in the mxData function call.

Model Specification

The following code contains all of the components of our model. Before specifying a model, the OpenMx library must
be loaded into R using either the require() or library() function. This code uses the mxModel function to
create an mxModel object, which we’ll then run. Note that all the objects required for estimation (data, matrices, and
an objective function) are declared within the mxModel function. This type of code structure is recommended for
OpenMx scripts generally.

defMeansModel <- mxModel("Definition Means Path Specification",
type="RAM",
manifestVars=selVars,
latentVars ="DefDummy",
# variances
mxPath(

from=c("x","y"),
arrows=2,
free= TRUE,
values=1,
labels=c("Varx","Vary")

),
# covariances
mxPath(

from="x",
to="y",
arrows=2,
free= TRUE,
values=.1,
labels=c("Covxy")

),
# means
mxPath(

from="one",
to=c("x","y"),
arrows=1,
free= TRUE,
values=1,
labels=c("meanx","meany")

),
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# definition value
mxPath(

from="one",
to="DefDummy",
arrows=1,
free= FALSE,
values=1,
labels="data.def"

),
# beta weights
mxPath(

from="DefDummy",
to=c("x","y"),
arrows=1,
free= TRUE,
values=1,
labels=c("beta_1","beta_2")

),
mxData(

observed=data.frame(xy,def),
type="raw"

)
)

The first argument in an mxModel function has a special function. If an object or variable containing an MxModel
object is placed here, then mxModel adds to or removes pieces from that model. If a character string (as indicated by
double quotes) is placed first, then that becomes the name of the model. Models may also be named by including a
name argument. This model is named "Definition Means Path Specification".

require(OpenMx)

defMeansModel<-mxModel("Definition Means Path Specification",
type="RAM",

The second line of the mxModel function call declares that we are going to be using RAM specification of the model,
using directional and bidirectional path coefficients between the variables.

manifestVars=c("x","y"),
latentVars="DefDummy",

Model specification is carried out using two lists of variables, manifestVars and latentVars. Then mxPath
functions are used to specify paths between them. In the present case, we need four mxPath commands to specify
the model. The first is for the variances of the x and y variables, and the second specifies their covariance. The third
specifies a path from the mean vector, always known by the special keyword one, to each of the observed variables,
and to the single latent variable DefDummy. This last path is specified to contain the definition variable, by virtue
of the data.def label. Definition variables are part of the data so the first part is always data.. The second part
refers to the actual variable in the dataset whose values are modeled. The Finally, two paths are specified from the
DefDummy latent variable to the observed variables. These parameters estimate the deviation of the mean of those
with a data.def value of 1 from that of those with data.def values of zero.

# variances
mxPath(

from=c("x","y"),
arrows=2,
free= TRUE,
values=1,
labels=c("Varx","Vary")

),
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# covariances
mxPath(

from="x",
to="y",
arrows=2,
free= TRUE,
values=.1,
labels=c("Covxy")

),
# means
mxPath(

from="one",
to=c("x","y"),
arrows=1,
free=TRUE,
values=1,
labels=c("meanx","meany")

),
# definition value
mxPath(

from="one",
to="DefDummy",
arrows=1,
free= FALSE,
values=1,
labels="data.def"

),
# beta weights
mxPath(

from="DefDummy",
to=c("x","y"),
arrows=1,
free= TRUE,
values=1,
labels=c("beta_1","beta_2")

),

Next, we declare where the data are, and their type, by creating an MxData object with the mxData function. This
code first references the object where our data are, then uses the type argument to specify that this is raw data.
Analyses using definition variables have to use raw data, so that the model can be specified on an individual data
vector level.

mxData(
observed=data.frame(xy,def),
type="raw"

))

We can then run the model and examine the output with a few simple commands.

Model Fitting

# Run the model
defMeansFit<-mxRun(defMeansModel)

defMeansFit@matrices

The R object defmeansFit contains matrices and algebras; here we are interested in the matrices, which can be
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seen with the defmeansFi@matrices entry. In path notation, the unidirectional, one-headed arrows appear in the
matrix A, the two-headed arrows in S, and the mean vector single headed arrows in M.

# Compare OpenMx estimates to summary statistics from raw data,
# remembering to knock off 1 and 2 from group 1’s data
# so as to estimate variance of combined sample without
# the mean difference contributing to the variance estimate.

# First compute some summary statistics from data
ObsCovs <- cov(rbind(group1 - rep(c(1,2), each=N), group2))
ObsMeansGroup1 <- c(mean(group1[,1]), mean(group1[,2]))
ObsMeansGroup2 <- c(mean(group2[,1]), mean(group2[,2]))

# Second extract parameter estimates and matrix algebra results from model
Sigma <- mxEval(S[1:2,1:2], defMeansFit)
Mu <- mxEval(M[1:2], defMeansFit)
beta <- mxEval(A[1:2,3], defMeansFit)

# Third, check to see if things are more or less equal
omxCheckCloseEnough(ObsCovs,Sigma,.01)
omxCheckCloseEnough(ObsMeansGroup1,as.vector(Mu+beta),.001)
omxCheckCloseEnough(ObsMeansGroup2,as.vector(Mu),.001)

These models may also be specified using matrices instead of paths. See Definition Variables, Matrix Specification for
matrix specification of these models.

2.7 Ordinal and Joint Ordinal-Continuous Model Specification

This chapter deals with the specification of models that are either fit exclusively to ordinal variables or to a mix of
ordinal and continuous variables. It extends the continuous data common factor model found in previous chapters to
ordinal data.

The examples for this chapter can be found in the following files:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorOrdinal_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorOrdinal01_MatrixRaw.R

The continuous versions of these models for raw data can be found the previous demos here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_PathRaw.R

2.7.1 Ordinal Data

OpenMx models ordinal data under a threshold model. A continuous normal distribution is assumed to underly every
ordinal variable. These latent continuous distributions are only observed as being above or below a threshold, where
there is one fewer threshold than observed categories in the data. For example, consider a variable with three ordered
categories indicated by the values zero, one and two. Under this approach, this variable is assumed to follow a normal
distribution that is partitioned or cut by two thresholds: individuals with underlying scores below the first threshold
have an observed value of zero, individuals with latent scores between the thresholds are observed with values of one,
and individuals with underlying scores give observed values of two.
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Each threshold may be freely estimated or assigned as a fixed parameter, depending on the desired model. In addition
to the thresholds, ordinal variables still have a mean and variance that describes the parameters of the underlying
continuous distribution. However, this underlying distribution must be scaled by fixing at least two parameters to
identify the model. One method of identification fixes the mean and variance to specific values, most commonly to a
standard normal distribution with a mean of zero and a variance of one. A variation on this method fixes the residual
variance of the categorical variable to one, which is often easier to specify. Alternatively, categorical variables may be
identified by fixing two thresholds to non-equivalent constant values. These methods will differ in the scale assigned
to the ordinal variables (and thus, the scale of the parameters estimated from them), but all identify the same model
and should provide equally valid results.

OpenMx allows for the inclusion of continuous and ordinal variables in the same model, as well as models with only
continuous or only ordinal variables. Any number of continuous variables may be included in an OpenMx model;
however, maximum likelihood estimation for ordinal data must be limited to twenty ordinal variables regardless of
the number of continuous variables. Further technical details on ordinal and joint continuous-ordinal optimization are
contained at the end of this chapter.

Specifying Threshold Matrices

In addition to the mean, variance and covariance structure of the data, the thresholds for ordinal variables must be
included in the model. This matrix should be of a specific order: it should contain as many columns as their are
ordinal variables, and as many rows as there are thresholds in the data. The number of thresholds can be determined
as one fewer than the number of categories in the variable or variables included in the model. If ordinal variables have
varying numbers of thresholds, the threshold matrix should have as many rows as the largest number of thresholds
for any variable. For example, a model with two binary variables (one threshold) and one three-category variable
(two thresholds), the threshold matrix should contain two rows and three columns to represent the maximum of two
thresholds found across three ordinal variables.

Threshold matrices may be specified using the mxMatrix function, just like any other matrix in OpenMx. Columns
represent variables, while the n$th$ row of the thresholds matrix represents the n$th$ threshold for that variable. The
code below specifies one version of the three variable thresholds matrix.

mxMatrix(
type="Full",
nrow=2,
ncol=3,
free=c(TRUE, TRUE, TRUE,
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FALSE, FALSE, TRUE),
values=c(-1, 0, -.5,

NA, NA, 1.2),
dimnames=list(c(), c(’z1’, ’z2’, ’z3’)),
byrow=TRUE,
name="thresh"

)

In this example, variables ‘z1’ and ‘z2’ are binary, with a single freely estimated threshold for each variable with
starting values of -1 and 0, respectively. The meaning of these thresholds will depend on the mean and variance of these
variables; as we are freely estimating thresholds for binary variables, the mean and variances of these variables should
be constrained to fixed values. The third column of the thresholds matrix represents variable ‘z3’, which contains two
thresholds and thus three categories. These two thresholds are assigned free parameters with staring values of -0.5
and 1.2, and the mean and variance of this variable should also be constrained to fixed values for identification. For
variables with multiple thresholds, starting values should be monotonically increasing in each column such that the
first column represents the first threshold and lowest value and the last column represents the last threshold and highest
value.

Unlike the mean and covariance structures, which may be specified either as matrices or as paths under models where
type=’RAM’ is requested, thresholds must always be specified as matrices. Path models with ordinal variables may
still specify the rest of the model using paths, but must include a threshold matrix.

Users of original or ‘’classic” Mx may recall specifying thresholds not in absolute terms, but as deviations. This
method estimated the difference between each threshold for a variable and the previous one, which ensured that
thresholds were in the correct order (i.e., that the second threshold for a variable was not lower than the first). While
users may employ this method as it suits them, OpenMx does not require this technique. Simply specifying a thresholds
matrix is typically sufficient to keep thresholds in proper order.

Specifying Data for Ordinal Models

In addition to specifying the thresholds matrix as shown above, users must identify ordinal variables by specifying
those variables as ordered factors in the included data. Ordinal models can only be fit to raw data; if data is described
as a covariance or other moment matrix, then the categorical nature of the data was already models to generate that
moment matrix. Ordinal variables must be defined as specific columns in an R data frame.

Factors are a type of variable included in an R data frame. Unlike numeric or continuous variables, which must in-
clude only numeric and missing values, observed values for factors are treated as character strings. All factors contain
a levels argument, which lists the possible values for a factor. Ordered factors contain information about the or-
dering of possible levels. Both R and OpenMx have tools for manipulating factors in data frames. The R functions
factor() and as.factor() (and companions ordered() and as.ordered()) can be used to specify or-
dered factors. OpenMx includes a helper function mxFactor() which more directly prepares ordinal variables as
ordered factors in preparation for inclusion in OpenMx models. The code below demonstrates the mxFactor()
function, replacing the variable z2 that was initially read as a continuous variable and treating it as an ordinal variable
with two levels.

data(myFADataRaw)

oneFactorOrd <- myFADataRaw[,c("z1", "z2", "z3")]

oneFactorOrd$z2 <- mxFactor(oneFactorOrd$z2, levels=c(0, 1))

Including Thresholds in Models

Finally, the threshold matrix must be identified as such in the objective function in the same way that other matrices
are identified as means or covariance matrices. Both the mxRAMObjective and mxFIMLObjective contain a
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thresholds argument, which takes the name of the matrix or algebra to be used as the threshold matrix for a given
analysis. Although specifying type=’RAM’ generates a RAM objective function, this objective function must be
replaced by one with a specified thresholds matrix.

You must specify dimnames (dimension names) for your thresholds matrix that correspond to the ordered factors in the
data you wish to analyze. This may be done in either of two ways, both of which correspond to specifying dimnames
for other OpenMx matrices. One method is to use the threshnames argument in the mxFIMLObjective or
mxRAMObjective, which specifies which variables are in a threshold matrix in the same way the dimnames
argument specifies which variables are in the rest of the model. Another method is to specify dimnames for each
matrix using the dimnames argument in the mxMatrix function.

Regardless of the number of continuous numeric variables included in a model, the thresholds matrix should only
contain as many columns as there are ordinal variables in a model. All ordered factors included in an analysis must
contain a column in the thresholds matrix, and all columns in the thresholds matrix must correspond to an ordered
factor. The code below specifies an mxRAMObjective to include a thresholds matrix names ”thresh”. When
models are built using type=’RAM’, the dimnames argument may be omitted, as the requisite dimnames for the A,
S, F and M matrices are generated from the manifestVars and latentVars lists. However, the dimnames for
the threshold matrix should be included using the dimnames argument in mxMatrix.

mxRAMObjective(A="A", S="S", F="F", M="M", thresholds="thresh")

2.7.2 Example: Common Factor Model for Ordinal Data

All of the raw data examples through the documentation may be converted to ordinal examples by the inclusion of
ordinal data, the specification of a threshold matrix and inclusion of that threshold matrix in the objective function.
The following example is a version of the continuous data common factor model referenced at the beginning of this
chapter. Aside from replacing the continuous variables x1-x6 with the ordinal variables z1-z3, the code below
simply incorporates the steps referenced above into the existing example. Data preparation occurs first, with the added
mxFactor statements to identify ordinal variables and their ordered levels.

require(OpenMx)

data(myFADataRaw)

oneFactorOrd <- myFADataRaw[,c("z1", "z2", "z3")]

oneFactorOrd$z1 <- mxFactor(oneFactorOrd$z1, levels=c(0, 1))
oneFactorOrd$z2 <- mxFactor(oneFactorOrd$z2, levels=c(0, 1))
oneFactorOrd$z3 <- mxFactor(oneFactorOrd$z3, levels=c(0, 1, 2))

Model specification can be achieved by appending the above threshold matrix and objective function to either the
path or matrix common factor examples. The path example below has been altered by changing the variable names
from x1-x6 to z1-z3, adding the threshold matrix and objective function, and identifying the ordinal variables by
constraining their means to be zero and their residual variances to be one.

oneFactorModel <- mxModel("Common Factor Model Path Specification",
type="RAM",
mxData(

observed=oneFactorOrd,
type="raw"

),
manifestVars=c("z1","z2","z3"),
latentVars="F1",
# residual variances
mxPath(

from=c("z1","z2","z3"),
arrows=2,

74 Chapter 2. Examples, Path Specification



OpenMx User Guide, Release 1.2.0-1919

free=FALSE,
values=c(1,1,1),
labels=c("e1","e2","e3")

),
# latent variance
mxPath(

from="F1",
arrows=2,
free=TRUE,
values=1,
labels ="varF1"

),
# factor loadings
mxPath(

from="F1",
to=c("z1","z2","z3"),
arrows=1,
free=c(FALSE,TRUE,TRUE),
values=c(1,1,1),
labels=c("l1","l2","l3")

),
# means
mxPath(

from="one",
to=c("z1","z2","z3","F1"),
arrows=1,
free=FALSE,
values=0,
labels=c("meanz1","meanz2","meanz3","meanF")

),
mxMatrix(

type="Full",
nrow=2,
ncol=3,
free=c(TRUE, TRUE, TRUE,

FALSE, FALSE, TRUE),
values=c(-1, 0, -.5,
NA, NA, 1.2),
dimnames=list(c(), c(’z1’, ’z2’, ’z3’)),
byrow=TRUE,
name="thresh"

),
mxRAMObjective(A="A", S="S", F="F", M="M", thresholds="thresh")

) # close model

This model may then be optimized using the mxRun command.

oneFactorResults <- mxRun(oneFactorModel)

2.7.3 Example: Common Factor Model for Joint Ordinal-Continuous Data

Models with both continuous and ordinal variables may be specified just like any other ordinal data model. Threshold
matrices in these models should contain columns only for the ordinal variables, and should contain column names to
designate which variables are to be treated as ordinal. In the example below, the one factor model above is estimated
with three continuous variables (x1-x3) and three ordinal variables (z1-z3).
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require(OpenMx)

oneFactorJoint <- myFADataRaw[,c("x1", "x2", "x3", "z1", "z2", "z3")]

oneFactorJoint$z1 <- mxFactor(oneFactorOrd$z1, levels=c(0, 1))
oneFactorJoint$z2 <- mxFactor(oneFactorOrd$z2, levels=c(0, 1))
oneFactorJoint$z3 <- mxFactor(oneFactorOrd$z3, levels=c(0, 1, 2))

oneFactorJointModel <- mxModel("Common Factor Model Path Specification",
type="RAM",
mxData(

observed=oneFactorJoint,
type="raw"

),
manifestVars=c("x1", "x2", "x3", "z1","z2","z3"),
latentVars="F1",
# residual variances
mxPath(

from=c("x1", "x2", "x3", "z1","z2","z3"),
arrows=2,
free=c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE),
values=1,
labels=c("e1","e2","e3","e4","e5","e6")

),
# latent variance
mxPath(

from="F1",
arrows=2,
free=FALSE,
values=1,
labels ="varF1"

),
# factor loadings
mxPath(

from="F1",
to=c("x1", "x2", "x3", "z1","z2","z3"),
arrows=1,
free=TRUE,
values=1,
labels=c("l1","l2","l3","l4","l5","l6")

),
# means
mxPath(

from="one",
to=c("x1", "x2", "x3","z1","z2","z3","F1"),
arrows=1,
free=c(TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,FALSE),
values=0,
labels=c("meanx1","meanx2","meanx3","meanz1","meanz2","meanz3","meanF")

),
mxMatrix(

type="Full",
nrow=2,
ncol=3,
free=c(TRUE, TRUE, TRUE,
FALSE, FALSE, TRUE),
values=c(-1, 0, -.5,

NA, NA, 1.2),
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dimnames=list(c(), c(’z1’, ’z2’, ’z3’)),
byrow=TRUE,
name="thresh"

),
mxRAMObjective(A="A", S="S", F="F", M="M", thresholds="thresh")

) # close model

This model may then be optimized using the mxRun command.

oneFactorJointResults <- mxRun(oneFactorJointModel)

2.7.4 Technical Details

Maximum likelihood estimation for ordinal variables by generating expected covariance and mean matrices for
the latent continuous variables underlying the set of ordinal variables, then integrating the multivariate nor-
mal distribution defined by those covariances and means. The likelihood for each row of the data is de-
fined as the multivariate integral of the expected distribution over the interval defined by the thresholds bor-
dering that row’s data. OpenMx uses Alan Genz’s SADMVN routine for multivariate normal integration (see
http://www.math.wsu.edu/faculty/genz/software/software.html for more information).

When continuous variables are present, OpenMx utilizes a block decomposition to separate the continuous and ordinal
covariance matrices for FIML. The likelihood of the continuous variables is calculated normally. The effects of the
point estimates of the continuous variables is projected out of the expected covariance matrix of the ordinal data. The
likelihood of the ordinal data is defined as the multivariate integral over the distribution defined by the resulting ordinal
covariance matrix.

2.8 Growth Mixture Modeling, Path Specification

This example will demonstrate how to specify a growth mixture model using path specification. Unlike other examples,
this application will not be demonstrated with covariance data, as this model can only be fit to raw data. The script for
this example can be found in the following file:

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/GrowthMixtureModel_PathRaw.R

A parallel example using matrix specification can be found here:

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/GrowthMixtureModel_MatrixRaw.R

The latent growth curve used in this example is the same one fit in the latent growth curve example. Path and matrix
versions of that example for raw data can be found here:

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/LatentGrowthCurveModel_PathRaw.R

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/LatentGrowthCurveModel_MatrixRaw.R

2.8.1 Mixture Modeling

Mixture modeling is an approach where data are assumed to be governed by some type of mixture distribution. This
includes a large class of models, including many varieties of mixture modeling, latent class analysis and related models
with binary or categorical latent variables. This example will demonstrate a growth mixture model, where change over
time is modeled with a linear growth curve and the distribution of latent intercepts and slopes is governed by a mixture
of two distributions. The model can thus be described as a combination of two growth curves, weighted by a class
proportion variable, as shown below.

xij = p1(Intercepti1 + λ1Slopei1 + ε) + p2(Intercepti2 + λ2Slopei2 + ε)
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To scale the class proportion variable as a probability, it must be scaled such that it is strictly positive and the set of all
class probabilities sum to a value of one.

k∑
i=1

pi = 1

Data

The data for this example can be found in the data object myGrowthMixtureData. These data contain five time
ordered variables named x1 through x5, just like the growth curve demo mentioned previously. It is important to note
that raw data is required for mixture modeling, as moment matrices do not contain all of the information required to
estimate the model.

data(myGrowthMixtureData)
names(myGrowthMixtureData)

Model Specification

Specifying a mixture model can be categorized into two general phases. The first phase of model specification pertains
to creating the models for each class. The second phase specifies the way those classes are mixed. In OpenMx, this is
done using a model tree. Each class is created as a separate MxModel object, and those class-specific models are all
placed into a larger or parent model. The parent model contains the class proportion parameter(s) and the data.

Creating the class-specific models is done the same way as every other model. We’ll begin by specifying the model
for the first class using the mxPath function. The code below specifies a five-occasion linear growth curve, virtually
identical to the one in the linear growth curve example referenced above. The only changes made to this model are the
names of the free parameters; the means, variances and covariance of the intercept and slope terms are now followed
by the number 1 to distinguish them from free parameters in the other class.

The objective function for each of the class-specific models must return the likelihoods for each individual rather
than the default log likelihood for the entire sample. OpenMx objective functions that handle raw data have the
option to return a vector of likelihoods for each row rather than a single likelihood value for the dataset. This
option can be accessed either as an argument in a function like mxRAMObjective or mxFIMLObjective. If
we recall that OpenMx stores path specifications in RAM matrix representations, then we can overwrite the default
mxRAMObjective call with A, S, F, and M matrices and specify that vector = TRUE.

class1 <- mxModel("Class1",
type="RAM",
manifestVars=c("x1","x2","x3","x4","x5"),
latentVars=c("intercept","slope"),

# residual variances
mxPath(

from=c("x1","x2","x3","x4","x5"),
arrows=2,
free=TRUE,
values = c(1, 1, 1, 1, 1),
labels=c("residual","residual","residual","residual","residual")

),
# latent variances and covariance
mxPath(

from=c("intercept","slope"),
arrows=2,
connect="unique.pairs",
free=TRUE,
values=c(1, .4, 1),
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labels=c("vari1", "cov1", "vars1")
),
# intercept loadings
mxPath(

from="intercept",
to=c("x1","x2","x3","x4","x5"),
arrows=1,
free=FALSE,
values=c(1, 1, 1, 1, 1)

),
# slope loadings
mxPath(

from="slope",
to=c("x1","x2","x3","x4","x5"),
arrows=1,
free=FALSE,
values=c(0, 1, 2, 3, 4)

),
# manifest means
mxPath(from="one",

to=c("x1", "x2", "x3", "x4", "x5"),
arrows=1,
free=FALSE,
values=c(0, 0, 0, 0, 0)

),
# latent means
mxPath(from="one",

to=c("intercept", "slope"),
arrows=1,
free=TRUE,
values=c(0, -1),
labels=c("meani1", "means1")

),
# enable the likelihood vector
mxRAMObjective(A = "A",

S = "S",
F = "F",
M = "M",
vector = TRUE)

) # close model

We could create the model for our second class by copy and pasting the code above, but that can yield needlessly
long scripts. We can also use the mxModel function to edit an existing model object, allowing us to change only the
parameters that vary across classes. The mxModel call below begins with an existing MxModel object (class1)
rather than a model name. The subsequent mxPath functions add new paths to the model, replacing any existing
paths that describe the same relationship. As we did not give the model a name at the beginning of the mxModel
function, we must use the name argument to identify this model by name.

class2 <- mxModel(class1,
# latent variances and covariance

mxPath(
from=c("intercept","slope"),
arrows=2,
connect="unique.pairs",
free=TRUE,
values=c(1, .5, 1),
labels=c("vari2", "cov2", "vars2")

),
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# latent means
mxPath(from="one",

to=c("intercept", "slope"),
arrows=1,
free=TRUE,
values=c(5, 1),
labels=c("meani2", "means2")

),
name="Class2"

) # close model

While the class-specific models can be specified using either path or matrix specification, the class proportion pa-
rameters must be specified using a matrix, though it can be specified a number of different ways. The challenge of
specifying class probabilities lies in their inherent constraint: class probabilities must be non-negative and sum to
unity. The code below demonstrates one method of specifying class proportion parameters and rescaling them as
probabilities.

This method for specifying class probabilities consists of two parts. In the first part, the matrix in the object classP
contains two elements representing the class proportions for each class. One class is designated as a reference class by
fixing their proportion at a value of one (class 2 below). All other classes are assigned free parameters in this matrix,
and should be interpreted as proportion of sample in that class per person in the reference class. These parameters
should have a lower bound at or near zero. Specifying class proportions rather than class probabilities avoids the
degrees of freedom issue inherent to class probability parameters by only estimating k-1 parameters for k classes.

classP <- mxMatrix("Full", 2, 1, free=c(TRUE, FALSE),
values=1, lbound=0.001,
labels = c("p1", "ps"), name="Props")

We still need probabilities, which require the second step shown below. Dividing the class proportion matrix above
by its sum will rescale the proportions into probabilities. This is slightly more difficult that it appears at first, as the k
x 1 matrix of class proportions and the scalar sum of that matrix aren’t conformable to either matrix or element-wise
operations. Instead, we can use a Kronecker product of the class proportion matrix and the inverse of the sum of that
matrix. This operation is carried out by the mxAlgebra function placed in the object classS below.

classS <- mxAlgebra(Props %x% (1 / sum(Props)), name="classProbs")

There are several alternatives to the two functions above that merit discussion. While the‘‘mxConstraint‘‘ function
would appear at first to be a simpler way to specify the class probabilities, but using the mxConstraint function
complicates this type of model estimation. When all k class probabilities are freely estimated then constrained, then
the class probability parameters are collinear, creating a parameter covariance matrix that is not of full rank. This
prevents OpenMx from calculating standard errors for any model parameters. Additionally, there are multiple ways
to use algebras different than the one above to specify the class proportion and/or class probability parameters, each
varying in complexity and utility. While specifying models with two classes can be done slightly more simply than
presented here, the above method is equally appropriate for all numbers of classes.

Finally, we can specify the mixture model. We must first specify the model’s -2 log likelihood function defined as:

−2LL = −2 ∗
n∑
i=1

m∑
k=1

log(pklki)

This is specified using an mxAlgebra function, and used as the argument to the mxAlgebraObjective function.
Then the objective function, matrices and algebras used to define the mixture distribution, the models for the respective
classes and the data are all placed in one final mxModel object, shown below.

algObj <- mxAlgebra(-2*sum(
log(classProbs[1,1] %x% Class1.objective + classProbs[2,1] %x% Class2.objective)),
name="mixtureObj")
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obj <- mxAlgebraObjective("mixtureObj")

gmm <- mxModel("Growth Mixture Model",
mxData(
observed=myGrowthMixtureData,
type="raw"

),
class1, class2,
classP, classS,
algObj, obj

)

gmmFit <- mxRun(gmm)

summary(gmmFit)

Multiple Runs: Serial Method

The results of a mixture model can sometimes depend on starting values. It is a good idea to run a mixture model
with a variety of starting values to make sure results you find are not the result of a local minimum in the likeli-
hood space. This section will describe a serial (i.e., running one model at a time) method for randomly generating
starting values and re-running a model, which is appropriate for a wide range of methods. The next section will
cover parallel (multiple models simultaneously) estimation procedures. Both of these examples are available in the
GrowthMixtureModelRandomStarts demo.

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/GrowthMixtureModelRandomStarts.R

One way to access the starting values in a model is by using the omxGetParameters function. This function takes
an existing model as an argument and returns the names and values of all free parameters. Using this function on our
growth mixture model, which is stored in an objected called gmm, gives us back the starting values we specified above.

omxGetParameters(gmm)
# pclass1 residual vari1 cov1 vars1 meani1 means1 vari2 cov2 vars2 meani2
# 0.2 1.0 1.0 0.4 1.0 0.0 -1.0 1.0 0.5 1.0 5.0
# means2
# 1.0

A companion function to omxGetParameters is omxSetParameters, which can be used to alter one or more
named parameters in a model. This function can be used to change the values, freedom and labels of any parameters in
a model, returning an MxModel object with the specified changes. The code below shows how to change the residual
variance starting value from 1.0 to 0.5. Note that the output of the omxSetParameters function is placed back into
the object gmm.

gmm <- omxSetParameters(gmm, labels="residual", values=0.5)

The MxModel in the object gmm can now be run and the results compared with other sets of staring values. Starting
values can also be sampled from distributions, allowing users to automate starting value generation, which is demon-
strated below. The omxGetParameters function is used to find the names of the free parameters and define three
matrices: a matrix input that holds the starting values for any run; a matrix output that holds the converged values
of each parameter; and a matrix fit that contains the -2 log likelihoods and other relevant model fit statistics. Each of
these matrices contains one row for every set of starting values. Starting values are randomly generated from a set of
uniform distributions using the runif function, allowing the ranges inherent to each parameter to be enforced (i.e.,
variances are positive, etc). A for loop repeatedly runs the model with starting values from the input matrix and
places the final estimates and fit statistics in the output and fit matrices, respectively.

# how many trials?
trials <- 20
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# place all of the parameter names in a vector
parNames <- names(omxGetParameters(gmm))

# make a matrix to hold all of the
input <- matrix(NA, trials, length(parNames))
dimnames(input) <- list(c(1: trials), c(parNames))

output <- matrix(NA, trials, length(parNames))
dimnames(output) <- list(c(1: trials), c(parNames))

fit <- matrix(NA, trials, 5)
dimnames(fit) <- list(c(1: trials), c("Minus2LL", "Status", "Iterations", "pclass1", "time"))

# populate the class probabilities
input[,"p1"] <- runif(trials, 0.1, 0.9)
input[,"p1"] <- input[,"p1"]/(1-input[,"p1"])

# populate the variances
v <- c("vari1", "vars1", "vari2", "vars2", "residual")
input[,v] <- runif(trials*5, 0, 10)

# populate the means
m <- c("meani1", "means1", "meani2", "means2")
input[,m] <- runif(trials*4, -5, 5)

# populate the covariances
r <- runif(trials*2, -0.9, 0.9)
scale <- c(

sqrt(input[,"vari1"]*input[,"vars1"]),
sqrt(input[,"vari2"]*input[,"vars2"]))

input[,c("cov1", "cov2")] <- r * scale

for (i in 1: trials){
temp1 <- omxSetParameters(gmm,

labels=parNames,
values=input[i,]
)

temp1@name <- paste("Starting Values Set", i)

temp2 <- mxRun(temp1, unsafe=TRUE, suppressWarnings=TRUE, checkpoint=TRUE)

output[i,] <- omxGetParameters(temp2)
fit[i,] <- c(

temp2@output$Minus2LogLikelihood,
temp2@output$status[[1]],
temp2@output$iterations,
round(temp2$classProbs@result[1,1], 4),
temp2@output$wallTime
)

}

Viewing the contents of the fit matrix shows the -2 log likelihoods for each of the runs, as well as the convergence
status, number of iterations and class probabilities, shown below.

fit[,1:4]
# Minus2LL Status Iterations pclass1
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# 1 8739.050 0 41 0.3991078
# 2 8739.050 0 40 0.6008913
# 3 8739.050 0 44 0.3991078
# 4 8739.050 1 31 0.3991079
# 5 8739.050 0 32 0.3991082
# 6 8739.050 1 34 0.3991089
# 7 8966.628 0 22 0.9990000
# 8 8966.628 0 24 0.9990000
# 9 8966.628 0 23 0.0010000
# 10 8966.628 1 36 0.0010000
# 11 8963.437 6 25 0.9990000
# 12 8966.628 0 28 0.9990000
# 13 8739.050 1 47 0.6008916
# 14 8739.050 1 36 0.3991082
# 15 8739.050 0 43 0.3991076
# 16 8739.050 0 46 0.6008948
# 17 8739.050 1 50 0.3991092
# 18 8945.756 6 50 0.9902127
# 19 8739.050 0 53 0.3991085
# 20 8966.628 0 23 0.9990000

There are several things to note about the above results. First, the minimum -2 log likelihood was reached in 12 of 20
sets of staring values, all with NPSOL statuses of either zero (seven times) or one (five times). Additionally, the class
probabilities are equivalent within five digits of precision, keeping in mind that no the model as specified contains no
restriction as to which class is labeled “class 1” (probability equals .3991) and “class 2” (probability equals .6009).
The other eight sets of starting values showed higher -2 log likelihood values and class probabilities at the set upper or
lower bounds, indicating a local minimum. We can also view this information using R’s table function.

table(round(fit[,1], 3), fit[,2])

# 0 1 6
# 8739.05 7 5 0
# 8945.756 0 0 1
# 8963.437 0 0 1
# 8966.628 5 1 0

We should have a great deal of confidence that the solution with class probabilities of .399 and .601 is the correct one.

Multiple Runs: Parallel Method

OpenMx supports multicore processing through the snowfall library, which is described in the “Multicore Execu-
tion” section of the documentation and in the following demo:

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BootstrapParallel.R

Using multiple processors can greatly improve processing time for model estimation when a model contains inde-
pendent submodels. While the growth mixture model in this example does contain submodels (i.e., the class specific
models), they are not independent, as they both depend on a set of shared parameters (“residual”, “pclass1”).

However, multicore estimation can be used instead of the for loop in the above section for testing alternative sets
of starting values. Instead of changing the starting values in the gmm object repeatedly, multiple copies of the model
contained in gmm must be placed into parent or container model. Either the above for loop or a set of “apply”
statements can be used to generate the model.

The example below first initializes the snowfall library, which also loads the snow library. The sfInit function
initializes parallel; you must supply the number of processors on your computer or grid for the analysis, then reload
OpenMx as a snowfall library.
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require(snowfall)
sfInit(parallel=TRUE, cpus=4)
sfLibrary(OpenMx)

From there, parallel optimization requires that a holder or top model (named “Top” in the object topModel below)
contain a set of independent submodels. In our example, each independent submodel will consist of a copy of the
above gmm model with a different set of starting values. Using the matrix of starting values from the serial example
above (input), we can create a function called makeModel that can be used to create these submodels. While this
function is entirely optional, it allows us to use the lapply function to create a list of submodels for optimization.
Once those submodels are placed in the submodels slot of the object topModel, we can run this model just like
any other. A second function, fitStats, can then be used to get the results from each submodel.

topModel <- mxModel("Top")

makeModel <- function(modelNumber){
temp <- mxModel(gmm,

independent=TRUE,
name=paste("Iteration", modelNumber, sep=""))

temp <- omxSetParameters(temp,
labels=parNames,
values=input[modelNumber,])

return(temp)
}

mySubs <- lapply(1:20, makeModel)

topModel@submodels <- mySubs

results <- mxRun(topModel)

fitStats <- function(model){
retval <- c(

model@output$Minus2LogLikelihood,
model@output$status[[1]],
model@output$iterations,
round(model$classProbs@result[1,1], 4)
)

return(retval)
}

resultsFit <- t(omxSapply(results@submodels, fitStats))
sfStop()

This parallel method saves computational time, but requires additional coding. For models as small as the one in this
example (total processing time of approximately 2 seconds), the speed-up from using the parallel version is marginal
(approximately 35-50 seconds for the serial method against 20-30 seconds for the parallel version). However, as
models get more complex or require a greater number of random starts, the parallel method can provide substantial
time savings. Regardless of method, re-running models with varying starting values is an essential part of running
multivariate models.

84 Chapter 2. Examples, Path Specification



CHAPTER

THREE

EXAMPLES, MATRIX SPECIFICATION

3.1 Regression, Matrix Specification

Our next example will show how regression can be carried out from structural modeling perspective. This example is
in three parts; a simple regression, a multiple regression, and multivariate regression. There are two versions of each
example are available; one where the data is supplied as a covariance matrix and vector of means, and one with raw
data. These examples are available in the following files: Parallel versions of this example, using matrix specification
of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_MatrixRaw.R

This example will focus on the RAM approach to building structural models. A parallel version of this example, using
path-centric rather than matrix specification, is available here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_PathCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/SimpleRegression_PathRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_PathCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultipleRegression_PathRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_PathCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/MultivariateRegression_PathRaw.R

3.1.1 Simple Regression

We begin with a single dependent variable (y) and a single independent variable (x). The relationship between these
variables takes the following form:

y = β0 + β1 ∗ x+ ε
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In this model, the mean of y is dependent on both regression coefficients (and by extension, the mean of x). The
variance of y depends on both the residual variance and the product of the regression slope and the variance of x. This
model contains five parameters from a structural modeling perspective β0, β1, σ2

ε , and the mean and variance of x).
We are modeling a covariance matrix with three degrees of freedom (two variances and one covariance) and a means
vector with two degrees of freedom (two means). Because the model has as many parameters (5) as the data have
degrees of freedom, this model is fully saturated.

Data

Our first step to running this model is to include the data to be analyzed. The data must first be placed in a variable or
object. For raw data, this can be done with the read.table function. The data provided has a header row, indicating
the names of the variables.

data(myRegDataRaw)

The names of the variables provided by the header row can be displayed with the names() function.

names(myRegDataRaw)

As you can see, our data has four variables in it. However, our model only contains two variables, x and y. To use only
them, we will select only the variables we want and place them back into our data object. That can be done with the R
code below.

SimpleDataRaw <- myRegDataRaw[,c("x","y")]

For covariance data, we do something very similar. We create an object to house our data. Instead of reading in raw
data from an external file, we can include a covariance matrix. This requires the matrix() function, which needs to
know what values are in the covariance matrix, how big it is, and what the row and column names are (in dimnames).
As our model also references means, we will include a vector of means in a separate object. Data is selected in the
same way as before.

myRegDataCov <- matrix(
c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),

nrow=4,
dimnames=list(

c("w","x","y","z"),
c("w","x","y","z"))
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)

SimpleDataCov <- myRegDataCov[c("x","y"),c("x","y")]

myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)
names(myRegDataMeans) <- c("w","x","y","z")

SimpleDataMeans <- myRegDataMeans[c(2,3)]

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require() or library() function. All objects required for estimation (data,
paths, and a model type) are included in their own arguments or functions. This code uses the mxModel function to
create an MxModel object, which we will then run.

require(OpenMx)

uniRegModel <- mxModel("Simple Regression Matrix Specification",
mxData(

observed=SimpleDataRaw,
type="raw"

),
# asymmetric paths
mxMatrix(

type="Full",
nrow=2,
ncol=2,
free=c(F, F,

T, F),
values=c(0, 0,

1, 0),
labels=c(NA, NA,

"beta1", NA),
byrow=TRUE,
name="A"

),
# symmetric paths
mxMatrix(

type="Symm",
nrow=2,
ncol=2,
values=c(1, 0,

0, 1),
free=c(T, F,

F, T),
labels=c("varx", NA,

NA, "residual"),
byrow=TRUE,
name="S"

),
# filter matrix
mxMatrix(

type="Iden",
nrow=2,
ncol=2,
name="F"
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),
# means
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=c(T, T),
values=c(0, 0),
labels=c("meanx", "beta0"),
name="M"),

mxRAMObjective("A", "S", "F", "M",
dimnames=c("x","y"))

)

This mxModel function can be split into several parts. First, we give the model a title. The first argument in an
mxModel function has a special function. If an object or variable containing an MxModel object is placed here, then
mxModel adds to or removes pieces from that model. If a character string (as indicated by double quotes) is placed
first, then that becomes the name of the model. Models may also be named by including a name argument. This
model is named Simple Regression Matrix Specification.

The second component of our code creates an MxData object. The example above, reproduced here, first references
the object where our data is, then uses the type argument to specify that this is raw data.

mxData(
observed=SimpleDataRaw,
type="raw"

)

If we were to use a covariance matrix and vector of means as data, we would replace the existing mxData function
with this one:

mxData(
observed=SimpleDataCov,
type="cov",
numObs=100,
means=SimpleDataMeans

)

The next four functions specify the four matricies that make up the RAM specified model. Each of these matrices
defines part of the relationship between the observed variables. These matrices are then combined by the objective
function, which follows the four mxMatrix functions, to define the expected covariances and means for the supplied
data. In all of the included matrices, the order of variables matches those in the data. Therefore, the first row and
column of all matrices corresponds to the x variable, while the second row and column of all matrices corresponds to
the y variable.

The A matrix is created first. This matrix specifies all of the assymetric paths or regressions among the variables. A
free parameter in the A matrix defines a regression of the variable represented by that row on the variable represented
by that column. For clarity, all matrices are specified with the byrow argument set to TRUE, which allows better
correspondence between the matrices as displayed below and their position in mxMatrix objects. In the section of
code below, a free parameter is specified as the regression of y on x, with a starting value of 1, and a label of "beta1".
This matrix is named "A".

# asymmetric paths
mxMatrix(

type="Full",
nrow=2,
ncol=2,
free=c(F, F,
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T, F),
values=c(0, 0,

1, 0),
labels=c(NA, NA,

"beta1", NA),
byrow=TRUE,
name="A"

)

The second mxMatrix function specifies the S matrix. This matrix specifies all of the symmetric paths or covariances
among the variables. By definition, this matrix is symmetric, but all elements are specified. A free parameter in the
S matrix represents a variance or covariance between the variables represented by the row and column that parameter
is in. In the code below, two free parameters are specified. The free parameter in the first row and column of the S
matrix is the variance of x (labeled "varx"), while the free parameter in the second row and column is the residual
variance of y (labeled "residual"). This matrix is named "S".

# symmetric paths
mxMatrix(

type="Symm",
nrow=2,
ncol=2,
values=c(1, 0,

0, 1),
free=c(T, F,

F, T),
labels=c("varx", NA,

NA, "residual"),
byrow=TRUE,
name="S"

)

The third mxMatrix function specifies the F matrix. This matrix is used to filter latent variables out of the expected
covariance of the manifest variables, or to reorder the manifest variables. When there are no latent variables in a model
and the order of manifest variables is the same in the model as in the data, then this filter matrix is simply an identity
matrix.

There are no free parameters in any F matrix.

# filter matrix
mxMatrix(

type="Iden",
nrow=2,
ncol=2,
name="F",
dimnames=list(c("x","y"),c("x","y"))

)

The fourth and final mxMatrix function specifies the M matrix. This matrix is used to specify the means and
intercepts of our model. Exogenous or independent variables receive means, while endogenous or dependent variables
get intercepts, or means conditional on regression on other variables. This matrix contains only one row. This matrix
consists of two free parameters; the mean of x (labeled "meanx") and the intercept of y (labeled "beta0"). This
matrix gives starting values of 1 for both parameters, and is named "M".

# means
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=c(T, T),
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values=c(0, 0),
labels=c("meanx", "beta0"),
name="M"

)

The final part of this model is the objective function. This defines both how the specified matrices combine to create
the expected covariance matrix of the data, as well as the fit function to be minimized. In a RAM specified model, the
expected covariance matrix is defined as:

ExpCovariance = F ∗ (I −A)−1 ∗ S ∗ ((I −A)−1)′ ∗ F ′

The expected means are defined as:

ExpMean = F ∗ (I −A)−1 ∗M

The free parameters in the model can then be estimated using maximum likelihood for covariance and means data, and
full information maximum likelihood for raw data. While users may define their own expected covariance matrices
using other objective functions in OpenMx, the mxRAMObjective function yields maximum likelihood estimates
of structural equation models when the A, S, F and M matrices are specified. The M matrix is required both for raw
data and for covariance or correlation data that includes a means vector. The mxRAMObjective function takes four
arguments, which are the names of the A, S, F and M matrices in your model.

mxRAMObjective("A", "S", "F", "M")

The model now includes an observed covariance matrix (i.e., data) and the matrices and objective function required to
define the expected covariance matrix and estimate parameters.

Model Fitting

We’ve created an MxModel object, and placed it into an object or variable named uniRegModel. We can run this
model by using the mxRun function, which is placed in the object uniRegFit in the code below. We then view the
output by referencing the output slot, as shown here.

uniRegFit <- mxRun(uniRegModel)

The @output slot contains a great deal of information, including parameter estimates and information about the
matrix operations underlying our model. A more parsimonious report on the results of our model can be viewed using
the summary() function, as shown here.

uniRegFit@output
summary(uniRegFit)

Alternative Specification

Rather than using the RAM approach the regression model with matrices can also be specified differently and more
directly comparable to the regression equation. This approach uses a special kind of variable, called a definition
variable, which will be explained in more detail in Definition Variables, Matrix Specification. Below is the complete
code.

selVars <- c("y")

uniRegModel <- mxModel("Simple Regression Matrix Specification",
mxData(

observed=SimpleDataRaw,
type="raw"

),
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mxMatrix(
type="Full",
nrow=1,
ncol=1,
free=FALSE,
labels=c("data.x"),
name="X"

),
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=T,
values=0,
labels="beta0",
name="Intercept"

),
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=T,
values=1,
labels="beta1",
name="regCoef"

),
mxMatrix(

type="Diag",
nrow=1,
ncol=1,
values=1,
free=T,
labels="residual",
name="resVar"

),
mxAlgebra(

expression= Intercept + regCoef %*% X,
name="expMean",

),

mxAlgebra(
expression= resVar,
name="expCov"

),
mxFIMLObjective(

covariance="expCov",
means="expMean",
dimnames=selVars

)
)

Note the the mxData statement has not changed. The first key change is that we put the variable x in a matrix X by
using a special type of label assignment in an mxMatrix statement. The matrix is a Full 1x1 fixed matrix. The label
has two parts: the first part is called data. which indicates that the name used in the second part (x) is a variable
found in the dataset referred to in the mxData statement. This variable can now be used as part of any algebra, and is
no longer considered a dependent variable.
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uniRegModel <- mxModel("Simple Regression Matrix Specification",
mxData(

observed=SimpleDataRaw,
type="raw"

),
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=FALSE,
labels=c("data.x"),
name="X"

),

Next, we specify three matrices, one for the intercept, one for the regression coefficient, and one for the residual
variance. In this example, the first two matrices are Full 1x1 matrices with a free element. We give them labels
consistent with their names in a regression equation, namely beta0 and beta1. The third matrix is a Diag 1x1
matrix with a free element for the residual variance, named resVar.

mxMatrix(
type="Full",
nrow=1,
ncol=1,
free=T,
values=0,
labels="beta0",
name="Intercept"

),
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=T,
values=1,
labels="beta1",
name="regCoef"

),
mxMatrix(

type="Diag",
nrow=1,
ncol=1,
values=1,
free=T,
labels="residual",
name="resVar"

),

Now we can explicitly specify the formula for the expected means and covariances using mxAlgebra statement.
Note that we here use the variable in the matrix X as part of the algebra. We regress y on x in the means model and
simply have the residual variance in the covariance model.

mxAlgebra(
expression= Intercept + regCoef %*% X,
name="expMean",

),
mxAlgebra(

expression= resVar,
name="expCov"
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),

Finally, we call up the results of the algebras as the arguments for the objective function. The dimnames map the data
to the model. Note that selVars now includes only the y variable.

mxFIMLObjective(
covariance="expCov",
means="expMean",
dimnames=selVars

))

3.1.2 Multiple Regression

In the next part of this demonstration, we move to multiple regression. The regression equation for our model looks
like this:

y = β0 + βx ∗ x+ βz ∗ z + ε

Our dependent variable y is now predicted from two independent variables, x and z. Our model includes 3 regression
parameters (β0, βx, βz), a residual variance (σ2

ε ) and the observed means, variances and covariance of x and z, for a
total of 9 parameters. Just as with our simple regression, this model is fully saturated.

We prepare our data the same way as before, selecting three variables instead of two.

MultipleDataRaw <- myRegDataRaw[,c("x","y","z")]

MultipleDataCov <- myRegDataCov[c("x","y","z"),c("x","y","z")]

MultipleDataMeans <- myRegDataMeans[c(2,3,4)]

Now, we can move on to our code. It is identical in structure to our simple regression code, containing the same A,
S, F and M matrices. With the addition of a third variables, the A, S and F matrices become 3x3, while the M matrix
becomes a 1x3 matrix.

multiRegModel<-mxModel("Multiple Regression Matrix Specification",
mxData(

MultipleDataRaw,
type="raw"

),
# asymmetric paths
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mxMatrix(
type="Full",
nrow=3,
ncol=3,
values=c(0,0,0,

1,0,1,
0,0,0),

free=c(F, F, F,
T, F, T,
F, F, F),

labels=c(NA, NA, NA,
"betax", NA,"betaz",
NA, NA, NA),

byrow=TRUE,
name = "A"

),
# symmetric paths
mxMatrix(

type="Symm",
nrow=3,
ncol=3,
values=c(1, 0, .5,

0, 1, 0,
.5, 0, 1),

free=c(T, F, T,
F, T, F,
T, F, T),

labels=c("varx", NA, "covxz",
NA, "residual", NA,

"covxz", NA, "varz"),
byrow=TRUE,
name="S"

),
# filter matrix
mxMatrix(

type="Iden",
nrow=3,
ncol=3,
name="F",
dimnames=list(c("x","y","z"),c("x","y","z"))

),
# means
mxMatrix(

type="Full",
nrow=1,
ncol=3,
values=c(0,0,0),
free=c(T,T,T),
labels=c("meanx","beta0","meanz"),
name="M"

),
mxRAMObjective("A","S","F","M")

)

The mxData function now takes a different data object (MultipleDataRaw replaces SingleDataRaw, adding
an additional variable), but is otherwise unchanged. The mxRAMObjective does not change. The only differences
between this model and the simple regression script can be found in the A, S, F and M matrices, which have expanded
to accommodate a second independent variable.
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The A matrix now contains two free parameters, representing the regressions of the dependent variable y on both x
and z. As regressions appear on the row of the dependent variable and the column of the independent variable, these
two parameters are both on the second (y) row of the A matrix.

# asymmetric paths
mxMatrix(

type="Full",
nrow=3,
ncol=3,
values=c(0,0,0,

1,0,1,
0,0,0),

free=c(F, F, F,
T, F, T,
F, F, F),

labels=c(NA, NA, NA,
"betax", NA,"betaz",
NA, NA, NA),

byrow=TRUE,
name = "A"

)

We’ve made a similar changes in the other matrices. The S matrix includes not only a variance term for the z variable,
but also a covariance between the two independent variables. The F matrix still does not contain free parameters, but
has expanded in size. The M matrix includes an additional free parameter for the mean of z.

The model is run and output is viewed just as before, using the mxRun function, @output and the summary()
function to run, view and summarize the completed model.

3.1.3 Multivariate Regression

The structural modeling approach allows for the inclusion of not only multiple independent variables (i.e., multiple
regression), but multiple dependent variables as well (i.e., multivariate regression). Versions of multivariate regression
are sometimes fit under the heading of path analysis. This model will extend the simple and multiple regression
frameworks we’ve discussed above, adding a second dependent variable w.

y = βy + βyx ∗ x+ βyz ∗ z + εy

w = βw + βwx ∗ x+ βwz ∗ z + εw

We now have twice as many regression parameters, a second residual variance, and the same means, variances and
covariances of our independent variables. As with all of our other examples, this is a fully saturated model.
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Data import for this analysis will actually be slightly simpler than before. The data we imported for the previous
examples contains only the four variables we need for this model. We can use myRegDataRaw, myRegDataCov,
and myRegDataMeans in our models.

data(myRegDataRaw)

myRegDataCov <- matrix(
c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),

nrow=4,
dimnames=list(

c("w","x","y","z"),
c("w","x","y","z"))

)

myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)

Our code should look very similar to our previous two models. The mxData function will reference the data refer-
enced above, while the mxRAMObjective again refers to the A, S, F and M matrices. Just as with the multiple
regression example, the A, S and F expand to order 4x4, and the M matrix now contains one row and four columns.

multivariateRegModel<-mxModel("Multiple Regression Matrix Specification",
mxData(

myRegDataRaw,
type="raw"

),
# asymmetric paths
mxMatrix(

type="Full",
nrow=4,
ncol=4,
values=c(0,1,0,1,

0,0,0,0,
0,1,0,1,
0,0,0,0),

free=c(F, T, F, T,
F, F, F, F,
F, T, F, T,
F, F, F, F),

labels=c(NA, "betawx", NA, "betawz",
NA, NA, NA, NA,
NA, "betayx", NA, "betayz",
NA, NA, NA, NA),

byrow=TRUE,
name="A"

),
# symmetric paths
mxMatrix(

type="Symm",
nrow=4,
ncol=4,
values=c(1, 0, 0, 0,

0, 1, 0, .5,
0, 0, 1, 0,
0, .5, 0, 1),

free=c(T, F, F, F,
F, T, F, T,
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F, F, T, F,
F, T, F, T),

labels=c("residualw", NA, NA, NA,
NA, "varx", NA, "covxz",
NA, NA, "residualy", NA,
NA, "covxz", NA, "varz"),

byrow=TRUE,
name="S"

),
# filter matrix
mxMatrix(

type="Iden",
nrow=4,
ncol=4,
name="F",
dimnames=list(c("w", "x", "y", "z"),c("w", "x", "y", "z"))

),
# means
mxMatrix(

type="Full",
nrow=1,
ncol=4,
values=c(0,0,0,0),
free=c(T,T,T,T),
labels=c("betaw","meanx","betay","meanz"),
name="M"

),
mxRAMObjective("A","S","F","M")

)

The only additional components to our mxMatrix functions are the inclusion of the w variable, which becomes the
first row and column of all matrices. The model is run and output is viewed just as before, using the mxRun function,
@output and the summary() function to run, view and summarize the completed model.

These models may also be specified using paths instead of matrices. See Regression, Path Specification for path
specification of these models.

3.2 Factor Analysis, Matrix Specification

This example will demonstrate latent variable modeling via the common factor model using RAM matrices for model
specification. We’ll walk through two applications of this approach: one with a single latent variable, and one with
two latent variables. As with previous examples, these two applications are split into four files, with each application
represented separately with raw and covariance data. These examples can be found in the following files:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/TwoFactorModel_MatrixCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/TwoFactorModel_MatrixRaw.R

Parallel versions of this example, using path-centric specification of models rather than paths, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_PathCov.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_PathRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/TwoFactorModel_PathCov.R
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• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/TwoFactorModel_PathRaw.R

3.2.1 Common Factor Model

The common factor model is a method for modeling the relationships between observed variables believed to measure
or indicate the same latent variable. While there are a number of exploratory approaches to extracting latent factor(s),
this example uses structural modeling to fit confirmatory factor models. The model for any person and path diagram
of the common factor model for a set of variables x1 - x6 are given below.

xij = µj + λj ∗ ηi + εij

While 19 parameters are displayed in the equation and path diagram above (6 manifest variances, six manifest means,
six factor loadings and one factor variance), we must constrain either the factor variance or one factor loading to a
constant to identify the model and scale the latent variable. As such, this model contains 18 parameters. Unlike the
manifest variable examples we’ve run up until now, this model is not fully saturated. The means and covariance matrix
for six observed variables contain 27 degrees of freedom, and thus our model contains 9 degrees of freedom.

Data

Our first step to running this model is to include the data to be analyzed. The data for this example contain nine
variables. We’ll select the six we want for this model using the selection operators used in previous examples. Both
raw and covariance data are included below, but only one is required for any model.

data(myFADataRaw)
names(myFADataRaw)

oneFactorRaw <- myFADataRaw[,c("x1", "x2", "x3", "x4", "x5", "x6")]

myFADataCov <- matrix(
c(0.997, 0.642, 0.611, 0.672, 0.637, 0.677, 0.342, 0.299, 0.337,

0.642, 1.025, 0.608, 0.668, 0.643, 0.676, 0.273, 0.282, 0.287,
0.611, 0.608, 0.984, 0.633, 0.657, 0.626, 0.286, 0.287, 0.264,
0.672, 0.668, 0.633, 1.003, 0.676, 0.665, 0.330, 0.290, 0.274,
0.637, 0.643, 0.657, 0.676, 1.028, 0.654, 0.328, 0.317, 0.331,
0.677, 0.676, 0.626, 0.665, 0.654, 1.020, 0.323, 0.341, 0.349,
0.342, 0.273, 0.286, 0.330, 0.328, 0.323, 0.993, 0.472, 0.467,
0.299, 0.282, 0.287, 0.290, 0.317, 0.341, 0.472, 0.978, 0.507,
0.337, 0.287, 0.264, 0.274, 0.331, 0.349, 0.467, 0.507, 1.059),

nrow=9,
dimnames=list(

c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3"),
c("x1", "x2", "x3", "x4", "x5", "x6", "y1", "y2", "y3")),

98 Chapter 3. Examples, Matrix Specification

http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/TwoFactorModel_PathRaw.R


OpenMx User Guide, Release 1.2.0-1919

)

oneFactorCov <- myFADataCov[c("x1","x2","x3","x4","x5","x6"),
c("x1","x2","x3","x4","x5","x6")]

myFADataMeans <- c(2.988, 3.011, 2.986, 3.053, 3.016, 3.010, 2.955, 2.956, 2.967)
names(myFADataMeans) <- c("x1","x2","x3","x4","x5","x6")

oneFactorMeans <- myFADataMeans[1:6]

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require() or library() function. All objects required for estimation (data,
matrices, and an objective function) are included in their functions. This code uses the mxModel function to create
an MxModel object, which we will then run.

manifestVars <- c("x1","x2","x3","x4","x5","x6")
latentVars <- "F1"

oneFactorModel <- mxModel("Common Factor Model Matrix Specification",
mxData(

myFADataRaw,
type="raw"

),
# asymmetric paths
mxMatrix(

type="Full",
nrow=7,
ncol=7,
values=c(0,0,0,0,0,0,1,

0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,0),

free=c(F, F, F, F, F, F, F,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, F),

labels=c(NA,NA,NA,NA,NA,NA,"l1",
NA,NA,NA,NA,NA,NA,"l2",
NA,NA,NA,NA,NA,NA,"l3",
NA,NA,NA,NA,NA,NA,"l4",
NA,NA,NA,NA,NA,NA,"l5",
NA,NA,NA,NA,NA,NA,"l6",
NA,NA,NA,NA,NA,NA,NA),

byrow=TRUE,
name="A"

),
# symmetric paths
mxMatrix(

type="Symm",
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nrow=7,
ncol=7,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,0,0,0,1),

free=c(T, F, F, F, F, F, F,
F, T, F, F, F, F, F,
F, F, T, F, F, F, F,
F, F, F, T, F, F, F,
F, F, F, F, T, F, F,
F, F, F, F, F, T, F,
F, F, F, F, F, F, T),

labels=c("e1", NA, NA, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA,
NA, NA, NA, "e4", NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA,
NA, NA, NA, NA, NA, "e6", NA,
NA, NA, NA, NA, NA, NA, "varF1"),

byrow=TRUE,
name="S"

),
# filter matrix
mxMatrix(

type="Full",
nrow=6,
ncol=7,
free=FALSE,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0),

byrow=TRUE,
name="F"

),
# means
mxMatrix(

type="Full",
nrow=1,
ncol=7,
values=c(1,1,1,1,1,1,0),
free=c(T,T,T,T,T,T,F),
labels=c("meanx1","meanx2","meanx3","meanx4","meanx5","meanx6",NA),
name="M"

),
mxRAMObjective("A","S","F","M",

dimnames=c(manifestVars, latentVars))
)

This mxModel function can be split into several parts. First, we give the model a name. The first argument in an
mxModel function has a special function. If an object or variable containing an MxModel object is placed here, then
mxModel adds to or removes pieces from that model. If a character string (as indicated by double quotes) is placed
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first, then that becomes the name of the model. Models may also be named by including a name argument. This
model is named "Common Factor Model Matrix Specification".

The second component of our code creates an MxData object. The example above, reproduced here, first references
the object where our data is, then uses the type argument to specify that this is raw data.

mxData(
observed=oneFactorRaw,
type="raw"

)

If we were to use a covariance matrix and vector of means as data, we would replace the existing mxData function
with this one:

mxData(
observed=oneFactorCov,
type="cov",
numObs=500,
means=oneFactorMeans

)

Model specification is carried out using mxMatrix functions to create matrices for a RAM specified model. The
A matrix specifies all of the asymmetric paths or regressions in our model. In the common factor model, these
parameters are the factor loadings. This matrix is square, and contains as many rows and columns as variables in
the model (manifest and latent, typically in that order). Regressions are specified in the A matrix by placing a free
parameter in the row of the dependent variable and the column of independent variable.

The common factor model requires that one parameter (typically either a factor loading or factor variance) be con-
strained to a constant value. In our model, we will constrain the first factor loading to a value of 1, and let all other
loadings be freely estimated. All factor loadings have a starting value of one and labels of "l1" - "l6".

# asymmetric paths
mxMatrix(

type="Full",
nrow=7,
ncol=7,
values=c(0,0,0,0,0,0,1,

0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,0),

free=c(F, F, F, F, F, F, F,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, F),

labels=c(NA,NA,NA,NA,NA,NA,"l1",
NA,NA,NA,NA,NA,NA,"l2",
NA,NA,NA,NA,NA,NA,"l3",
NA,NA,NA,NA,NA,NA,"l4",
NA,NA,NA,NA,NA,NA,"l5",
NA,NA,NA,NA,NA,NA,"l6",
NA,NA,NA,NA,NA,NA,NA),

byrow=TRUE,
name="A"

)
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The second matrix in a RAM model is the S matrix, which specifies the symmetric or covariance paths in our model.
This matrix is symmetric and square, and contains as many rows and columns as variables in the model (manifest
and latent, typically in that order). The symmetric paths in our model consist of six residual variances and one factor
variance. All of these variances are given starting values of one and labels "e1" - "e6" and "varF1".

# symmetric paths
mxMatrix(

type="Symm",
nrow=7,
ncol=7,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,0,0,0,1),

free=c(T, F, F, F, F, F, F,
F, T, F, F, F, F, F,
F, F, T, F, F, F, F,
F, F, F, T, F, F, F,
F, F, F, F, T, F, F,
F, F, F, F, F, T, F,
F, F, F, F, F, F, T),

labels=c("e1", NA, NA, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA,
NA, NA, NA, "e4", NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA,
NA, NA, NA, NA, NA, "e6", NA,
NA, NA, NA, NA, NA, NA, "varF1"),

byrow=TRUE,
name="S"

)

The third matrix in our RAM model is the F or filter matrix. Our data contains six observed variables, but the A and S
matrices contain seven rows and columns. For our model to define the covariances present in our data, we must have
some way of projecting the relationships defined in the A and S matrices onto our data. The F matrix filters the latent
variables out of the expected covariance matrix, and can also be used to reorder variables.

The F matrix will always contain the same number of rows as manifest variables and columns as total (manifest and
latent) variables. If the manifest variables in the A and S matrices precede the latent variables and are in the same
order as the data, then the F matrix will be the horizontal adhesion of an identity matrix and a zero matrix. This matrix
contains no free parameters, and is made with the mxMatrix function below.

# filter matrix
mxMatrix(

type="Full",
nrow=6,
ncol=7,
free=FALSE,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0),
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byrow=TRUE,
name="F"

)

The last matrix of our model is the M matrix, which defines the means and intercepts for our model. This matrix
describes all of the regressions on the constant in a path model, or the means conditional on the means of exogenous
variables. This matrix contains a single row, and one column for every manifest and latent variable in the model. In our
model, the latent variable has a constrained mean of zero, while the manifest variables have freely estimated means,
labeled "meanx1" through "meanx6".

# means
mxMatrix(

type="Full",
nrow=1,
ncol=7,
values=c(1,1,1,1,1,1,0),
free=c(T,T,T,T,T,T,F),
labels=c("meanx1","meanx2","meanx3","meanx4","meanx5","meanx6",NA),
name="M"

)

The final part of this model is the objective function. This defines both how the specified matrices combine to create
the expected covariance matrix of the data, as well as the fit function to be minimized. In a RAM specified model, the
expected covariance matrix is defined as:

ExpCovariance = F ∗ (I −A)−1 ∗ S ∗ ((I −A)−1)′ ∗ F ′

The expected means are defined as:

ExpMean = F ∗ (I −A)−1 ∗M

The free parameters in the model can then be estimated using maximum likelihood for covariance and means data, and
full information maximum likelihood for raw data. While users may define their own expected covariance matrices
using other objective functions in OpenMx, the mxRAMObjective function yields maximum likelihood estimates
of structural equation models when the A, S, F and M matrices are specified. The M matrix is required both for raw
data and for covariance or correlation data that includes a means vector. The mxRAMObjective function takes four
arguments, which are the names of the A, S, F and M matrices in your model.

mxRAMObjective("A", "S", "F", "M")

The model now includes an observed covariance matrix (i.e., data) and the matrices and objective function required to
define the expected covariance matrix and estimate parameters.

The model can now be run using the mxRun function, and the output of the model can be accessed from the @output
slot of the resulting model. A summary of the output can be reached using summary().

oneFactorFit <- mxRun(oneFactorModel)

oneFactorFit@output

summary(oneFactorFit)

Rather than specifying the model using RAM notation, we can also write the model explicitly with self-declared
matrices, matching the formula for the expected mean and covariance structure of the one factor model:

mux = varMeans+ (facLoadings ∗ facMeans)′sigmax = facLoadings ∗ facV ariances ∗ facLoadings′ + resV ariances

We start with displaying the complete script. Note that we have used the succinct form of coding and that the mxData
command did not change.
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oneFactorModel <- mxModel("Common Factor Model Matrix Specification",
mxData( observed=myFADataRaw, type="raw" ),
mxMatrix( type="Full", nrow=6, ncol=1, values=1, free=c(F,T,T,T,T,T),

labels=c("l1","l2","l3","l4","l5","l6"),
name="facLoadings" ),

mxMatrix( type="Symm", nrow=1, ncol=1, values=1, free=T,
labels="varF1",
name="facVariances" ),

mxMatrix( type="Diag", nrow=6, ncol=6, free=T, values=1,
labels=c("e1","e2","e3","e4","e5","e6"),
name="resVariances" ),

mxMatrix( type="Full", nrow=1, ncol=6, values=1, free=T,
labels=c("meanx1","meanx2","meanx3","meanx4","meanx5","meanx6"),
name="varMeans" ),

mxMatrix( type="Full", nrow=1, ncol=1, values=0, free=F,
name="facMeans" ),

mxAlgebra( expression= facLoadings %&% facVariances + resVariances,
name="expCov" ),

mxAlgebra(expression= varMeans + t(facLoadings %*% facMeans),
name="expMean" ),

mxFIMLObjective( covariance="expCov", means="expMean", dimnames=manifestVars)
)
oneFactorFit<-mxRun(oneFactorModel)

The first mxMatrix statement declares a Full 6x1 matrix of factor loadings to be estimated, called “facLoadings”.
We fix the first factor loading to 1 for identification. Even though we specify just one start value of 1 which is recycled
for each of the elements in the matrix, it becomes the fixed value for the first factor loading and the start value for the
other factor loadings. The second mxMatrix is a symmetric 1x1 which estimates the variance of the factor, named
“facVariances”. The third mxMatrix is a Diag 6x6 matrix for the residual variances, named “resVariances”. The
fourth mxMatrix is a Full 1x6 matrix of free elements for the means of the observed variables, called “varMeans”.
The fifth mxMatrix is a Full 1x1 matrix with a fixed value of zero for the factor mean, named “facMeans”.

We then use two algebra statement to work out the expected mean and covariance matrices. Note that the formula’s
for the expression of the expected covariance and the expected mean vector map directly on to the mathematical
equations. The arguments for the mxFIMLObjective now refer to these algebras for the expected covariance and
expected means. The dimnames are used to map them onto the observed variables.

3.2.2 Two Factor Model

The common factor model can be extended to include multiple latent variables. The model for any person and path
diagram of the common factor model for a set of variables x1 - x3 and y1 - y3 are given below.

xij = µj + λj ∗ η1i + εij

yij = µj + λj ∗ η2i + εij
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Our model contains 21 parameters (6 manifest variances, six manifest means, six factor loadings, two factor variances
and one factor covariance), but each factor requires one identification constraint. Like in the common factor model
above, we will constrain one factor loading for each factor to a value of one. As such, this model contains 19 parame-
ters. The means and covariance matrix for six observed variables contain 27 degrees of freedom, and thus our model
contains 8 degrees of freedom.

The data for the two factor model can be found in the myFAData files introduced in the common factor model. For
this model, we will select three x variables (x1-x3) and three y variables (y1-y3).d

twoFactorRaw <- myFADataRaw[,c("x1", "x2", "x3", "y1", "y2", "y3")]

twoFactorCov <- myFADataCov[c("x1","x2","x3","y1","y2","y3"),
c("x1","x2","x3","y1","y2","y3")]

twoFactorMeans <- myFADataMeans[c(1:3,7:9)]

Specifying the two factor model is virtually identical to the single factor case. The mxData function has been changed
to reference the appropriate data, but is identical in usage. We’ve added a second latent variable, so the A and S
matrices are now of order 8x8. Similarly, the F matrix is now of order 6x8 and the M matrix of order 1x8. The
mxRAMObjective has not changed. The code for our two factor model looks like this:

twoFactorModel <- mxModel("Two Factor Model Matrix Specification",
type="RAM",
mxData(

observed=twoFactorRaw,
type="raw",

),
# asymmetric paths
mxMatrix(

type="Full",
nrow=8,
ncol=8,
values=c(0,0,0,0,0,0,1,0,

0,0,0,0,0,0,1,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0),

free=c(F, F, F, F, F, F, F, F,
F, F, F, F, F, F, T, F,
F, F, F, F, F, F, T, F,
F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, T,
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F, F, F, F, F, F, F, T,
F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F),

labels=c(NA,NA,NA,NA,NA,NA,"l1", NA,
NA,NA,NA,NA,NA,NA,"l2", NA,
NA,NA,NA,NA,NA,NA,"l3", NA,
NA,NA,NA,NA,NA,NA, NA,"l4",
NA,NA,NA,NA,NA,NA, NA,"l5",
NA,NA,NA,NA,NA,NA, NA,"l6",
NA,NA,NA,NA,NA,NA, NA, NA,
NA,NA,NA,NA,NA,NA, NA, NA),

byrow=TRUE,
name="A"

),
# symmetric paths
mxMatrix(

type="Symm",
nrow=8,
ncol=8,
values=c(1,0,0,0,0,0, 0, 0,

0,1,0,0,0,0, 0, 0,
0,0,1,0,0,0, 0, 0,
0,0,0,1,0,0, 0, 0,
0,0,0,0,1,0, 0, 0,
0,0,0,0,0,1, 0, 0,
0,0,0,0,0,0, 1,.5,
0,0,0,0,0,0,.5, 1),

free=c(T, F, F, F, F, F, F, F,
F, T, F, F, F, F, F, F,
F, F, T, F, F, F, F, F,
F, F, F, T, F, F, F, F,
F, F, F, F, T, F, F, F,
F, F, F, F, F, T, F, F,
F, F, F, F, F, F, T, T,
F, F, F, F, F, F, T, T),

labels=c("e1", NA, NA, NA, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA, NA,
NA, NA, NA, "e4", NA, NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA, NA,
NA, NA, NA, NA, NA, "e6", NA, NA,
NA, NA, NA, NA, NA, NA, "varF1", "cov",
NA, NA, NA, NA, NA, NA, "cov", "varF2"),

byrow=TRUE,
name="S"

),
# filter matrix
mxMatrix(

type="Full",
nrow=6,
ncol=8,
free=F,
values=c(1,0,0,0,0,0,0,0,

0,1,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,
0,0,0,1,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,0,1,0,0),
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byrow=T,
name="F"

),
# means
mxMatrix(

type="Full",
nrow=1,
ncol=8,
values=c(1,1,1,1,1,1,0,0),
free=c(T,T,T,T,T,T,F,F),
labels=c("meanx1","meanx2","meanx3",

"meanx4","meanx5","meanx6",
NA,NA),

name="M"
),
mxRAMObjective("A","S","F","M")

)

The four mxMatrix functions have changed slightly to accomodate the changes in the model. The A matrix, shown
below, is used to specify the regressions of the manifest variables on the factors. The first three manifest variables
("x1"-"x3") are regressed on "F1", and the second three manifest variables ("y1"-"y3") are regressed on "F2".
We must again constrain the model to identify and scale the latent variables, which we do by constraining the first
loading for each latent variable to a value of one.

# asymmetric paths
mxMatrix(

type="Full",
nrow=8,
ncol=8,
values=c(0,0,0,0,0,0,1,0,

0,0,0,0,0,0,1,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0),

free=c(F, F, F, F, F, F, F, F,
F, F, F, F, F, F, T, F,
F, F, F, F, F, F, T, F,
F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, T,
F, F, F, F, F, F, F, T,
F, F, F, F, F, F, F, F,
F, F, F, F, F, F, F, F),

labels=c(NA,NA,NA,NA,NA,NA,"l1", NA,
NA,NA,NA,NA,NA,NA,"l2", NA,
NA,NA,NA,NA,NA,NA,"l3", NA,
NA,NA,NA,NA,NA,NA, NA,"l4",
NA,NA,NA,NA,NA,NA, NA,"l5",
NA,NA,NA,NA,NA,NA, NA,"l6",
NA,NA,NA,NA,NA,NA, NA, NA,
NA,NA,NA,NA,NA,NA, NA, NA),

byrow=TRUE,
name="A"

)

The S matrix has an additional row and column, and two additional parameters. For the two factor model, we must
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add a variance term for the second latent variable and a covariance between the two latent variables.

# symmetric paths
mxMatrix(

type="Symm",
nrow=8,
ncol=8,
values=c(1,0,0,0,0,0, 0, 0,

0,1,0,0,0,0, 0, 0,
0,0,1,0,0,0, 0, 0,
0,0,0,1,0,0, 0, 0,
0,0,0,0,1,0, 0, 0,
0,0,0,0,0,1, 0, 0,
0,0,0,0,0,0, 1,.5,
0,0,0,0,0,0,.5, 1),

free=c(T, F, F, F, F, F, F, F,
F, T, F, F, F, F, F, F,
F, F, T, F, F, F, F, F,
F, F, F, T, F, F, F, F,
F, F, F, F, T, F, F, F,
F, F, F, F, F, T, F, F,
F, F, F, F, F, F, T, T,
F, F, F, F, F, F, T, T),

labels=c("e1", NA, NA, NA, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA, NA,
NA, NA, NA, "e4", NA, NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA, NA,
NA, NA, NA, NA, NA, "e6", NA, NA,
NA, NA, NA, NA, NA, NA, "varF1", "cov",
NA, NA, NA, NA, NA, NA, "cov", "varF2"),

byrow=TRUE,
name="S"

)

The F and M matrices contain only minor changes. The F matrix is now of order 6x8, but the additional column is
simply a column of zeros. The M matrix contains an additional column (with only a single row), which contains the
mean of the second latent variable. As this model does not contain a parameter for that latent variable, this mean is
constrained to zero.

The model is now ready to run using the mxRun function, and the output of the model can be accessed from the
@output slot of the resulting model. A summary of the output can be reached using summary().

These models may also be specified using paths instead of matrices. See Factor Analysis, Path Specification for path
specification of these models.

3.3 Time Series, Matrix Specification

This example will demonstrate a growth curve model using RAM specified matrices. As with previous examples, this
application is split into two files, one each raw and covariance data. These examples can be found in the following
files:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/LatentGrowthCurveModel_MatrixRaw.R

Parallel versions of this example, using path-centric specification of models rather than matrices, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/LatentGrowthCurveModel_PathRaw.R
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3.3.1 Latent Growth Curve Model

The latent growth curve model is a variation of the factor model for repeated measurements. For a set of manifest
variables xi1 - xi5 measured at five discrete times for people indexed by the letter i, the growth curve model can be
expressed both algebraically and via a path diagram as shown here:

xij = Intercepti + λj ∗ Slopei + εi

The values and specification of the λ parameters allow for alterations to the growth curve model. This example will
utilize a linear growth curve model, so we will specify λ to increase linearly with time. If the observations occur at
regular intervals in time, then λ can be specified with any values increasing at a constant rate. For this example, we
will use [0, 1, 2, 3, 4] so that the intercept represents scores at the first measurement occasion, and the slope represents
the rate of change per measurement occasion. Any linear transformation of these values can be used for linear growth
curve models.

Our model for any number of variables contains 6 free parameters; two factor means, two factor variances, a factor
covariance and a (constant) residual variance for the manifest variables. Our data contains five manifest variables, and
so the covariance matrix and means vector contain 20 degrees of freedom. Thus, the linear growth curve model fit to
these data has 14 degrees of freedom.

Data

The first step to running our model is to import data. The code below is used to import both raw data and a covariance
matrix and means vector, either of which can be used for our growth curve model. This data contains five variables,
which are repeated measurements of the same variable. As growth curve models make specific hypotheses about the
variances of the manifest variables, correlation matrices generally aren’t used as data for this model.

data(myLongitudinalData)

myLongitudinalDataCov<-matrix(
c(6.362, 4.344, 4.915, 5.045, 5.966,

4.344, 7.241, 5.825, 6.181, 7.252,
4.915, 5.825, 9.348, 7.727, 8.968,
5.045, 6.181, 7.727, 10.821, 10.135,
5.966, 7.252, 8.968, 10.135, 14.220),

nrow=5,
dimnames=list(

c("x1","x2","x3","x4","x5"),
c("x1","x2","x3","x4","x5"))

)
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myLongitudinalDataMeans <- c(9.864, 11.812, 13.612, 15.317, 17.178)
names(myLongitudinalDataMeans) <- c("x1","x2","x3","x4","x5")

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require() or library() function. All objects required for estimation (data,
matrices, and an objective function) are included in their functions. This code uses the mxModel function to create
an MxModel object, which we will then run.

require(OpenMx)

growthCurveModel <- mxModel("Linear Growth Curve Model Matrix Specification",
mxData(

myLongitudinalData,
type="raw"

),
# asymmetric paths
mxMatrix(

type="Full",
nrow=7,
ncol=7,
free=F,
values=c(0,0,0,0,0,1,0,

0,0,0,0,0,1,1,
0,0,0,0,0,1,2,
0,0,0,0,0,1,3,
0,0,0,0,0,1,4,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0),

byrow=TRUE,
name="A"

),
# symmetric paths
mxMatrix(

type="Symm",
nrow=7,
ncol=7,
free=c(T, F, F, F, F, F, F,

F, T, F, F, F, F, F,
F, F, T, F, F, F, F,
F, F, F, T, F, F, F,
F, F, F, F, T, F, F,
F, F, F, F, F, T, T,
F, F, F, F, F, T, T),

values=c(0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 1,0.5,
0,0,0,0,0,0.5, 1),

labels=c("residual", NA, NA, NA, NA, NA, NA,
NA, "residual", NA, NA, NA, NA, NA,
NA, NA, "residual", NA, NA, NA, NA,
NA, NA, NA, "residual", NA, NA, NA,

110 Chapter 3. Examples, Matrix Specification



OpenMx User Guide, Release 1.2.0-1919

NA, NA, NA, NA, "residual", NA, NA,
NA, NA, NA, NA, NA, "vari", "cov",
NA, NA, NA, NA, NA, "cov", "vars"),

byrow= TRUE,
name="S"

),
# filter matrix
mxMatrix(

type="Full",
nrow=5,
ncol=7,
free=F,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0),

byrow=T,
name="F"

),
# means

mxMatrix(
type="Full",
nrow=1,
ncol=7,
values=c(0,0,0,0,0,1,1),
free=c(F,F,F,F,F,T,T),
labels=c(NA,NA,NA,NA,NA,"meani","means"),
name="M"

),
mxRAMObjective("A","S","F","M",

dimnames=c("x1","x2","x3","x4","x5","",""))
)

The model begins with a name, in this case “Linear Growth Curve Model Matrix Specification”. If the first argument
is an object containing an MxModel object, then the model created by the mxModel function will contain all of the
named entites in the referenced model object.

Data is supplied with the mxData function. This example uses raw data, but the mxData function in the code above
could be replaced with the function below to include covariance data.

mxData(
myLongitudinalDataCov,
type="cov",
numObs=500,
means=myLongitudinalDataMeans
)

The four mxMatrix functions define the A, S, F and M matrices used in RAM specification of models. In all four
matrices, the first five rows or columns of any matrix represent the five manifest variables, the sixth the latent intercept
variable, and the seventh the slope. The A and S matrices are of order 7x7, the F matrix of order 5x7, and the M matrix
1x7.

The A matrix specifies all of the assymetric paths or regressions among variables. The only assymmetric paths in
our model regress the manifest variables on the latent intercept and slope with fixed values. The regressions of the
manifest variables on the intercept are in the first five rows and sixth column of the A matrix, all of which have a fixed
value of one. The regressions of the manifest variables on the slope are in the first five rows and seventh column of the
A matrix with fixed values in this series: [0, 1, 2, 3, 4].
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# asymmetric paths
mxMatrix(

type="Full",
nrow=7,
ncol=7,
free=F,
values=c(0,0,0,0,0,1,0,

0,0,0,0,0,1,1,
0,0,0,0,0,1,2,
0,0,0,0,0,1,3,
0,0,0,0,0,1,4,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0),

byrow=TRUE,
name="A"

)

The S matrix specifies all of the symmetric paths among our variables, representing the variances and covariances
in our model. The five manifest variables do not have any covariance parameters with any other variables, and all
are restricted to have the same residual variance. This variance term is constrained to equality by specifying five
free parameters and giving all five parameters the same label residual. The variances and covariance of the latent
variables are included as free parameters in the sixth and sevenths rows and columns of this matrix as well.

# symmetric paths
mxMatrix(

type="Symm",
nrow=7,
ncol=7,
free=c(T, F, F, F, F, F, F,

F, T, F, F, F, F, F,
F, F, T, F, F, F, F,
F, F, F, T, F, F, F,
F, F, F, F, T, F, F,
F, F, F, F, F, T, T,
F, F, F, F, F, T, T),

values=c(0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 1,0.5,
0,0,0,0,0,0.5, 1),

labels=c("residual", NA, NA, NA, NA, NA, NA,
NA, "residual", NA, NA, NA, NA, NA,
NA, NA, "residual", NA, NA, NA, NA,
NA, NA, NA, "residual", NA, NA, NA,
NA, NA, NA, NA, "residual", NA, NA,
NA, NA, NA, NA, NA, "vari", "cov",
NA, NA, NA, NA, NA, "cov", "vars"),

byrow= TRUE,
name="S"

)

The third matrix in our RAM model is the F or filter matrix. This is used to “filter” the latent variables from the
expected covariance of the observed data. The F matrix will always contain the same number of rows as manifest
variables and columns as total (manifest and latent) variables. If the manifest variables in the A and S matrices
precede the latent variables are in the same order as the data, then the F matrix will be the horizontal adhesion of an
identity matrix and a zero matrix. This matrix contains no free parameters, and is made with the mxMatrix function
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below.

# filter matrix
mxMatrix(

type="Full",
nrow=5,
ncol=7,
free=F,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0),

byrow=T,
name="F"

)

The final matrix in our RAM model is the M or means matrix, which specifies the means and intercepts of the
variables in the model. While the manifest variables have expected means in our model, these expected means are
entirely dependent on the means of the intercept and slope factors. In the M matrix below, the manifest variables are
given fixed intercepts of zero while the latent variables are each given freely estimated means with starting values of 1
and labels of "meani" and "means"

# means
mxMatrix(

type="Full",
nrow=1,
ncol=7,
values=c(0,0,0,0,0,1,1),
free=c(F,F,F,F,F,T,T),
labels=c(NA,NA,NA,NA,NA,"meani","means"),
name="M"

)

The last piece of our model is the mxRAMObjective function, which defines both how the specified matrices com-
bine to create the expected covariance matrix of the data, as well as the fit function to be minimized. As covered in
earlier examples, the expected covariance matrix for a RAM model is defined as:

ExpCovariance = F ∗ (I −A)−1 ∗ S ∗ ((I −A)−1)′ ∗ F ′

The expected means are defined as:

ExpMean = F ∗ (I −A)−1 ∗M

The free parameters in the model can then be estimated using maximum likelihood for covariance and means data, and
full information maximum likelihood for raw data. The M matrix is required both for raw data and for covariance or
correlation data that includes a means vector. The mxRAMObjective function takes four arguments, which are the
names of the A, S, F and M matrices in your model.

The model is now ready to run using the mxRun function, and the output of the model can be accessed from the
@output slot of the resulting model. A summary of the output can be reached using summary().

growthCurveFit <- mxRun(growthCurveModel)

growthCurveFit@output
summary(growthCurveFit)

These models may also be specified using paths instead of matrices. See Time Series, Path Specification for path
specification of these models.
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3.4 Multiple Groups, Matrix Specification

An important aspect of structural equation modeling is the use of multiple groups to compare means and covariances
structures between any two (or more) data groups, for example males and females, different ethnic groups, ages etc.
Other examples include groups which have different expected covariances matrices as a function of parameters in the
model, and need to be evaluated together for the parameters to be identified.

The example includes the heterogeneity model as well as its submodel, the homogeneity model and is available in the
following file:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateHeterogeneity_MatrixRaw.R

A parallel version of this example, using paths specification of models rather than matrices, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateHeterogeneity_PathRaw.R

3.4.1 Heterogeneity Model

We will start with a basic example here, building on modeling means and variances in a saturated model. Assume we
have two groups and we want to test whether they have the same mean and covariance structure.

The path diagram of the heterogeneity model for a set of variables x and y are given below.

Data

For this example we simulated two datasets (xy1 and xy2) each with zero means and unit variances, one with a
correlation of 0.5, and the other with a correlation of 0.4 with 1000 subjects each. We use the mvrnorm function in
the MASS package, which takes three arguments: Sample Size, Means, Covariance Matrix). We check the
means and covariance matrix in R and provide dimnames for the dataframe. See attached R code for simulation and
data summary.

#Simulate Data
require(MASS)
#group 1
set.seed(200)
rs=0.5
xy1 <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))
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set.seed(200)
#group 2
rs=0.4
xy2 <- mvrnorm (1000, c(0,0), matrix(c(1,rs,rs,1),2,2))

#Print Descriptive Statistics
selVars <- c(’X’,’Y’)
summary(xy1)
cov(xy1)
dimnames(xy1) <- list(NULL, selVars)
summary(xy2)
cov(xy2)
dimnames(xy2) <- list(NULL, selVars)

Model Specification

As before, we include the OpenMx package using a require statement. We first fit a heterogeneity model, allowing
differences in both the mean and covariance structure of the two groups. As we are interested whether the two
structures can be equated, we have to specify the models for the two groups, named group1 and group2 within
another model, named bivHet. The structure of the job thus look as follows, with two mxModel commands as
arguments of another mxModel command. Note that mxModel commands are unlimited in the number of arguments.

require(OpenMx)

bivHetModel <- mxModel("bivHet",
mxModel("group1"),
mxModel("group2"),
mxAlgebra(group1.objective + group2.objective, name="minus2loglikelihood"),
mxAlgebraObjective("minus2loglikelihood")

)

For each of the groups, we fit a saturated model, using a Cholesky decomposition to generate the expected covariance
matrix and a row vector for the expected means. Note that we have specified different labels for all the free elements,
in the two mxModel statements. For more details, see example 1.

#Fit Heterogeneity Model
bivHetModel <- mxModel("bivHet",

mxModel("group1",
mxMatrix(

type="Lower",
nrow=2,
ncol=2,
free=T,
values=.5,
labels=c("Ch11", "Ch21", "Ch31"),
name="Chol1"

),
mxAlgebra(

Chol1 %*% t(Chol1),
name="EC1"

),
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=T,
values=c(0,0),
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labels=c("mX1", "mY1"),
name="EM1"

),
mxData(

xy1,
type="raw"

),
mxFIMLObjective(

covariance="EC1",
means="EM1",
dimnames=selVars

)
),
mxModel("group2",

mxMatrix(
type="Lower",
nrow=2,
ncol=2,
free=T,
values=.5,
labels=c("Ch12", "Ch22", "Ch32"),
name="Chol2"

),
mxAlgebra(

Chol2 %*% t(Chol2),
name="EC2"

),
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=T,
values=c(0,0),
labels=c("mX2", "mY2"),
name="EM2"

),
mxData(

xy2,
type="raw"

),
mxFIMLObjective(

covariance="EC2",
means="EM2",
dimnames=selVars

)
),

We estimate five parameters (two means, two variances, one covariance) per group for a total of 10 free parameters.
We cut the Labels matrix: parts from the output generated with bivHetModel$group1@matrices and
bivHetModel$group2@matrices:

in group1
$S

X Y
X "Ch11" NA
Y "Ch21" "Ch22"

$M
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X Y
[1,] "mX1" "mY1"

in group2
$S

X Y
X "Ch12" NA
Y "Ch22" "Ch32"

$M
X Y

[1,] "mX2" "mY2"

To evaluate both models together, we use an mxAlgebra command that adds up the values of the objective functions
of the two groups. The objective function to be used here is the mxAlgebraObjective which uses as its argument
the sum of the function values of the two groups, referred to by the name of the previously defined mxAlgebra object
h12.

mxAlgebra(
group1.objective + group2.objective,
name="minus2loglikelihood"

),
mxAlgebraObjective("minus2loglikelihood")

)

Model Fitting

The mxRun command is required to actually evaluate the model. Note that we have adopted the following notation of
the objects. The result of the mxModel command ends in “Model”; the result of the mxRun command ends in “Fit”.
Of course, these are just suggested naming conventions.

bivHetFit <- mxRun(bivHetModel)

A variety of output can be printed. We chose here to print the expected means and covariance matrices for the two
groups and the likelihood of data given the model. The mxEval command takes any R expression, followed by the
fitted model name. Given that the model bivHetFit included two models (group1 and group2), we need to use the
two level names, i.e. group1.EM1 to refer to the objects in the correct model.

EM1Het <- mxEval(group1.EM1, bivHetFit)
EM2Het <- mxEval(group2.EM2, bivHetFit)
EC1Het <- mxEval(group1.EC1, bivHetFit)
EC2Het <- mxEval(group2.EC2, bivHetFit)
LLHet <- mxEval(objective, bivHetFit)

3.4.2 Homogeneity Model: a Submodel

Next, we fit a model in which the mean and covariance structure of the two groups are equated to one another, to test
whether there are significant differences between the groups. Rather than having to specify the entire model again, we
copy the previous model bivHetModel into a new model bivHomModel to represent homogeneous structures.

#Fit Homogeneity Model
bivHomModel <- bivHetModel

As elements in matrices can be equated by assigning the same label, we now have to equate the labels of the free
parameters in group 1 to the labels of the corresponding elements in group 2. This can be done by referring to the
relevant matrices using the ModelName$MatrixName syntax, followed by @labels. Note that in the same way,
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one can refer to other arguments of the objects in the model. Here we assign the labels from group1 to the labels of
group2, separately for the Cholesky matrices used for the expected covariance matrices and for the expected means
vectors.

bivHomModel$group2.Chol2@labels <- bivHomModel$group1.Chol1@labels
bivHomModel$group2.EM2@labels <- bivHomModel$group1.EM1@labels

The specification for the submodel is reflected in the names of the labels which are now equal for the corresponding
elements of the mean and covariance matrices, as below:

in group1
$S

X Y
X "Ch11" NA
Y "Ch21" "CH31"

$M
X Y

[1,] "mX1" "mY1"

in group2
$S

X Y
X "Ch11" NA
Y "Ch21" "Ch31"

$M
X Y

[1,] "mX1" "mY1"

We can produce similar output for the submodel, i.e. expected means and covariances and likelihood, the only differ-
ence in the code being the model name. Note that as a result of equating the labels, the expected means and covariances
of the two groups should be the same.

bivHomFit <- mxRun(bivHomModel)
EM1Hom <- mxEval(group1.EM1, bivHomFit)
EM2Hom <- mxEval(group2.EM2, bivHomFit)
EC1Hom <- mxEval(group1.EC1, bivHomFit)
EC2Hom <- mxEval(group2.EC2, bivHomFit)
LLHom <- mxEval(objective, bivHomFit)

Finally, to evaluate which model fits the data best, we generate a likelihood ratio test as the difference between -2 times
the log-likelihood of the homogeneity model and -2 times the log-likelihood of the heterogeneity model. This statistic
is asymptotically distributed as a Chi-square, which can be interpreted with the difference in degrees of freedom of the
two models.

Chi <- LLHom-LLHet
LRT <- rbind(LLHet,LLHom,Chi)
LRT

These models may also be specified using paths instead of matrices. See Multiple Groups, Path Specification for path
specification of these models.

3.5 Genetic Epidemiology, Matrix Specification

Mx is probably most popular in the behavior genetics field, as it was conceived with genetic models in mind, which rely
heavily on multiple groups. We introduce here an OpenMx script for the basic genetic model in genetic epidemiologic
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research, the ACE model. This model assumes that the variability in a phenotype, or observed variable, of interest
can be explained by differences in genetic and environmental factors, with A representing additive genetic factors,
C shared/common environmental factors and E unique/specific environmental factors (see Neale & Cardon 1992,
for a detailed treatment). To estimate these three sources of variance, data have to be collected on relatives with
different levels of genetic and environmental similarity to provide sufficient information to identify the parameters.
One such design is the classical twin study, which compares the similarity of identical (monozygotic, MZ) and fraternal
(dizygotic, DZ) twins to infer the role of A, C and E.

The example starts with the ACE model and includes one submodel, the AE model. It is available in the following file:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateTwinAnalysis_MatrixRaw.R

A parallel version of this example, using path specification of models rather than matrices, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/UnivariateTwinAnalysis_PathRaw.R

3.5.1 ACE Model: a Twin Analysis

Data

Let us assume you have collected data on a large sample of twin pairs for your phenotype of interest. For illustration
purposes, we use Australian data on body mass index (BMI) which are saved in a text file ‘myTwinData.txt’. We use
R to read the data into a data.frame and to create two subsets of the data for MZ females (mzData) and DZ females
(dzData) respectively with the code below.

require(OpenMx)

#Prepare Data
data(myTwinData)
twinVars <- c( ’fam’,’age’,’zyg’,’part’,

’wt1’,’wt2’,’ht1’,’ht2’,’htwt1’,’htwt2’,’bmi1’,’bmi2’)
summary(myTwinData)
selVars <- c(’bmi1’,’bmi2’)
mzData <- as.matrix(subset(myTwinData, zyg==1, c(bmi1,bmi2)))
dzData <- as.matrix(subset(myTwinData, zyg==3, c(bmi1,bmi2)))
colMeans(mzData,na.rm=TRUE)
colMeans(dzData,na.rm=TRUE)
cov(mzData,use="complete")
cov(dzData,use="complete")

Model Specification

There are a variety of ways to set up the ACE model. The most commonly used approach in Mx is to specify three
matrices for each of the three sources of variance. The matrix a represents the additive genetic path a, the c matrix is
used for the shared environmental path c and the matrix e for the unique environmental path e. The expected variances
and covariances between member of twin pairs are typically expressed in variance components (or the square of the
path coefficients, i.e. a2, c2 and e2). These quantities can be calculated using matrix algebra, by multiplying the a
matrix by its transpose t(a), and are called A, C and E respectively. Note that the transpose is not strictly needed in the
univariate case, but will allow easier transition to the multivariate case. We then use matrix algebra again to add the
relevant matrices corresponding to the expectations for each of the statistics of the observed covariance matrix. The R
functions ‘cbind’ and ‘rbind’ are used to concatenate the resulting matrices in the appropriate way. The expectations
can be derived from the path diagrams for MZ and DZ twins.

Note that in R, lower and upper case names are distinguishable so we are using lower case letters for the matrices
representing path coefficients a, c and e, rather than X, Y and Z that classic Mx users have become familiar with. We
continue to use the same upper case letters for matrices representing variance components A, C and E, corresponding to
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additive genetic (co)variance, shared environmental (co)variance and unique environmental (co)variance respectively,
calculated as the square of the path coefficients.

Let’s go through each of the matrices step by step. First, we start with the require(OpenMx) statement. We
include the full code here. As MZ and DZ have to be evaluated together, the models for each will be arguments of
a bigger model. Given the models for the MZ and the DZ group look rather similar, we start by specifying all the
common elements in yet another model, called ACE which will then be evaluated together with the two submodels
for each of the twin types, defined in separate mxModel commands, as they are all three arguments of the overall
twinACE model, and will be saved together in the R object twinACEModel and thus be run together.

require(OpenMx)

twinACEModel <- mxModel("twinACE",
mxModel("ACE",
# Matrices a, c, and e to store a, c, and e path coefficients

mxMatrix(
type="Lower",
nrow=1,
ncol=1,
free=TRUE,
values=0.6,
labels="a11",
name="a"

),
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mxMatrix(
type="Lower",
nrow=1,
ncol=1,
free=TRUE,
values=0.6,
labels="c11",
name="c"

),
mxMatrix(

type="Lower",
nrow=1,
ncol=1,
free=TRUE,
values=0.6,
labels="e11",
name="e"

),
# Matrices A, C, and E compute variance components

mxAlgebra(
expression=a %*% t(a),
name="A"

),
mxAlgebra(

expression=c %*% t(c),
name="C"

),
mxAlgebra(

expression=e %*% t(e),
name="E"

),
# Matrix & Algebra for expected means vector

mxMatrix(
type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=20,
label="mean",
name="Mean"

),
mxAlgebra(

expression= cbind(Mean,Mean),
name="expMean"

),
# Algebra for expected variance/covariance matrix in MZ

mxAlgebra(
expression=rbind (cbind(A + C + E , A + C),

cbind(A + C , A + C + E)),
name="expCovMZ"

),
# Algebra for expected variance/covariance matrix in DZ

mxAlgebra(
expression=rbind (cbind(A + C + E , 0.5 %x% A + C),

cbind(0.5 %x% A + C , A + C + E)),
name="expCovDZ"

)
),
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mxModel("MZ",
mxData(

observed=mzData,
type="raw"

),
mxFIMLObjective(

covariance="ACE.expCovMZ",
means="ACE.expMean",
dimnames=selVars

)
),
mxModel("DZ",

mxData(
observed=dzData,
type="raw"

),
mxFIMLObjective(

covariance="ACE.expCovDZ",
means="ACE.expMean",
dimnames=selVars

)
),
mxAlgebra(

expression=MZ.objective + DZ.objective,
name="minus2loglikelihood"

),
mxAlgebraObjective("minus2loglikelihood")

)

twinACEFit <- mxRun(twinACEModel)

They will all form arguments of the mxModel, specified as follows. Note that we left the comma’s at the end of the
lines which are necessary when all the arguments are combined prior to running the model. Each line can be pasted
into R, and then evaluated together once the whole model is specified.

#Fit ACE Model with RawData and Matrix-style Input
twinACEModel <- mxModel("twinACE",

mxModel("ACE",

Given the current example is univariate (in the sense that we analyze one variable, even though we have measured it in
two members of twin pairs), the matrices for the paths a, c and e are all Full 1x1 matrices assigned the free status
and given a 0.6 starting value.

# Matrices a, c, and e to store a, c, and e path coefficients
# additive genetic path
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=0.6,
label="a11",
name="a"

),
# shared environmental path
mxMatrix(

type="Full",
nrow=1,
ncol=1,
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free=TRUE,
values=0.6,
label="c11",
name="c"

),
# specific environmental path
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=0.6,
label="e11",
name="e"

),

While the labels in these matrices are given lower case names, similar to the convention that paths have lower case
names, the names for the variance component matrices, obtained from multiplying matrices with their transpose have
upper case letters A, C and E which are distinct (as R is case-sensitive).

# Matrices A, C, and E compute variance components
# additive genetic variance
mxAlgebra(

expression=a * t(a),
name="A"

),
# shared environmental variance
mxAlgebra(

expression=c * t(c),
name="C"

),
# specific environmental variance
mxAlgebra(

expression=e * t(e),
name="E"

),

As the focus is on individual differences, the model for the means is typically simple. We can estimate each of the
means, in each of the two groups (MZ & DZ) as free parameters. Alternatively, we can establish whether the means
can be equated across order and zygosity by fitting submodels to the saturated model. In this case, we opted to use
one ‘grand’ mean, obtained by assigning the same label to the elements of the matrix expMean by concatenating the
Full 1x1 matrix Mean with one free element, labeled mean and given a start value of 20. The expMean matrix is
then used in both the MZ and DZ model so that all four elements representing means are equated.

# Matrix & Algebra for expected means vector
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=20,
label="mean",
name="Mean"

),
mxAlgebra(

expression= cbind(Mean,Mean),
name="expMean"

),
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Previous Mx users will likely be familiar with the look of the expected covariance matrices for MZ and DZ twin pairs.
These 2x2 matrices are built by horizontal and vertical concatenation of the appropriate matrix expressions for the
variance, the MZ or the DZ covariance. In R, concatenation of matrices is accomplished with the rbind and cbind
functions. Thus to represent the matrices in expression below in R, we use the following code.

covMZ =

[
a2 + c2 + e2 a2 + c2

a2 + c2 a2 + c2 + e2

]

covDZ =

[
a2 + c2 + e2 .5a2 + c2

.5a2 + c2 a2 + c2 + e2

]

# Algebra for expected variance/covariance matrix in MZ
mxAlgebra(

expression=rbind (cbind(A + C + E , A + C),
cbind(A + C , A + C + E)),

name="expCovMZ"
),

# Algebra for expected variance/covariance matrix in DZ
mxAlgebra(

expression=rbind (cbind(A + C + E , 0.5 %x% A + C),
cbind(0.5 %x% A + C , A + C + E)),

name="expCovDZ"
)

),

As the expected covariance matrices are different for the two groups of twins, we specify two mxModel com-
mands within the ‘twinACE’ mxModel command. They are given a name, and arguments for the data and the ob-
jective function to be used to optimize the model. We have set the model up for raw data, and thus will use the
mxFIMLObjective function to evaluate it. For each model, the mxData command calls up the appropriate data,
and provides a type, here raw, and the mxFIMLObjective command is given the names corresponding to the re-
spective expected covariance matrices and mean vectors, specified above. Given the objects expCovMZ, expCovDZ
and expMean were created in the mxModel named twinACE we need to use two-level names, starting with the
model name separated from the object with a dot, i.e. twinACE.expCovMZ.

mxModel("MZ",
mxData(

observed=mzData,
type="raw"

),
mxFIMLObjective(

covariance="ACE.expCovMZ",
means="ACE.expMean",
dimnames=selVars

)
),
mxModel("DZ",

mxData(
observed=dzData,
type="raw"

),
mxFIMLObjective(

covariance="ACE.expCovDZ",
means="ACE.expMean",
dimnames=selVars

)
),
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Finally, both models need to be evaluated simultaneously. We first generate the sum of the objective functions for
the two groups, using mxAlgebra. We refer to the correct objective function (object named objective) by
adding the name of the model to the two-level argument, i.e. MZ.objective. We then use that as argument of the
mxAlgebraObjective command.

mxAlgebra(
expression=MZ.objective + DZ.objective,
name="minus2loglikelihood"

),
mxAlgebraObjective("minus2loglikelihood")

)

Model Fitting

We need to invoke the mxRun command to start the model evaluation and optimization. Detailed output will be
available in the resulting object, which can be obtained by a print() statement.

#Run ACE model
twinACEFit <- mxRun(twinACEModel)

Often, however, one is interested in specific parts of the output. In the case of twin modeling, we typically will inspect
the expected covariance matrices and mean vectors, the parameter estimates, and possibly some derived quantities,
such as the standardized variance components, obtained by dividing each of the components by the total variance.
Note in the code below that the mxEval command allows easy extraction of the values in the various matrices/algebras
which form the first argument, with the model name as second argument. Once these values have been put in new
objects, we can use and regular R expression to derive further quantities or organize them in a convenient format for
including in tables. Note that helper functions could (and will likely) easily be written for standard models to produce
‘standard’ output.

MZc <- mxEval(ACE.expCovMZ, twinACEFit)
DZc <- mxEval(ACE.expCovDZ, twinACEFit)
M <- mxEval(ACE.expMean, twinACEFit)
A <- mxEval(ACE.A, twinACEFit)
C <- mxEval(ACE.C, twinACEFit)
E <- mxEval(ACE.E, twinACEFit)
V <- (A+C+E)
a2 <- A/V
c2 <- C/V
e2 <- E/V
ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
LL_ACE <- mxEval(objective, twinACEFit)

3.5.2 Alternative Models: an AE Model

To evaluate the significance of each of the model parameters, nested submodels are fit in which these parameters are
fixed to zero. If the likelihood ratio test between the two models is significant, the parameter that is dropped from
the model significantly contributes to the phenotype in question. Here we show how we can fit the AE model as a
submodel with a change in one mxMatrix command. First, we call up the previous ‘full’ model and save it as a new
model twinAEModel. Next we re-specify the matrix c to be fixed to zero. We can run this model in the same way
as before and generate similar summaries of the results.

#Run AE model
twinAEModel <- mxRename(twinACEModel, "twinAE")

# drop shared environmental path
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twinAEModel$ACE.c <-
mxMatrix(

type="Full",
nrow=1,
ncol=1,
free=F,
values=0,
label="c11"

)

twinAEFit <- mxRun(twinAEModel)

MZc <- mxEval(ACE.expCovMZ, twinAEFit)
DZc <- mxEval(ACE.expCovDZ, twinAEFit)
A <- mxEval(ACE.A, twinAEFit)
C <- mxEval(ACE.C, twinAEFit)
E <- mxEval(ACE.E, twinAEFit)
V <- (A+C+E)
a2 <- A/V
c2 <- C/V
e2 <- E/V
AEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
LL_AE <- mxEval(objective, twinAEFit)

We use a likelihood ratio test (or take the difference between -2 times the log-likelihoods of the two models) to
determine the best fitting model, and print relevant output.

LRT_ACE_AE <- LL_AE-LL_ACE

#Print relevant output
ACEest
AEest
LRT_ACE_AE

Note that the OpenMx team is currently working on better alternatives for dropping parameters. These models may also
be specified using paths instead of matrices, which allow for easier submodel specification. See Genetic Epidemiology,
Path Specification for path specification of these models.

3.6 Definition Variables, Matrix Specification

This example will demonstrate the use of OpenMx definition variables with the implementation of a simple two
group dataset. What are definition variables? Essentially, definition variables can be thought of as observed variables
which are used to change the statistical model on an individual case basis. In essence, it is as though one or more
variables in the raw data vectors are used to specify the statistical model for that individual. Many different types
of statistical model can be specified in this fashion; some are readily specified in standard fashion, and some that
cannot. To illustrate, we implement a two-group model. The groups differ in their means but not in their variances
and covariances. This situation could easily be modeled in a regular multiple group fashion - it is only implemented
using definition variables to illustrate their use. The results are verified using summary statistics and an Mx 1.0 script
for comparison is also available.

3.6.1 Mean Differences

The example shows the use of definition variables to test for mean differences. It is available in the following file:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/DefinitionMeans_MatrixRaw.R
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A parallel version of this example, using path specification of models rather than matrices, can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/DefinitionMeans_PathRaw.R

Statistical Model

Algebraically, we are going to fit the following model to the observed x and y variables:

xi = µx + βx ∗ def + εxi

yi = µy + βy ∗ def + εyi

where def is the definition variable and the residual sources of variance, εxi and εyi covary to the extent ρ. So, the task
is to estimate: the two means µx and µy; the deviations from these means due to belonging to the group identified by
having def set to 1 (as opposed to zero), βx and βy; and the parameters of the variance covariance matrix: cov(εx, εy).

Our task is to implement the model shown in the figure below:

Data Simulation

Our first step to running this model is to simulate the data to be analyzed. Each individual is measured on two observed
variables, x and y, and a third variable def which denotes their group membership with a 1 or a 0. These values for
group membership are not accidental, and must be adhered to in order to obtain readily interpretable results. Other
values such as 1 and 2 would yield the same model fit, but would make the interpretation more difficult.

library(MASS) # to get hold of mvrnorm function

set.seed(200) # to make the simulation repeatable
N=500 # sample size, per group

Sigma <- matrix(c(1,.5,.5,1),2,2)
group1<-mvrnorm(N, c(1,2), Sigma)
group2<-mvrnorm(N, c(0,0), Sigma)

We make use of the superb R function mvrnorm in order to simulate N=500 records of data for each group. These
observations correlate .5 and have a variance of 1, per the matrix Sigma. The means of x and y in group 1 are 1.0 and
2.0, respectively; those in group 2 are both zero. The output of the mvrnorm function calls are matrices with 500
rows and 3 columns, which are stored in group 1 and group 2. Now we create the definition variable

# Put the two groups together, create a definition variable,
# and make a list of which variables are to be analyzed (selVars)
xy<-rbind(group1,group2)
dimnames(xy)[2]<-list(c("x","y"))
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def<-rep(c(1,0),each=N)
selVars<-c("x","y")

The objects xy and def might be combined in a data frame. However, in this case we won’t bother to do it externally,
and simply paste them together in the mxData function call.

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require() or library() function. This code uses the mxModel function to
create an mxModel object, which we’ll then run. Note that all the objects required for estimation (data, matrices, and
an objective function) are declared within the mxModel function. This type of code structure is recommended for
OpenMx scripts generally.

defMeansModel <- mxModel("Definition Means Matrix Specification",
mxFIMLObjective(

covariance="Sigma",
means="Mu",
dimnames=selVars

),

The first argument in an mxModel function has a special function. If an object or variable containing an MxModel
object is placed here, then mxModel adds to or removes pieces from that model. If a character string (as indicated by
double quotes) is placed first, then that becomes the name of the model. Models may also be named by including a
name argument. This model is named "Definition Means Matrix Specification".

The second argument in this mxModel call is itself a function. It declares that the objective function to be optimized is
full information maximum likelihood (FIML) under normal theory, which is tagged as mxFIMLObjective. There
are in turn two arguments to this function: the covariance matrix Sigma and the mean vector Mu. These matrices will
be defined later in the mxModel function call.

Model specification is carried out using mxMatrix functions to create matrices for the model. In the present case,
we need four matrices. First is the predicted covariance matrix, Sigma. Next, we use three matrices to specify the
model for the means. First is M which corresponds to estimates of the means for individuals with definition variables
with values of zero. Individuals with definition variable values of 1 will have the value in M along with the value in the
matrix beta. So both matrices are of size 1x2 and both contain two free parameters. There is a separate deviation for
each of the variables, which will be estimated in the elements 1,1 and 1,2 of the beta matrix. Last, but by no means
least, is the matrix def which contains the definition variable. The variable def in mxData data frame is referred to
as data.def. In the present case, the definition variable contains a 1 for group 1, and a zero otherwise.

# covariance matrix
mxMatrix(

type="Symm",
nrow=2,
ncol=2,
free=TRUE,
values=c(1, 0, 1),
name="Sigma"

),
# means
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=TRUE,
name="M"

),
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# regression coefficient
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=TRUE,
values=c(0, 0),
name="beta"

),
# definition variable
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=FALSE,
labels="data.def",
name="def"

),

The trick - commonly used in regression models - is to multiply the beta matrix by the def matrix. This multiplica-
tion is effected using an mxAlgebra function call:

mxAlgebra(
expression= M+beta*def,
name="Mu"

),

The result of this algebra is named Mu, and this handle is referred to in the mxFIMLObjective function call.

Next, we declare where the data are, and their type, by creating an MxData object with the mxData function. This
piece of code creates an MxData object. It first references the object where our data are, then uses the type argument
to specify that this is raw data. Analyses using definition variables have to use raw data, so that the model can be
specified on an individual data vector level.

mxData(
observed=data.frame(xy,def),
type="raw"

))

We can then run the model and examine the output with a few simple commands.

Model Fitting

# Run the model
defMeansFit <- mxRun(defMeansModel)
defMeansFit@matrices
defMeansFit@algebras

It is possible to compare the estimates from this model to some summary statistics computed from the data:

# Compare OpenMx estimates to summary statistics computed from raw data.
# Note that to calculate the common variance,
# group 1 has 1 and 2 subtracted from every Xi and Yi in the sample data,
# so as to estimate variance of combined sample without the mean correction.

# First compute some summary statistics from data
ObsCovs<-cov(rbind(group1 - rep(c(1,2),each=N), group2))
ObsMeansGroup1<-c(mean(group1[,1]), mean(group1[,2]))
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ObsMeansGroup2<-c(mean(group2[,1]), mean(group2[,2]))

# Second extract parameter estimates and matrix algebra results from model
Sigma <- mxEval(Sigma, defMeansFit)
Mu <- mxEval(Mu, defMeansFit)
M <- mxEval(M, defMeansFit)
beta <- mxEval(beta, defMeansFit)

# Third, check to see if things are more or less equal
omxCheckCloseEnough(ObsCovs,Sigma,.01)
omxCheckCloseEnough(ObsMeansGroup1,as.vector(M+beta),.001)
omxCheckCloseEnough(ObsMeansGroup2,as.vector(M),.001)

These models may also be specified using paths instead of matrices. See Definition Variables, Path Specification for
path specification of these models.

3.7 ABO Blood Groups, Matrix Specification

This example use an mxAlgebra likelihood function to compare the fit of two models for the population frequencies of
the A, B and O blood groups. It is based on the textbook Likelihood, by Anthony William Fairbank Edwards (1972;
1984). Human beings may be classified according to which of four ABO blood groups they belong: A, B, AB, or O.
These groups can be phenotypically distinguished by which antibodies they produce, and this is important for blood
transfusions. Patients receiving blood containing an antigen that they do not produce have an adverse reaction to it.

Two hypotheses were advanced to account for the ABO variation. The single locus model posited that there exists
one locus with three alleles, A, B and O. Allele A generates antibody A, allele B generates antibody B, and allele O
generates neither. Under the two locus model, there is a diallelic A locus, with one allele that produces antibody A,
and another that does not. At a second, unlinked, locus B, antigen B is generated by those who have at least one B
allele. We try not to make jokes about people who have the BO genotype. For a more thorough account of the ABO
blood group system, the Wikipedia article http://en.wikipedia.org/wiki/ABO_blood_group_system is a good starting
point.

The two scripts are available in these files:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneLocusLikelihood.R

and

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/TwoLocusLikelihood.R

For (former) users of the first version of Mx, scripts for that software can be found here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/models/passing/mx-scripts/one.mx

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/models/passing/mx-scripts/two.mx

3.7.1 Specification of the Single Locus Model

Data

The data for this example come from the German mathematician Felix Bernstein
<http://en.wikipedia.org/wiki/Felix_Bernstein> (1924). Their observed frequencies are shown in this table,
along with expected proportions in the population under the single locus model. A good exercise is to derive the
expected proportions by hand. A key consideration is that several different genotypes (combinations of alleles) may
generate a single phenotype (observed antigens in the blood). Due to the genetic dominance of allele A, both AA and
AO genotypes produce the blood group A phenotype.
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Single Locus Model

The single locus dominant genetic model, with alleles A and B being codominant (resulting in the AB blood group
phenotype) predicts that certain proportions of each blood group will occur in the population. These proportions
depend on, and can be expressed as functions of, the allele frequencies. Let the frequencies of alleles A, B and O
be p, q′and : math : ‘r, respectively. We assume that parents mate at random with respect to their blood groups, so
that the likelihood of inheriting two A alleles becomes simply the product of the allele frequencies in the population,
i.e., p2. Thus we are able to draw up a Table of the expected proportions of each blood group as a function of
the parameters p, q′and : math : ‘r. These unknown parameters will be estimated from the data using numerical
optimization, subject to the constraint that p+ q + r = 1.

Phenotype Genotypes Frequency Proportion
A AO, AA 234 p(p+2r)
B BO, BB 261 q(q+2r)
AB AB 182 2pq
O OO 94 r^2

The individuals in this sample are considered to be statistically independent. Therefore the likelihood of observing,
e.g., 234 individuals with blood type A, is simply (p(p + 2r))234 and the log-likelihood is 234 log p(p+ 2r). The
OpenMx script will use the four log-likelihoods of the four phenotypes, and sum them to obtain the overall log-
likelihood. Optimization proceeds by minimization by default, so we minimize the negative log-likelihood in order to
maximize the log-likelihood. The following code block specifies this model. There

require(OpenMx)

# Bernstein data on ABO blood-groups
# c.f. Edwards, AWF (1972) Likelihood. Cambridge Univ Press, pp. 39-41

OneLocusModel <- mxModel("OneLocus",
# Matrices for allele frequencies, p, q and r

mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=c(.3333), name="P"),
mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=c(.3333), name="Q"),
mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=c(.3333), name="R"),

# Constraint for sum of allele frequencies to equal 1.0
mxConstraint(P+Q+R == 1, name="SumAlleleFreqs"),

# Matrix of observed data
mxMatrix( type="Full", nrow=4, ncol=1, values=c(211,104,39,148),

name="ObservedFreqs"),
# Algebra for predicted proportions

mxAlgebra( expression=rbind(P*(P+2*R), Q*(Q+2*R), 2*P*Q, R*R),
name="ExpectedFreqs"),

# Algebra for -logLikelihood
mxAlgebra( expression=-(sum(log(ExpectedFreqs) * ObservedFreqs)),

name="NegativeLogLikelihood"),
# User-defined objective

mxAlgebraObjective("NegativeLogLikelihood")
)

OneLocusFit <- mxRun(OneLocusModel)
OneLocusFit@matrices
OneLocusFit@algebras

Answers should be 0.2945 0.1540 0.5515 for the allele frequencies p, q and r, respectively, and 627.104 for the negative
log-likelihood. We now turn to the alternative two-locus model.
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Two Locus Model Specification

Under the two locus model, we allow for two unlinked (i.e. segregating independently of each other) diallelic loci,
A and B. We denote the O allele as a at the A locus, and as b at the B locus, so as to distinguish between these two
alleles, neither of which generates an antigen. Thus genotypes at the A locus can be AA, Aa, or aa, with genotype
frequencies p2, 2pq and q2, where p is the proportion of allele p in the population, and q = 1− p is the proportion of
allele a. Similarly, genotypes at the B locus can be BB, Bb or bb, with genotype frequencies s2, 2st and t2, given allele
frequencies s and t, respectively. Due to the dominance of A over a and B over b, only those with aabb genotypes
will belong to blood group O (no antigens). The number the genotype combinations which generate a particular blood
group is generally larger than under the single locus model. The combinations, and their expected frequencies in the
population, are given in the following Table:

Phenotype Genotypes Frequency Proportion
A AAbb, Aabb 234 (p^2+2pq)*t^2
B aaBB, aaBb 261 q^2(s^2+2st)
AB AABB, AABb, AaBB, AaBb 182 (p^2+2pq)(s^2+2st)
O aabb 94 q^2t^2

The R script to fit this model is very similar to that of the single locus model. Note, however, that it does not feature
the mxConstraint function. There are in fact two constraints, q = 1 − p and t = 1 − s, but these are trivial
and easily dealt with using mxAlgebra statements. Although one might think that this approach would be suitable
for the single locus model, in which r = 1 − p − q, a difficulty arises because there is no straightforward way to
restrict p + q ≤ 1 which is necessary for r ≥ 0. Models specified so that an allele frequency can go negative during
optimization are inherently fragile. A negative allele frequency would potentially result in negative likelihoods, and
undefined log-likelihoods. Bounding the parameters to lie between 0.0 and 1.0 provides sufficient robustness to this
potential problem.

require(OpenMx)

# Bernstein data on ABO blood-groups
# c.f. Edwards, AWF (1972) Likelihood. Cambridge Univ Press, pp. 39-41

TwoLocusModel <- mxModel("TwoLocus",
# Matrices for allele frequencies, p and s

mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=c(.3333), name="P"),
mxMatrix( type="Full", nrow=1, ncol=1, free=TRUE, values=c(.3333), name="S"),

# Matrix of observed data
mxMatrix( type="Full", nrow=4, ncol=1, values=c(211,104,39,148),

name="ObservedFreqs"),
# Algebra for predicted proportions

mxAlgebra( expression=1-P, name="Q"),
mxAlgebra( expression=1-S, name="T"),
mxAlgebra(rbind ( (P*P+2*P*Q)*T*T,

(Q*Q)*(S*S+2*S*T),
(P*P+2*P*Q)*(S*S+2*S*T),
(Q*Q)*(T*T)),

name="ExpectedFreqs"),
# Algebra for -logLikelihood

mxAlgebra( expression=-(sum(log(ExpectedFreqs) * ObservedFreqs)),
name="NegativeLogLikelihood"),

# User-defined objective
mxAlgebraObjective("NegativeLogLikelihood")

)

TwoLocusFit<-mxRun(TwoLocusModel)
TwoLocusFit@matrices
TwoLocusFit@algebras
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Results

The allele frequencies estimated by this script should be p = 0.2929, s = 0.1532 with negative log-likelihood of
646.972 units. Comparison of this model with the single locus one shows that although they have the same number of
free parameters (the third allele frequency in the single locus model is constrained) the single locus model has much
greater support. Investigation of the $ExpectedFreqs algebra in the two models helps to illustrate why.

3.8 Ordinal and Joint Ordinal-Continuous Model Specification

This chapter deals with the specification of models that are either fit exclusively to ordinal variables or to a mix of
ordinal and continuous variables. It extends the continuous data common factor model found in previous chapters to
ordinal data.

The examples for this chapter can be found in the following files:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorOrdinal_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorOrdinal01_MatrixRaw.R

The continuous versions of these models for raw data can be found the previous demos here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_MatrixRaw.R

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_PathRaw.R

3.8.1 Ordinal Data

OpenMx models ordinal data under a threshold model. A continuous normal distribution is assumed to underly every
ordinal variable. These latent continuous distributions are only observed as being above or below a threshold, where
there is one fewer threshold than observed categories in the data. For example, consider a variable with three ordered
categories indicated by the values zero, one and two. Under this approach, this variable is assumed to follow a normal
distribution that is partitioned or cut by two thresholds: individuals with underlying scores below the first threshold
have an observed value of zero, individuals with latent scores between the thresholds are observed with values of one,
and individuals with underlying scores give observed values of two.

3.8. Ordinal and Joint Ordinal-Continuous Model Specification 133

http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorOrdinal_MatrixRaw.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorOrdinal01_MatrixRaw.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_MatrixRaw.R
http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/OneFactorModel_PathRaw.R


OpenMx User Guide, Release 1.2.0-1919

Each threshold may be freely estimated or assigned as a fixed parameter, depending on the desired model. In addition
to the thresholds, ordinal variables still have a mean and variance that describes the parameters of the underlying
continuous distribution. However, this underlying distribution must be scaled by fixing at least two parameters to
identify the model. One method of identification fixes the mean and variance to specific values, most commonly to a
standard normal distribution with a mean of zero and a variance of one. A variation on this method fixes the residual
variance of the categorical variable to one, which is often easier to specify. Alternatively, categorical variables may be
identified by fixing two thresholds to non-equivalent constant values. These methods will differ in the scale assigned
to the ordinal variables (and thus, the scale of the parameters estimated from them), but all identify the same model
and should provide equally valid results.

OpenMx allows for the inclusion of continuous and ordinal variables in the same model, as well as models with only
continuous or only ordinal variables. Any number of continuous variables may be included in an OpenMx model;
however, maximum likelihood estimation for ordinal data must be limited to twenty ordinal variables regardless of
the number of continuous variables. Further technical details on ordinal and joint continuous-ordinal optimization are
contained at the end of this chapter.

Specifying Threshold Matrices

In addition to the mean, variance and covariance structure of the data, the thresholds for ordinal variables must be
included in the model. This matrix should be of a specific order: it should contain as many columns as their are
ordinal variables, and as many rows as there are thresholds in the data. The number of thresholds can be determined
as one fewer than the number of categories in the variable or variables included in the model. If ordinal variables have
varying numbers of thresholds, the threshold matrix should have as many rows as the largest number of thresholds
for any variable. For example, a model with two binary variables (one threshold) and one three-category variable
(two thresholds), the threshold matrix should contain two rows and three columns to represent the maximum of two
thresholds found across three ordinal variables.

Threshold matrices may be specified using the mxMatrix function, just like any other matrix in OpenMx. Columns
represent variables, while the n$th$ row of the thresholds matrix represents the n$th$ threshold for that variable. The
code below specifies one version of the three variable thresholds matrix.

mxMatrix(
type="Full",
nrow=2,
ncol=3,
free=c(TRUE, TRUE, TRUE,

FALSE, FALSE, TRUE),
values=c(-1, 0, -.5,

NA, NA, 1.2),
dimnames=list(c(), c(’z1’, ’z2’, ’z3’)),
byrow=TRUE,
name="thresh"

)

In this example, variables ‘z1’ and ‘z2’ are binary, with a single freely estimated threshold for each variable with
starting values of -1 and 0, respectively. The meaning of these thresholds will depend on the mean and variance of these
variables; as we are freely estimating thresholds for binary variables, the mean and variances of these variables should
be constrained to fixed values. The third column of the thresholds matrix represents variable ‘z3’, which contains two
thresholds and thus three categories. These two thresholds are assigned free parameters with staring values of -0.5
and 1.2, and the mean and variance of this variable should also be constrained to fixed values for identification. For
variables with multiple thresholds, starting values should be monotonically increasing in each column such that the
first column represents the first threshold and lowest value and the last column represents the last threshold and highest
value.

Unlike the mean and covariance structures, which may be specified either as matrices or as paths under models where
type=’RAM’ is requested, thresholds must always be specified as matrices. Path models with ordinal variables may
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still specify the rest of the model using paths, but must include a threshold matrix.

Users of original or ‘’classic” Mx may recall specifying thresholds not in absolute terms, but as deviations. This
method estimated the difference between each threshold for a variable and the previous one, which ensured that
thresholds were in the correct order (i.e., that the second threshold for a variable was not lower than the first). While
users may employ this method as it suits them, OpenMx does not require this technique. Simply specifying a thresholds
matrix is typically sufficient to keep thresholds in proper order.

Specifying Data for Ordinal Models

In addition to specifying the thresholds matrix as shown above, users must identify ordinal variables by specifying
those variables as ordered factors in the included data. Ordinal models can only be fit to raw data; if data is described
as a covariance or other moment matrix, then the categorical nature of the data was already models to generate that
moment matrix. Ordinal variables must be defined as specific columns in an R data frame.

Factors are a type of variable included in an R data frame. Unlike numeric or continuous variables, which must in-
clude only numeric and missing values, observed values for factors are treated as character strings. All factors contain
a levels argument, which lists the possible values for a factor. Ordered factors contain information about the or-
dering of possible levels. Both R and OpenMx have tools for manipulating factors in data frames. The R functions
factor() and as.factor() (and companions ordered() and as.ordered()) can be used to specify or-
dered factors. OpenMx includes a helper function mxFactor() which more directly prepares ordinal variables as
ordered factors in preparation for inclusion in OpenMx models. The code below demonstrates the mxFactor()
function, replacing the variable z2 that was initially read as a continuous variable and treating it as an ordinal variable
with two levels.

data(myFADataRaw)

oneFactorOrd <- myFADataRaw[,c("z1", "z2", "z3")]

oneFactorOrd$z2 <- mxFactor(oneFactorOrd$z2, levels=c(0, 1))

Including Thresholds in Models

Finally, the threshold matrix must be identified as such in the objective function in the same way that other matrices
are identified as means or covariance matrices. Both the mxRAMObjective and mxFIMLObjective contain a
thresholds argument, which takes the name of the matrix or algebra to be used as the threshold matrix for a given
analysis. Although specifying type=’RAM’ generates a RAM objective function, this objective function must be
replaced by one with a specified thresholds matrix.

You must specify dimnames (dimension names) for your thresholds matrix that correspond to the ordered factors in the
data you wish to analyze. This may be done in either of two ways, both of which correspond to specifying dimnames
for other OpenMx matrices. One method is to use the threshnames argument in the mxFIMLObjective or
mxRAMObjective, which specifies which variables are in a threshold matrix in the same way the dimnames
argument specifies which variables are in the rest of the model. Another method is to specify dimnames for each
matrix using the dimnames argument in the mxMatrix function. Either method may be used, but it is important
to use the same method for all matrices in a given model (either using objective function arguments dimnames
and threshnames or supplying dimnames for all mxMatrix objects manually). Objective function arguments
dimnames and threshnames supersede the matrix dimname arguments, and threshnames will take the value
of the dimnames if both dimnames and thresholds are specified but threshnames is omitted.

Regardless of the number of continuous numeric variables included in a model, the thresholds matrix should only
contain as many columns as there are ordinal variables in a model. All ordered factors included in an analysis must
contain a column in the thresholds matrix, and all columns in the thresholds matrix must correspond to an ordered
factor. The code below specifies an mxRAMObjective to include a thresholds matrix names ”thresh”. When
models are built using type=’RAM’, the dimnames argument may be omitted, as the requisite dimnames for the A,
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S, F and M matrices are generated from the manifestVars and latentVars lists. However, the dimnames for
the threshold matrix should be included using the dimnames argument in mxMatrix.

mxRAMObjective(A="A", S="S", F="F", M="M", thresholds="thresh")

3.8.2 Example: Common Factor Model for Ordinal Data

All of the raw data examples through the documentation may be converted to ordinal examples by the inclusion of
ordinal data, the specification of a threshold matrix and inclusion of that threshold matrix in the objective function.
The following example is a version of the continuous data common factor model referenced at the beginning of this
chapter. Aside from replacing the continuous variables x1-x6 with the ordinal variables z1-z3, the code below
simply incorporates the steps referenced above into the existing example. Data preparation occurs first, with the added
mxFactor statements to identify ordinal variables and their ordered levels.

require(OpenMx)

data(myFADataRaw)

oneFactorOrd <- myFADataRaw[,c("z1", "z2", "z3")]

oneFactorOrd$z1 <- mxFactor(oneFactorOrd$z1, levels=c(0, 1))
oneFactorOrd$z2 <- mxFactor(oneFactorOrd$z2, levels=c(0, 1))
oneFactorOrd$z3 <- mxFactor(oneFactorOrd$z3, levels=c(0, 1, 2))

Model specification can be achieved by appending the above threshold matrix and objective function to either the
path or matrix common factor examples. The path example below has been altered by changing the variable names
from x1-x6 to z1-z3, adding the threshold matrix and objective function, and identifying the ordinal variables by
constraining their means to be zero and their residual variances to be one.

oneFactorModel <- mxModel("Common Factor Model Matrix Specification",
mxData(oneFactorOrd, type="raw"),
# asymmetric paths
mxMatrix(

type="Full",
nrow=4,
ncol=4,
values=c(0,0,0,1,

0,0,0,1,
0,0,0,1,
0,0,0,0),

free=c(F, F, F, T,
F, F, F, T,
F, F, F, T,
F, F, F, F),

labels=c(NA,NA,NA,"l1",
NA,NA,NA,"l2",
NA,NA,NA,"l3",
NA,NA,NA,NA),

byrow=TRUE,
name="A"

),
# symmetric paths
mxMatrix(

type="Symm",
nrow=4,
ncol=4,
values=c(1,0,0,0,
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0,1,0,0,
0,0,1,0,
0,0,0,1),

free=FALSE,
labels=c("e1", NA, NA, NA,

NA, "e2", NA, NA,
NA, NA, "e3", NA,
NA, NA, NA, "varF1"),

byrow=TRUE,
name="S"

),
# filter matrix
mxMatrix(

type="Full",
nrow=3,
ncol=4,
free=FALSE,
values=c(1,0,0,0,

0,1,0,0,
0,0,1,0),

byrow=TRUE,
name="F"

),
# means
mxMatrix(

type="Full",
nrow=1,
ncol=4,
values=0,
free=FALSE,
labels=c("meanz1","meanz2","meanz3",NA),
name="M"

),
mxMatrix(

type="Full",
nrow=2,
ncol=3,
free=c(TRUE, TRUE, TRUE,

FALSE, FALSE, TRUE),
values=c(-1, 0, -.5,

NA, NA, 1.2),
byrow=TRUE,
name="thresh"

),
mxRAMObjective("A", "S", "F", "M",

dimnames=c("z1", "z2", "z3", "F1"),
thresholds="thresh",
threshnames=c("z1", "z2", "z3"))

) # close model

This model may then be optimized using the mxRun command.

oneFactorResults <- mxRun(oneFactorModel)
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3.8.3 Example: Common Factor Model for Joint Ordinal-Continuous Data

Models with both continuous and ordinal variables may be specified just like any other ordinal data model. Threshold
matrices in these models should contain columns only for the ordinal variables, and should contain column names to
designate which variables are to be treated as ordinal. In the example below, the one factor model above is estimated
with three continuous variables (x1-x3) and three ordinal variables (z1-z3).

require(OpenMx)

oneFactorJoint <- myFADataRaw[,c("x1", "x2", "x3", "z1", "z2", "z3")]

oneFactorJoint$z1 <- mxFactor(oneFactorOrd$z1, levels=c(0, 1))
oneFactorJoint$z2 <- mxFactor(oneFactorOrd$z2, levels=c(0, 1))
oneFactorJoint$z3 <- mxFactor(oneFactorOrd$z3, levels=c(0, 1, 2))

oneFactorJointModel <- mxModel("Common Factor Model Matrix Specification",
mxData(observed=oneFactorJoint, type="raw"),
# asymmetric paths
mxMatrix(

type="Full",
nrow=7,
ncol=7,
values=c(0,0,0,0,0,0,1,

0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,0),

free=c(F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, F),

labels=c(NA,NA,NA,NA,NA,NA,"l1",
NA,NA,NA,NA,NA,NA,"l2",
NA,NA,NA,NA,NA,NA,"l3",
NA,NA,NA,NA,NA,NA,"l4",
NA,NA,NA,NA,NA,NA,"l5",
NA,NA,NA,NA,NA,NA,"l6",
NA,NA,NA,NA,NA,NA,NA),

byrow=TRUE,
name="A"

),
# symmetric paths
mxMatrix(

type="Symm",
nrow=7,
ncol=7,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,0,0,0,1),
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free=c(T, F, F, F, F, F, F,
F, T, F, F, F, F, F,
F, F, T, F, F, F, F,
F, F, F, F, F, F, F,
F, F, F, F, F, F, F,
F, F, F, F, F, F, F,
F, F, F, F, F, F, F),

labels=c("e1", NA, NA, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA,
NA, NA, NA, "e4", NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA,
NA, NA, NA, NA, NA, "e6", NA,
NA, NA, NA, NA, NA, NA, "varF1"),

byrow=TRUE,
name="S"

),
# filter matrix
mxMatrix(

type="Full",
nrow=6,
ncol=7,
free=FALSE,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0),

byrow=TRUE,
name="F"

),
# means
mxMatrix(

type="Full",
nrow=1,
ncol=7,
values=c(1,1,1,0,0,0,0),
free=c(T,T,T,F,F,F,F),
labels=c("meanx1","meanx2","meanx3","meanz1","meanz2","meanz3",NA),
name="M"

),
mxMatrix(

type="Full",
nrow=2,
ncol=3,
free=c(TRUE, TRUE, TRUE,

FALSE, FALSE, TRUE),
values=c(-1, 0, -.5,

NA, NA, 1.2),
byrow=TRUE,
name="thresh"

),
mxRAMObjective("A", "S", "F", "M",

dimnames=c("x1","x2","x3","z1", "z2", "z3", "F1"),
thresholds="thresh",
threshnames=c("z1", "z2", "z3"))

) # close model
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This model may then be optimized using the mxRun command.

oneFactorJointResults <- mxRun(oneFactorJointModel)

3.8.4 Technical Details

Maximum likelihood estimation for ordinal variables by generating expected covariance and mean matrices for
the latent continuous variables underlying the set of ordinal variables, then integrating the multivariate nor-
mal distribution defined by those covariances and means. The likelihood for each row of the data is de-
fined as the multivariate integral of the expected distribution over the interval defined by the thresholds bor-
dering that row’s data. OpenMx uses Alan Genz’s SADMVN routine for multivariate normal integration (see
http://www.math.wsu.edu/faculty/genz/software/software.html for more information).

When continuous variables are present, OpenMx utilizes a block decomposition to separate the continuous and ordinal
covariance matrices for FIML. The likelihood of the continuous variables is calculated normally. The effects of the
point estimates of the continuous variables is projected out of the expected covariance matrix of the ordinal data. The
likelihood of the ordinal data is defined as the multivariate integral over the distribution defined by the resulting ordinal
covariance matrix.

3.9 Growth Mixture Modeling, Matrix Specification

This example will demonstrate how to specify a growth mixture model using matrix specification. Unlike other
examples, this application will not be demonstrated with covariance data, as this model can only be fit to raw data.
The script for this example can be found in the following file:

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/GrowthMixtureModel_MatrixRaw.R

A parallel example using path specification can be found here:

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/GrowthMixtureModel_PathRaw.R

The latent growth curve used in this example is the same one fit in the latent growth curve example. Path and matrix
versions of that example for raw data can be found here:

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/LatentGrowthCurveModel_PathRaw.R

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/LatentGrowthCurveModel_MatrixRaw.R

3.9.1 Mixture Modeling

Mixture modeling is an approach where data are assumed to be governed by some type of mixture distribution. This
includes a large class of models, including many varieties of mixture modeling, latent class analysis and related models
with binary or categorical latent variables. This example will demonstrate a growth mixture model, where change over
time is modeled with a linear growth curve and the distribution of latent intercepts and slopes is governed by a mixture
of two distributions. The model can thus be described as a combination of two growth curves, weighted by a class
proportion variable, as shown below.

xij = p1(Intercepti1 + λ1Slopei1 + ε) + p2(Intercepti2 + λ2Slopei2 + ε)

To scale the class proportion variable as a probability, it must be scaled such that it is strictly positive and the set of all
class probabilities sum to a value of one.

k∑
i=1

pi = 1
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Data

The data for this example can be found in the data object myGrowthMixtureData. These data contain five time
ordered variables named x1 through x5, just like the growth curve demo mentioned previously. It is important to note
that raw data is required for mixture modeling, as moment matrices do not contain all of the information required to
estimate the model.

data(myGrowthMixtureData)
names(myGrowthMixtureData)

Model Specification

Specifying a mixture model can be categorized into two general phases. The first phase of model specification pertains
to creating the models for each class. The second phase specifies the way those classes are mixed. In OpenMx, this is
done using a model tree. Each class is created as a separate MxModel object, and those class-specific models are all
placed into a larger or parent model. The parent model contains the class proportion parameter(s) and the data.

Creating the class-specific models is done the same way as every other model. We’ll begin by specifying the model for
the first class using RAM matrices. The code below specifies a five-occasion linear growth curve, virtually identical
to the one in the linear growth curve example referenced above. The only changes made to this model are the names
of the free parameters; the means, variances and covariance of the intercept and slope terms are now followed by
the number 1 to distinguish them from free parameters in the other class. Note that the vector argument in the
mxRAMObjective has been set to “TRUE”, which will be discussed in more detail shortly.

class1 <- mxModel("Class1",
mxMatrix(

type="Full",
nrow=7,
ncol=7,
free=F,
values=c(0,0,0,0,0,1,0,

0,0,0,0,0,1,1,
0,0,0,0,0,1,2,
0,0,0,0,0,1,3,
0,0,0,0,0,1,4,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0),

byrow=TRUE,
name="A"

),
mxMatrix(

type="Symm",
nrow=7,
ncol=7,
free=c(T, F, F, F, F, F, F,

F, T, F, F, F, F, F,
F, F, T, F, F, F, F,
F, F, F, T, F, F, F,
F, F, F, F, T, F, F,
F, F, F, F, F, T, T,
F, F, F, F, F, T, T),

values=c(0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 1,0.5,
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0,0,0,0,0,0.5, 1),
labels=c("residual", NA, NA, NA, NA, NA, NA,

NA, "residual", NA, NA, NA, NA, NA,
NA, NA, "residual", NA, NA, NA, NA,
NA, NA, NA, "residual", NA, NA, NA,
NA, NA, NA, NA, "residual", NA, NA,
NA, NA, NA, NA, NA, "vari1", "cov1",
NA, NA, NA, NA, NA, "cov1", "vars1"),

byrow= TRUE,
name="S"

),
mxMatrix(

type="Full",
nrow=5,
ncol=7,
free=F,
values=c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0),

byrow=T,
dimnames=list(NULL, c(names(myGrowthMixtureData), "intercept", "slope")),
name="F"

),
mxMatrix(

type="Full",
nrow=1,
ncol=7,
values=c(0,0,0,0,0,1,1),
free=c(F,F,F,F,F,T,T),
labels=c(NA,NA,NA,NA,NA,"meani1","means1"),
dimnames=list(NULL, c(names(myGrowthMixtureData), "intercept", "slope")),
name="M"

),
mxRAMObjective("A","S","F","M", vector=TRUE)

) # close model

We could create the model for our second class by copy and pasting the code above, but that can yield needlessly
long scripts. We can also use the mxModel function to edit an existing model object, allowing us to change only the
parameters that vary across classes. The mxModel call below begins with an existing MxModel object (class1)
rather than a model name. The subsequent mxMatrix functions replace any existing matrices that have the same
name. As we did not give the model a name at the beginning of the mxModel function, we must use the name
argument to identify this model by name.

class2 <- mxModel(class1,
mxMatrix(
type="Symm",
nrow=7,
ncol=7,
free=c(T, F, F, F, F, F, F,

F, T, F, F, F, F, F,
F, F, T, F, F, F, F,
F, F, F, T, F, F, F,
F, F, F, F, T, F, F,
F, F, F, F, F, T, T,
F, F, F, F, F, T, T),

values=c(0,0,0,0,0, 0, 0,
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0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 0, 0,
0,0,0,0,0, 1,0.5,
0,0,0,0,0,0.5, 1),

labels=c("residual", NA, NA, NA, NA, NA, NA,
NA, "residual", NA, NA, NA, NA, NA,
NA, NA, "residual", NA, NA, NA, NA,
NA, NA, NA, "residual", NA, NA, NA,
NA, NA, NA, NA, "residual", NA, NA,
NA, NA, NA, NA, NA, "vari2", "cov2",
NA, NA, NA, NA, NA, "cov2", "vars2"),

byrow= TRUE,
name="S"

),
mxMatrix(

type="Full",
nrow=1,
ncol=7,
values=c(0,0,0,0,0,1,1),
free=c(F,F,F,F,F,T,T),
labels=c(NA,NA,NA,NA,NA,"meani2","means2"),
dimnames=list(NULL, c(names(myGrowthMixtureData), "intercept", "slope")),
name="M"

),
name="Class2"

) # close model

The vector=TRUE argument in the above code merits further discussion. The objective function for each of the
class-specific models must return the likelihoods for each individual rather than the default log likelihood for the
entire sample. OpenMx objective functions that handle raw data have the option to return a vector of likelihoods for
each row rather than a single likelihood value for the dataset. This option can be accessed either as an argument in a
function like mxRAMObjective or mxFIMLObjective, as was done above, or with the syntax below.

class1@objective@vector <- TRUE
class2@objective@vector <- TRUE

While the class-specific models can be specified using either path or matrix specification, the class proportion pa-
rameters must be specified using a matrix, though it can be specified a number of different ways. The challenge of
specifying class probabilities lies in their inherent constraint: class probabilities must be non-negative and sum to
unity. The code below demonstrates one method of specifying class proportion parameters and rescaling them as
probabilities.

This method for specifying class probabilities consists of two parts. In the first part, the matrix in the object classP
contains two elements representing the class proportions for each class. One class is designated as a reference class by
fixing their proportion at a value of one (class 2 below). All other classes are assigned free parameters in this matrix,
and should be interpreted as proportion of sample in that class per person in the reference class. These parameters
should have a lower bound at or near zero. Specifying class proportions rather than class probabilities avoids the
degrees of freedom issue inherent to class probability parameters by only estimating k-1 parameters for k classes.

classP <- mxMatrix("Full", 2, 1, free=c(TRUE, FALSE),
values=1, lbound=0.001,
labels = c("p1", "p2"), name="Props")

We still need probabilities, which require the second step shown below. Dividing the class proportion matrix above
by its sum will rescale the proportions into probabilities. This is slightly more difficult that it appears at first, as the k
x 1 matrix of class proportions and the scalar sum of that matrix aren’t conformable to either matrix or element-wise
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operations. Instead, we can use a Kronecker product of the class proportion matrix and the inverse of the sum of that
matrix. This operation is carried out by the mxAlgebra function placed in the object classS below.

classS <- mxAlgebra(Props %x% (1 / sum(Props)), name="classProbs")

There are several alternatives to the two functions above that merit discussion. While the‘‘mxConstraint‘‘ function
would appear at first to be a simpler way to specify the class probabilities, but using the mxConstraint function
complicates this type of model estimation. When all k class probabilities are freely estimated then constrained, then
the class probability parameters are collinear, creating a parameter covariance matrix that is not of full rank. This
prevents OpenMx from calculating standard errors for any model parameters. Additionally, there are multiple ways
to use algebras different than the one above to specify the class proportion and/or class probability parameters, each
varying in complexity and utility. While specifying models with two classes can be done slightly more simply than
presented here, the above method is equally appropriate for all numbers of classes.

Finally, we can specify the mixture model. We must first specify the model’s -2 log likelihood function defined as:

−2LL = −2 ∗
n∑
i=1

m∑
k=1

log(pklki)

This is specified using an mxAlgebra function, and used as the argument to the mxAlgebraObjective function.
Then the objective function, matrices and algebras used to define the mixture distribution, the models for the respective
classes and the data are all placed in one final mxModel object, shown below.

algObj <- mxAlgebra(-2*sum(
log(classProbs[1,1] %x% Class1.objective + classProbs[2,1] %x% Class2.objective)),
name="mixtureObj")

obj <- mxAlgebraObjective("mixtureObj")

gmm <- mxModel("Growth Mixture Model",
mxData(
observed=myGrowthMixtureData,
type="raw"

),
class1, class2,
classP, classS,
algObj, obj

)

gmmFit <- mxRun(gmm)

summary(gmmFit)

Multiple Runs: Serial Method

The results of a mixture model can sometimes depend on starting values. It is a good idea to run a mixture model
with a variety of starting values to make sure results you find are not the result of a local minimum in the likeli-
hood space. This section will describe a serial (i.e., running one model at a time) method for randomly generating
starting values and re-running a model, which is appropriate for a wide range of methods. The next section will
cover parallel (multiple models simultaneously) estimation procedures. Both of these examples are available in the
GrowthMixtureModelRandomStarts demo.

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/GrowthMixtureModelRandomStarts.R

One way to access the starting values in a model is by using the omxGetParameters function. This function takes
an existing model as an argument and returns the names and values of all free parameters. Using this function on our
growth mixture model, which is stored in an objected called gmm, gives us back the starting values we specified above.
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omxGetParameters(gmm)
# pclass1 residual vari1 cov1 vars1 meani1 means1 vari2 cov2 vars2 meani2
# 0.2 1.0 1.0 0.4 1.0 0.0 -1.0 1.0 0.5 1.0 5.0
# means2
# 1.0

A companion function to omxGetParameters is omxSetParameters, which can be used to alter one or more
named parameters in a model. This function can be used to change the values, freedom and labels of any parameters in
a model, returning an MxModel object with the specified changes. The code below shows how to change the residual
variance starting value from 1.0 to 0.5. Note that the output of the omxSetParameters function is placed back into
the object gmm.

gmm <- omxSetParameters(gmm, labels="residual", values=0.5)

The MxModel in the object gmm can now be run and the results compared with other sets of staring values. Starting
values can also be sampled from distributions, allowing users to automate starting value generation, which is demon-
strated below. The omxGetParameters function is used to find the names of the free parameters and define three
matrices: a matrix input that holds the starting values for any run; a matrix output that holds the converged values
of each parameter; and a matrix fit that contains the -2 log likelihoods and other relevant model fit statistics. Each of
these matrices contains one row for every set of starting values. Starting values are randomly generated from a set of
uniform distributions using the runif function, allowing the ranges inherent to each parameter to be enforced (i.e.,
variances are positive, etc). A for loop repeatedly runs the model with starting values from the input matrix and
places the final estimates and fit statistics in the output and fit matrices, respectively.

# how many trials?
trials <- 20

# place all of the parameter names in a vector
parNames <- names(omxGetParameters(gmm))

# make a matrix to hold all of the
input <- matrix(NA, trials, length(parNames))
dimnames(input) <- list(c(1: trials), c(parNames))

output <- matrix(NA, trials, length(parNames))
dimnames(output) <- list(c(1: trials), c(parNames))

fit <- matrix(NA, trials, 5)
dimnames(fit) <- list(c(1: trials), c("Minus2LL", "Status", "Iterations", "pclass1", "time"))

# populate the class probabilities
input[,"p1"] <- runif(trials, 0.1, 0.9)
input[,"p1"] <- input[,"p1"]/(1-input[,"p1"])

# populate the variances
v <- c("vari1", "vars1", "vari2", "vars2", "residual")
input[,v] <- runif(trials*5, 0, 10)

# populate the means
m <- c("meani1", "means1", "meani2", "means2")
input[,m] <- runif(trials*4, -5, 5)

# populate the covariances
r <- runif(trials*2, -0.9, 0.9)
scale <- c(

sqrt(input[,"vari1"]*input[,"vars1"]),
sqrt(input[,"vari2"]*input[,"vars2"]))

input[,c("cov1", "cov2")] <- r * scale
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for (i in 1: trials){
temp1 <- omxSetParameters(gmm,

labels=parNames,
values=input[i,]
)

temp1@name <- paste("Starting Values Set", i)

temp2 <- mxRun(temp1, unsafe=TRUE, suppressWarnings=TRUE, checkpoint=TRUE)

output[i,] <- omxGetParameters(temp2)
fit[i,] <- c(

temp2@output$Minus2LogLikelihood,
temp2@output$status[[1]],
temp2@output$iterations,
round(temp2$classProbs@result[1,1], 4),
temp2@output$wallTime
)

}

Viewing the contents of the fit matrix shows the -2 log likelihoods for each of the runs, as well as the convergence
status, number of iterations and class probabilities, shown below.

fit[,1:4]
# Minus2LL Status Iterations pclass1
# 1 8739.050 0 41 0.3991078
# 2 8739.050 0 40 0.6008913
# 3 8739.050 0 44 0.3991078
# 4 8739.050 1 31 0.3991079
# 5 8739.050 0 32 0.3991082
# 6 8739.050 1 34 0.3991089
# 7 8966.628 0 22 0.9990000
# 8 8966.628 0 24 0.9990000
# 9 8966.628 0 23 0.0010000
# 10 8966.628 1 36 0.0010000
# 11 8963.437 6 25 0.9990000
# 12 8966.628 0 28 0.9990000
# 13 8739.050 1 47 0.6008916
# 14 8739.050 1 36 0.3991082
# 15 8739.050 0 43 0.3991076
# 16 8739.050 0 46 0.6008948
# 17 8739.050 1 50 0.3991092
# 18 8945.756 6 50 0.9902127
# 19 8739.050 0 53 0.3991085
# 20 8966.628 0 23 0.9990000

There are several things to note about the above results. First, the minimum -2 log likelihood was reached in 12 of 20
sets of staring values, all with NPSOL statuses of either zero (seven times) or one (five times). Additionally, the class
probabilities are equivalent within five digits of precision, keeping in mind that no the model as specified contains no
restriction as to which class is labeled “class 1” (probability equals .3991) and “class 2” (probability equals .6009).
The other eight sets of starting values showed higher -2 log likelihood values and class probabilities at the set upper or
lower bounds, indicating a local minimum. We can also view this information using R’s table function.

table(round(fit[,1], 3), fit[,2])

# 0 1 6
# 8739.05 7 5 0
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# 8945.756 0 0 1
# 8963.437 0 0 1
# 8966.628 5 1 0

We should have a great deal of confidence that the solution with class probabilities of .399 and .601 is the correct one.

Multiple Runs: Parallel Method

OpenMx supports multicore processing through the snowfall library, which is described in the “Multicore Execu-
tion” section of the documentation and in the following demo:

** http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BootstrapParallel.R

Using multiple processors can greatly improve processing time for model estimation when a model contains inde-
pendent submodels. While the growth mixture model in this example does contain submodels (i.e., the class specific
models), they are not independent, as they both depend on a set of shared parameters (“residual”, “pclass1”).

However, multicore estimation can be used instead of the for loop in the above section for testing alternative sets
of starting values. Instead of changing the starting values in the gmm object repeatedly, multiple copies of the model
contained in gmm must be placed into parent or container model. Either the above for loop or a set of “apply”
statements can be used to generate the model.

The example below first initializes the snowfall library, which also loads the snow library. The sfInit function
initializes parallel; you must supply the number of processors on your computer or grid for the analysis, then reload
OpenMx as a snowfall library.

require(snowfall)
sfInit(parallel=TRUE, cpus=4)
sfLibrary(OpenMx)

From there, parallel optimization requires that a holder or top model (named “Top” in the object topModel below)
contain a set of independent submodels. In our example, each independent submodel will consist of a copy of the
above gmm model with a different set of starting values. Using the matrix of starting values from the serial example
above (input), we can create a function called makeModel that can be used to create these submodels. While this
function is entirely optional, it allows us to use the lapply function to create a list of submodels for optimization.
Once those submodels are placed in the submodels slot of the object topModel, we can run this model just like
any other. A second function, fitStats, can then be used to get the results from each submodel.

topModel <- mxModel("Top")

makeModel <- function(modelNumber){
temp <- mxModel(gmm,

independent=TRUE,
name=paste("Iteration", modelNumber, sep=""))

temp <- omxSetParameters(temp,
labels=parNames,
values=input[modelNumber,])

return(temp)
}

mySubs <- lapply(1:20, makeModel)

topModel@submodels <- mySubs

results <- mxRun(topModel)

fitStats <- function(model){
retval <- c(
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model@output$Minus2LogLikelihood,
model@output$status[[1]],
model@output$iterations,
round(model$classProbs@result[1,1], 4)
)

return(retval)
}

resultsFit <- t(omxSapply(results@submodels, fitStats))
sfStop()

This parallel method saves computational time, but requires additional coding. For models as small as the one in this
example (total processing time of approximately 2 seconds), the speed-up from using the parallel version is marginal
(approximately 35-50 seconds for the serial method against 20-30 seconds for the parallel version). However, as
models get more complex or require a greater number of random starts, the parallel method can provide substantial
time savings. Regardless of method, re-running models with varying starting values is an essential part of running
multivariate models.
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FOUR

ADVANCED CONCEPTS

4.1 File Checkpointing

This section will cover how to periodically save the state of the optimizer to a file on disk. In the event of a system
crash, the checkpoint file can be loaded back into the model when the system has been restored. The checkpoint file
can also be used as a log to trace the state of the free parameters as they change during optimization. The simplest
form of file checkpointing is to use the argument checkpoint = TRUE in the call to the mxRun() function.

require(OpenMx)

data(demoOneFactor)
manifestVars <- names(demoOneFactor)

factorModel <- mxModel("One Factor",
mxMatrix(type="Full", nrow=5, ncol=1, values=0.2, free=TRUE, name="A",

labels=letters[1:5]),
mxMatrix(type="Symm", nrow=1, ncol=1, values=1, free=FALSE, name="L"),
mxMatrix(type="Diag", nrow=5, ncol=5, values=1, free=TRUE, name="U"),
mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),
mxMLObjective(covariance="R", dimnames=manifestVars),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500)

)

factorFit <- mxRun(factorModel, checkpoint = TRUE)

With no extra options, a checkpoint file will be created in the current working directory with the filename: “<mod-
elname>.omx”. The checkpoint file is a data.frame object such that each row contains all the values of the free
parameters at a particular instance in time. By default, a row is added to the file every 10 minutes. The mxOption()
function can be used to set the directory of the checkpoint file, to specify an optional prefix to the checkpoint filename,
to select whether to save based on minutes or number of optimizer iterations, and to specify the checkpoint interval in
units of minutes or optimizer iterations. Below is an example that modifies some of the checkpoint options:

directory <- tempdir()

factorModel <- mxOption(factorModel, "Checkpoint Directory", directory)
factorModel <- mxOption(factorModel, "Checkpoint Units", "iterations")
factorModel <- mxOption(factorModel, "Checkpoint Count", 10)

After a checkpoint file has been created, it can be loaded into a MxModel object using the mxRestore() function. It
is necessary to specify the checkpoint directory and checkpoint filename prefix if they were declared using mxOption()
when the checkpoint file was created:
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factorFit <- mxRun(factorModel, checkpoint = TRUE)
factorRestore <- mxRestore(factorModel, chkpt.directory = directory)

The checkpoints will extend to independent submodels in a collection of models. Each independent submodel will
be saved in a separate file. See ?mxOption or getOption(’mxOptions’) for a list of options that modify the
behavior of file checkpointing. See ?mxRestore for more information on restoring a checkpoint file.

4.2 Multicore Execution

This section will cover how take advantage of multiple cores on your machine. To use the multicore mode in
OpenMx, you must declare independent submodels. A model is declared independent by using the argument ‘in-
dependent=TRUE’ in the mxModel() function. An independent model and all of its dependent children are executed
in a separate optimization environment. An independent model shares no free parameters with either its sibling models
or its parent model. An independent model may not refer to matrices or algebras in either its sibling models or its
parent model. A parent model may access the final results of optimization from an independent child model.

To use the snowfall library, you must start your R environment with the following commands:

library(OpenMx)
library(snowfall)
sfInit(parallel = TRUE, cpus = 8)
sfLibrary(OpenMx)

sfInit will initialize the snowfall cluster. You must specify either the number of CPUs on your machine or the
cluster environment (see snowfall package documentation). sfLibrary exports the OpenMx library to the client
nodes in the cluster. At the end of your script, use the command:

sfStop()

4.2.1 To Improve Performance

Any sequential portions of your script will quickly become the performance bottleneck (Amdahl’s Law). Avoid
iteration over large data structures. Use the functions omxLapply() and omxSapply() instead of iteration. These
two functions invoke the snowfall sfLapply() and sfSapply() functions if the snowfall library has been loaded.
Otherwise they invoke the sequential functions lapply() and sapply(). To hunt for bottelnecks in your script,
run your script with multicore settings enabled and use Rprof to profile a reasonable size test case. Ignore the calls
to sfLapply() and sfSapply() in the results of profiling. Any other time-consuming calls represent potential sequential
bottlenecks.

Some of the functions provided by the OpenMx library can be bottlenecks. Iterative use of the mxModel() function
in order to add submodels can be time consuming. Use the following unsafe idiom to improve performance:

topModel <- mxModel(’container’)
# generate a list of independent submodels
submodels <- omxLapply(1:100, generateNewSubmodels)
names(submodels) <- imxExtractNames(submodels)
topModel@submodels <- submodels

4.2.2 An Example

The following script can be found with demo(BootstrapParallel)
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# parameters for the simulation: lambda = factor loadings,
# specifics = specific variances
lambda <- matrix(c(.8, .5, .7, 0), 4, 1)
nObs <- 500
nReps <- 10
nVar <- nrow(lambda)
specifics <- diag(nVar)
chl <- chol(lambda %*% t(lambda) + specifics)

# indices for parameters and hessian estimate in results
pStrt <- 3
pEnd <- pStrt + 2*nVar - 1
hStrt <- pEnd + 1
hEnd <- hStrt + 2*nVar - 1

# dimension names for OpenMx
dn <- list()
dn[[1]] <- paste("Var", 1:4, sep="")
dn[[2]] <- dn[[1]]

# function to get a covariance matrix
randomCov <- function(nObs, nVar, chl, dn) {

x <- matrix(rnorm(nObs*nVar), nObs, nVar)
x <- x %*% chl
thisCov <- cov(x)
dimnames(thisCov) <- dn
return(thisCov)

}

createNewModel <- function(index, prefix, model) {
modelname <- paste(prefix, index, sep=’’)
data <- mxData(randomCov(nObs, nVar, chl, dn), type="cov", numObs=nObs)
model <- mxModel(model, data)
model <- mxRename(model, modelname)
return(model)

}

getStats <- function(model) {
retval <- c(model@output$status[[1]],

max(abs(model@output$gradient)),
model@output$estimate,
sqrt(diag(solve(model@output$hessian))))

return(retval)
}

# initialize obsCov for MxModel
obsCov <- randomCov(nObs, nVar, chl, dn)

# results matrix: get results for each simulation
results <- matrix(0, nReps, hEnd)
dnr <- c("inform", "maxAbsG", paste("lambda", 1:nVar, sep=""),

paste("specifics", 1:nVar, sep=""),
paste("hessLambda", 1:nVar, sep=""),
paste("hessSpecifics", 1:nVar, sep=""))

dimnames(results)[[2]] <- dnr

# instantiate MxModel
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template <- mxModel("stErrSim",
mxMatrix(name="lambda", type="Full", nrow=4, ncol=1,

free=TRUE, values=c(.8, .5, .7, 0)),
mxMatrix(name="specifics", type="Diag", nrow=4,

free=TRUE, values=rep(1, 4)),
mxAlgebra(lambda %*% t(lambda) + specifics,

name="preCov", dimnames=dn),
mxData(observed=obsCov, type="cov", numObs=nObs),
mxMLObjective(covariance=’preCov’),
independent = TRUE)

topModel <- mxModel("container")

submodels <- lapply(1:nReps, createNewModel, "stErrSim", template)

names(submodels) <- imxExtractNames(submodels)
topModel@submodels <- submodels

modelResults <- mxRun(topModel, silent=TRUE, suppressWarnings=TRUE)

results <- t(omxSapply(modelResults@submodels, getStats))

# get rid of bad covergence results
results2 <- data.frame(results[which(results[,1] <= 1),])

# summarize the results
means <- mean(results2)
stdevs <- sd(results2)
sumResults <- data.frame(matrix(dnr[pStrt:pEnd], 2*nVar, 1,

dimnames=list(NULL, "Parameter")))
sumResults$mean <- means[pStrt:pEnd]
sumResults$obsStDev <- stdevs[pStrt:pEnd]
sumResults$meanHessEst <- means[hStrt:hEnd]
sumResults$sqrt2meanHessEst <- sqrt(2) * sumResults$meanHessEst

# print results
print(sumResults)

4.3 Full Information Maximum Likelihood, Row Objective Specifica-
tion

This document was authored by Michael D. Hunter, M.A.

This document is a draft. Please excuse its disorderly state as I continue writing. -MDH

This example will show how full information maximum likelihood can be implemented using a row-by-row evaluation
of a likelihood function. This example is in two parts. The first part is a discussion of full information maximum
likelihood. The second part is an example implementation of full information maximum likelihood in a row-wise
objective function that estimates the saturated model in two variables. The second part refers to the following file:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/RowObjectiveFIMLBivariateSaturated.R

There is a parallel version of this example that uses the standard full information maximum likelihood implementation
here:

• http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/demo/BivariateCorrelation.R
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The goal of the current document is twofold: to increase users’ understanding of full information maximum likelihood,
and to assist users in implementing their own row objective functions.

4.3.1 Full Information Maximum Likelihood

Full information maximum likelihood is almost universally abbreviated FIML, and it is often pronounced like “fimmle”
if “fimmle” was an English word. FIML is often the ideal tool to use when your data contains missing values because
FIML uses the raw data as input and hence can use all the available information in the data. This is opposed to
other methods which use the observed covariance matrix which necessarily contains less information than the raw
data. An observed covariance matrix contains less information than the raw data because one data set will always
produce the same observed covariance matrix, but one covariance matrix could be generated by many different raw
data sets. Mathematically, the mapping from a data set to a covariance matrix is not one-to-one (i.e. the function is
non-injective), but rather many-to-one.

Although there is a loss of information between a raw data set and an observed covariance matrix, in structural equation
modeling we are often only modeling the observed covariance matrix and the observed means. We want to adjust the
model parameters to make the observed covariance and means matrices as close as possible to the model-implied
covariance and means matrices. Therefore, we are usually not concerned with the loss of information from raw data
to observed covariance matrix. However, when some raw data is missing, the standard maximum likelihood method
for determining how close the observed covariance and means matrices are to the model-expected covariance and
means matrices fails to use all of the information available in the raw data. This failure of maximum likelihood (ML)
estimation, as opposed to FIML, is due to ML exploiting for the sake of computational efficiency some mathematical
properties of matrices that do not hold true in the presence of missing data. The ML estimates are not wrong per se
and will converge to the FIML estimates, rather the ML estimates do not use all the information available in the raw
data to fit the model.

The intelligent handling of missing data is a primary reason to use FIML over other estimation techniques. The method
by which FIML handles missing data involves filtering out missing values when they are present, and using only the
data that are not missing in a given row.

Likelihood of a Row of Data

If X is the entire data set then the minus two log likelihood of row i of the data is

Li = ki ln(2π) + ln(|Σi|)) + (Xi −Mi)Σ
−1
i (Xi −Mi)

T (4.1)

where

• ki is the number of non-missing observed variables in row i of the data set

• ln() is the natural logarithm function (i.e. logarithm base e = 2.718...)

• π = 3.14159...

• | ∗ | is the determinant of ∗

• Σi is the filtered model-implied manifest covariance matrix (ki × ki matrix)

• Xi is the filtered row i of the data set (1× ki matrix)

• Mi is the filtered model-implied manifest means row vector (1× ki matrix)

• Σ−1i is the inverse of Σi

• (∗)T is the transpose of ∗

Equation (4.1) is identically equal to −2 times the logarithm of the probability density function of the multivariate
normal distribution. The minus two log likelihood is quite literally minus two times the log of the probability of the
data given the model.
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There are several important things to note about Equation (4.1).

First, the model-implied means vector and the model-implied covariance matrix are for the the manifest variables only.
Although your structural equation model may involve both latent and manifest variables, the latent variables are only
present to explain the means and covariances of the observed variables in a meaningful and parsimonious way. The
free parameters of your model are adjusted to make the model-implied means vector and the model-implied covariance
matrix as close as possible to the observed means vector and the observed covariance matrix.

Filtering

Second, there are several references to filtered vectors and matrices. Filtering is how FIML handles missing data. All
filtering is performed based on the pattern of missingness observed in a given row of data. If the observed values of a
given row, i, of data are xi = (1, 14, NA, 2, NA,NA) where NA denotes a missing value, then the filtered data row
is Xi = (1, 14, 2). The filtered data row is merely the original data row with the missing entries removed. For this
row, entries 3, 5, and 6 are removed. Alternatively, entries 1, 2, and 4 are kept.

The filtered, model-implied means row vector is similar. If the original model-implied means row vector is M =
(2, 15, 0, 3, 1, 2), then the filtered model-implied means row vector for row i is Mi = (2, 15, 3), keeping only entries
1, 2, and 4.

The filtered, model-implied covariance matrix is marginally more complicated. It must be selected on both rows and

columns. If Σ is the model-implied covariance matrix and Σ is given by Σ =


1 3 1 2 1 2
3 13 3 6 3 6
1 3 2 2 3 2
2 6 2 8 2 4
1 3 3 2 14 2
2 6 2 4 2 5

 then

the filtered covariance matrix selects rows 1, 2, and 4 Σ =


1 3 1 2 1 2
3 13 3 6 3 6
1 3 2 2 3 2
2 6 2 8 2 4
1 3 3 2 14 2
2 6 2 4 2 5

 and columns 1, 2, and 4.

Σ =


1 3 1 2 1 2
3 13 3 6 3 6
1 3 2 2 3 2
2 6 2 8 2 4
1 3 3 2 14 2
2 6 2 4 2 5

 The selection on both rows and columns yields the following filtered expected

covariance matrix. Σi =

 1 3 2
3 13 6
2 6 8

 In practical implementations of FIML, the data are first sorted based on

their pattern of missingness, so that all the rows missing on variables 3, 5, and 6 are computed together followed by all
the rows with a different missingness pattern. This sorting allows fewer filterings to be performed and often accelerates
the likelihood computation. In the row objective implementation shown below there is no data sorting because it is for
demonstration purposes only. The implementation of FIML in the backend of OpenMx uses this data sorting and other
techniques to provide speed ups. The details are in the source code at http://openmx.psyc.virginia.edu/svn/tags/stable-
1.2/R/MxFIMLObjective.R and http://openmx.psyc.virginia.edu/svn/tags/stable-1.2/src/omxFIMLObjective.c .

Quadratic Products

There is one final note to discuss about Equation (4.1). A very important component to Equation (4.1) is (Xi −
Mi)Σ

−1
i (Xi −Mi)

T. It is a quadratic form. Any expression of the form xAxT where x is a row-vector and A is a
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matrix is called a quadratic form. Equivalently, a quadratic form can be stated as xTAx where x is a column-vector. In
mathematical circles it is typical to express quadratic forms in terms of columns vectors as xTAx, whereas in statistical
circles it is common to express quadratic forms in terms of row vectors as xAxT. The difference is completely arbitrary
and due to tradition and convenience. Quadratic forms arise in many disciplines: in engineering as linear quadratic
regulators, in physics as potential and kinetic energy, and in economics as utility functions. Quadratic form appear in
many optimization problems, so it is no surprise that they appear in the FIML equation.

A quadratic form xAxT can also be thought of as a quadratic product of x and A, so that x
⊗
A = xAxT.

The particular quadratic form in Equation (4.1) has a special meaning and interpretation. It is the squared Mahalanobis
distance from the data row Xi to the mean vector Mi in the multivariate space defined by the covariance matrix Σi.
Intuitively, the Mahalanobis distance from the mean vector tells you how far an observation is from the center of the
distribution, taking into account the spread of the distribution in all directions.

For well-behaved covariance matrices, the value of the quadratic form in equation (4.1) (i.e. the squared Mahalanobis
distance) is always greater than or equal to zero, and equal to zero only when the observation row vector is exactly
equal to the mean vector. The likelihood functions in maximum likelihood (ML) and in FIML are not defined when
this is not the case. In general for any row-vector x and square, symmetric matrix A, if xAxT > 0 for any x 6= 0, then
the quadratic form xAxT and the matrix A are called positive definite.

Because ML and FIML are not defined when the model-implied covariance matrix is not positive definite, frequent and
often cryptic error message that users of any structural equation modeling program receive is something like ERROR:
EXPECTED COVARIANCE MATRIX IS NOT POSITIVE DEFINITE. A number of different problems could induce
this error. The model may be unidentified; a variable may have zero variance, i.e. be a constant; one variable might
be a linear combination of another variable or equal to another variable; the starting values might imply an impossible
covariance matrix; a variable may have zero or negative error (i.e. residual) variance. In any case, it is a good idea to
check your model specification for theoretical and typographical errors, and if you are expecting a parameter like an
error variance to be greater than zero then set zero as that parameter’s lower bound.

Now that the FIML equation for a single row of data has been discussed, it is relevant to see how the full information
maximum likelihood of the entire data set is computed.

Likelihood of the Entire Data

The minus two log likelihood of the entire data set is the sum of the minus two log likelihoods of the rows.

L =

N∑
i=1

Li

where there are N rows in the data.

4.3.2 Row Objective Example

We will now implement FIML using a row-wise objective function. The mxRowObjective() function evaluates
an mxAlgebra for each row of a data set. It then stores the results of this row-wise evaluation in an mxAlgebra
which is by default called “rowResults”. Finally, the row results must be collapsed into a single number. Another
mxAlgebra called the “reduceAlgebra” takes the row results and reduces them to a single number which is then
minimized.

Data

For this example we will simulate our own data. We will use the mvrnorm() function which lives is the MASS
package. The mvrnorm() function generates a multivariate random normal sample with a given vector of means and
a given covariance matrix. The following code generates the data.
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require(MASS)
set.seed(200)
rs <- .5
xy <- mvrnorm (1000, c(0,0), matrix(c(1, rs, rs, 1), nrow=2, ncol=2))

The data have 2 variables with 1000 rows. The true means are 0. Each variable has a true variance of 1.0, and a
covariance of 0.5.

Some further data processing will prove helpful. First, we recast the generated data as a data.frame object in R.
Second, we tell R that what we want the variables names to be. Finally, we look at a summary of the data set and the
observed covariance matrix which differs slightly from the covariance matrix used to generate the data.

testData <- as.data.frame(xy)
testVars <- c(’X’,’Y’)
names(testData) <- testVars
summary(testData)
cov(testData)

Now the data has been generated and we can specify the saturated model.

Model Specification

We generate an mxModel, give it data, and two mxMatrix objects. The first mxMatrix is a row-vector or com-
pletely free parameters and is the model-implied means vector. Because we are specifying the saturated model, the
means are freely estimated. The second mxMatrix gives the model-implied covariance matrix. Because we are spec-
ifying the saturated model, the covariance matrix is freely estimated, however it is still constrained to by symmetric
and the starting values are picked so that the variances on the diagonal are in general larger than the covariances.

bivCorModelSpec <- mxModel(
name="FIML Saturated Bivariate",
mxData(

observed=testData,
type="raw",

),
mxMatrix(

type="Full",
nrow=1,
ncol=2,
free=TRUE,
values=c(0,0),
name="expMean"

),
mxMatrix(

type="Symm",
nrow=2,
ncol=2,
values=c(.21, .2, .2, .21),
free=TRUE,
name=’expCov’

)
)

Filtering

We create a new mxModel that has everything from the previous model. We then create mxAlgebra objects that
filter the expected means vector and the expected covariance matrix. We also create an mxAlgebra that keeps track

156 Chapter 4. Advanced Concepts



OpenMx User Guide, Release 1.2.0-1919

of the number of variables that are not missing in a given row.

bivCorFiltering <- mxModel(
model=bivCorModelSpec,
mxAlgebra(

expression=omxSelectRowsAndCols(expCov, existenceVector),
name="filteredExpCov",

),
mxAlgebra(

expression=omxSelectCols(expMean, existenceVector),
name="filteredExpMean",

),
mxAlgebra(

expression=sum(existenceVector),
name="numVar_i")

)

Calculations

We create a new mxModel that has everything from the previous models.

bivCorCalc <- mxModel(
model=bivCorFiltering,
mxAlgebra(

expression = log(2*pi),
name = "log2pi"

),
mxAlgebra(

expression=log2pi %*% numVar_i + log(det(filteredExpCov)),
name ="firstHalfCalc",

),
mxAlgebra(

expression=(filteredDataRow - filteredExpMean) %&% solve(filteredExpCov),
name = "secondHalfCalc",

)
)

Row Objective Specification

We create a new mxModel that has everything from the previous models.

bivCorRowObj <- mxModel(
model=bivCorCalc,
mxAlgebra(

expression=(firstHalfCalc + secondHalfCalc),
name="rowAlgebra",

),
mxAlgebra(

expression=sum(rowResults),
name = "reduceAlgebra",

),
mxRowObjective(

rowAlgebra=’rowAlgebra’,
reduceAlgebra=’reduceAlgebra’,
dimnames=c(’X’,’Y’),

)
)
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bivCorTotal <- bivCorRowObj

Model Fitting

bivCorFit <- mxRun(bivCorTotal)
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FIVE

CHANGES IN OPENMX

5.1 Release 1.2.1

• bug fix for interaction of matrix transpose and square bracket substitutions

• renaming mxLISRELObjective() to imxLISRELObjective(), LISREL objective function is not yet implemen-
tated.

• improved error messages when a free parameter has multiple lbounds/ubounds

5.2 Release 1.2.0-1926 (February 04, 2012)

• new interface such that ‘objective@info$expMean‘, ‘objective@info$expCov‘ and ‘objec-
tive@info$likelihoods‘ are available in FIML or RAM objective functions.

• bug fix for omxSetParameters with lbound or ubound of NA.

• catching unknown matrix operator or function in mxAlgebra() or mxConstraint() declaration

• deprecated ‘all’ argument from mxPath function and replaced it with ‘connect’ argument. Also updated demos
that used ‘all’ argument and documentation.

• removed ‘excludeself’ argument from mxPath() function

• added deprecation warning for argument ‘all’ = TRUE in mxPath()

• added support for OpenMP in hessian calculation

• added support for OpenMP in continuous FIML objective function

• added support for OpenMP in ordinal FIML objective function

• added support for OpenMP in joint ordinal/continuous FIML objective function

• added more descriptive error message to mxOption()

• serializing the sum operation on likelihoods - floating point addition is not associative

5.3 Release 1.1.2-1818 (October 24, 2011)

• fixed bug in summary() function, see http://openmx.psyc.virginia.edu/thread/1104

• fixed bug in independence model likelihood calculation for ML objective
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• included support for gcc 4.5 and 4.6 under 32-bit x86

5.4 Release 1.1.1-1784 (September 11, 2011)

• fixed several bugs in joint ordinal-continuous integration

• fixed several typos in User Guide

5.5 Release 1.1.0-1764 (August 22, 2011)

• Joint and Ordinal documentation included and up to date.

• added deprecation warning for argument ‘all’=TRUE in mxPath()

• added omxSelectRowsAndCols, omxSelectRows and omxSelectCols documentation

• fixed model flattening to keep track of confidence intervals in submodels

• added error checking for dimnames on MxMatrix and MxAlgebra objects

• reformated comments and heading style for all demos

• fixed segmentation fault on backend error condition

• turn off jiggling of free parameters with starting values of 0.0 when useOptimizer=FALSE

• allow non-RAM objective functions in RAM model

• change model type names to ‘default’ and ‘RAM’

• no longer explicitly transforming RAM + raw data models into FIML models

• fixed bug in MxMatrix indexing operator

• added argument ‘threshnames’ to mxFIMLObjective() and mxRAMObjective()

• renaming majority of omx* functions to imx* functions. See http://openmx.psyc.virginia.edu/thread/761

• added error checking to mxOption() function

• added “Optimality tolerance” to mxOption() selection

• added ‘lbound’ and ‘ubound’ columns to summary() output of free parameters

• added asterisks to the ‘lbound’ and ‘ubound’ columns when feasibility tolerance is met

• added “omxNot” function to the set of available mxAlgebra() function

• added “omxSelectRows”, “omxSelectCols”, and “omxSelectRowsAndCols” as mxAlgebra operators()

• added “mean” function to the set of available mxAlgebra() functions

• added slots “expCov” and “expMean” to the MxRAMObjective function

• added useOptimizer option to mxRun.

• added error checking in frontend and backend for non-positive-definite observed covariance matrices

• added “omxGreaterThan”, “omxLessThan”, “omxApproxEquals”, “omxAnd”, and “omxOr” operators to the
set of mxAlgebra() operators

• error checking for model[[1]] or model[[TRUE]]

• error checking in the front-end whether more than 20 ordinal columns are present in a data set
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• improved performance in the front-end in mxModel() for adding paths to RAM models

• print name of algebra when operator has too few or too many arguments

• added mxErrorPool() function and R documentation.

• added Apache license information to all R documentation files.

• new implementation of mxEval().

• new argument ‘defvar.row’ to mxEval(). See ?mxEval.

• handling definition variables for (I - A) ^ - 1 speedup

• handling square bracket labels for (I - A) ^ - 1 speedup

• added argument ‘free’ to omxGetParameters. See ?omxGetParameters.

• added argument ‘strict’ to omxSetParameters. See ?omxSetParameters.

• eliminated warnings for confidence interval optimization codes

• added ”...” argument to mxRObjectiveFunction()

• fix memory leak in RAM objective function

• removed dependency to MBESS library in R documentation

• added more descriptive error message when thresholds are not sorted

• incorporated NaN unsafe matrix-matrix multiplication (dgemm) from R <= 2.11.1

• incorporated NaN unsafe matrix-vector multiplication (dgemv) from R <= 2.11.1

• return NA in mxVersion() if “OpenMx” cannot be found

• fix infinite loop in objective function transformations

• added initialization to load OpenMx on swift workers

• implemented omxParallelCI() to calculate confidence intervals in parallel

• only calculating CIs for upper triangle of symmetric matrices

• cleanup appearance of transient MxMatrix objects in error messages

• fix bug with very large number of omxUntitledName() objects

• added optional argument CPUS=n to “make test” target

• change snowfall interface to use sfClusterApplyLB()

• storing raw data in row-major order, and copying contiguous data rows

• fix bug in mxModel() when using remove = TRUE

5.6 Release 1.0.7-1706 (July 6, 2011)

• error checking in front-end for non-positive-definite observed covariance matrices

• fix bug in MxMatrix indexing operator

• added deprecation warning for argument ‘all’=TRUE in mxPath()
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5.7 Release 1.0.6-1581 (March 10, 2011)

• Bug fix corner case in sorting data with definition variables

5.8 Release 1.0.5-1575 (March 8, 2011)

• added error checking in ML objective to match expected covariance and observed covariance matrices

• updated BootstrapParallel.R demo to use mxData() instead of model@data

• added the dataset from the Psychometrika article (www.springerlink.com/content/dg37445107026711)

5.9 Release 1.0.4-1540 (January 16, 2011)

• added initialization to load OpenMx on swift workers

• only calculating CIs for upper triangle on symmetric matrices

• fix bug with very large number of omxUntitledName() objects

• incorporated NaN unsafe matrix-vector multiplication (dgemv) from R <= 2.11.1

• fix bug in mxModel() when using remove = TRUE

• Added intervals to MxModel class documentation

5.10 Release 1.0.3-1505 (November 10, 2010)

• return NA in mxVersion() if “OpenMx” cannot be found

• eliminate infinite loop in objective function transformations

5.11 Release 1.0.2-1497 (November 5, 2010)

• missing <errno.h> include

• fix memory leak in RAM objective function

• incorporated NaN unsafe matrix-matrix multiplication (dgemm) from R <= 2.11.1

5.12 Release 1.0.1-1464 (October 8, 2010)

• bugfix for mxEval() and MxData objects

• handling definition variables for (I - A) ^ - 1 speedup

• handling square bracket labels for (I - A) ^ - 1 speedup

• added argument ‘free’ to omxGetParameters. See ?omxGetParameters.

• added argument ‘strict’ to omxSetParameters. See ?omxSetParameters.

• eliminated warnings for confidence interval optimization codes
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5.13 Release 1.0.0-1448 (September 30, 2010)

• added missing entries to demo 00INDEX file

5.14 Release 0.9.2-1446 (September 26, 2010)

• added growth mixture models to user guide

• added initial Swift hook in omxLapply() - currenly activated only for mxRun calls

• fixed a bug in mxRename() when encountering symbol of missingness

• bugfix for crash when ‘*’ is used instead of ‘%*%’

• feature removal: square brackets in MxMatrix labels now accept only literal values

• bugfix for definition variables used in mxRowObjective (which is still experimental)

• bugfix for (I - A) ^ -1 speedup with FIML optimization

5.15 Release 0.9.1-1421 (September 12, 2010)

• fixed a bug in -2 LL calculation in RAM models with definition variables and raw data

5.16 Release 0.9.0-1417 (September 10, 2010)

• improved error messages for non 1 x n means vectors in FIML and ML

• fixed a performance bug that was forcing too many recalculations of the covariance matrix in FIML optimiza-
tions.

• defualt behavior is to disable standard error calculations when model contains nonlinear constraints

• improved error messages for NA values in definition variables

• added error message when expected covariance dimnames and threshold dimnames do not contain the same
elements.

• fixed a bug when mxRename() encounters a numeric or character literal.

• new chapters added to OpenMx user guide.

• fixed a bug in -2 log likelihood calculation with missing data

5.17 Release 0.5.2-1376 (August 29, 2010)

• improved error messages when identical label is applied to free and fixed parameters

• added ‘onlyFrontend’ optional argument to mxRun() function. See ?mxRun.

• disabling cbind() and rbind() transformations as they are broken.

5.13. Release 1.0.0-1448 (September 30, 2010) 163



OpenMx User Guide, Release 1.2.0-1919

5.18 Release 0.5.1-1366 (August 22, 2010)

• added error detection when multiple names are specified in mxMatrix(), mxAlgebra(), etc.

• removed ‘digits’ argument from mxCompare. Target behavior of argument was unclear. See ?mxCompare

• more informative error messages for ‘dimnames’ argument of objective functions

• more informative error messages when constraints have wrong dimensions

• improved error detected for ‘nrow’ and ‘ncol’ arguments of mxMatrix() function

• fixed a bug in ordinal FIML objective functions with non-used continuous data

5.19 Release 0.5.0-1353 (August 08, 2010)

• calculating cycle length of RAM objective functions

• bugfix: preserve rownames when converting data.frame columns to numeric values

• ‘nrow’ and ‘ncol’ arguments now supercede matrix dimensions in mxMatrix()

• add boolean argument ‘vector’ to mxRAMObjective() for returning the vector of likelihoods

• added demo(OneFactorModel_LikelihoodVector) as example of ‘vector=TRUE’ in RAM model

• cbind() and rbind() inside MxAlgebra expressions with all arguments as MxMatrix objects are themselves trans-
formed into MxMatrix objects

• bugfix with square bracket substitution

• finishing implementing sorting of raw data in mxFIMLObjective()

• added ‘RAM Optimization’ and ‘RAM Max Depth’ to model options. See ?mxOption

• added support for linux x86_64 with gcc 4.1.x

5.20 Release 0.4.1-1320 (June 12, 2010)

• confidence interval optimizations now jitter if they can’t get started

• added error checking for dimensions of expected means in ML + FIML objectives

• check for missing observed means when using (optional) expected means in ML

• added citation(“OpenMx”) information

5.21 Release 0.4.0-1313 (June 09, 2010)

• fixed bug in calculation of confidence intervals around non-objective values

• checking for partial square bracket references on input

• fixed error reporting for non-positive-definite covariances in FIML

• implemented initial sorting-based speedup for FIML objectives

• added ‘No Sort Data’ to mxOptions()
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• eliminated getOption(‘mxOptimizerOptions’) and getOption(‘mxCheckpointOptions’)

• added getOption(‘mxOptions’)

• error messages for illegal names provide function call information

• added ‘estimates’ column to confidence intervals in summary() of model

• fixed bug so checkpointing will work in R 2.9.x series

• fixed bug so mxRename() works on confidence interval specification

• renaming ‘estimates’ column of confidence interval summary output to ‘estimate’

5.22 Release 0.3.3-1264 (May 24, 2010)

• confidence interval frontend was requesting nonexistent matrices

• omxNewMatrixFromMxMatrix() assumed input was always integer vector S-expression

• confidence intervals mislabeling free parameter names

5.23 Release 0.3.2-1263 (May 22, 2010)

• added ‘newlabels’ argument to omxSetParameters() function

• now throwing errors to the user when detected from the backend in mxRun()

• checkpointing mechanism implemented - mxRun(model, checkpoint = TRUE)

• never computing confidence intervals for matrix cells where free = FALSE (all bets are off on algebras)

• added mxOption(model, “CI Max Iterations”, value)

• added documentation for mxRestore() function

• default expected means vectors are no longer generated

5.24 Release 0.3.1-1246 (May 09, 2010)

• new arguments to mxRun() for checkpointing and socket communication (doesn’t work yet)

• throw an error if FIML objective has thresholds but observed data is not a data.frame object.

• bugfix for R version 2.11.0 is detecting as.symbol(“”) character as missing function parameter

• mxFactor() function accepts data.frame objects

• added mxCI() function to calculate likelihood-based confidence intervals

• mxCompare() shows model information for base models

• added flag all=[TRUE|FALSE] to mxCompare() function

• ‘SaturatedLikelihood’ argument to summary() function will accept MxModel object
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5.25 Release 0.3.0-1217 (Apr 20, 2010)

5.25.1 new features

• implemented new ordinal data interface http://openmx.psyc.virginia.edu/thread/416#comment-1421 (except for
‘means=0’ component)

• added mxFactor() function (see ?mxFactor for help)

• added R documentation for rvectorize() and cvectorize()

• implemented eigenvalues and eigenvectors

• added ‘numObs’, ‘numStats’ arguments to mxAlgebraObjective()

• added ‘numObs’, ‘numStats’ arguments to summary()

5.25.2 changes to interface

• mxConstraint(“A”, “=”, “B”) is now written as mxConstraint(A == B)

• renaming ‘cov’ argument to ‘covariance’ in omxMnor()

• renaming ‘lbounds’ argument to ‘lbound’ in omxMnor()

• renaming ‘ubounds’ argument to ‘ubound’ in omxMnor()

• renaming ‘cov’ argument to ‘covariance’ in omxAllInt()

• argument ‘silent = TRUE’ to mxRun() will no longer suppress warnings

• argument ‘suppressWarnings = TRUE’ to mxRun() will suppress warnings

5.25.3 bug fixes

• added error checking for mxBounds() with undefined parameter names

• improving error messages in mxMatrix() function

• fixed aliasing bug in mxAlgebra() with external variables and constant values

5.25.4 internal

• added directory to repository for nightly tests (“make nightly”)

• performance improvement to namespace conversion

• changing MxPath data structure from a list to an S4 object

• new signature for omxSetParameters(model, labels, free, values, lbound, ubound, indep)

• checked in implementation of mergesort

• changed mxCompare() signature to mxCompare(base, comparison, digits = 3)
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5.26 Release 0.2.10-1172 (Mar 14, 2010)

• bugfix for assigning default data name when default data does not exist

• bugfix for sharing/unsharing data to a three-level hierarchy

• bugfix for error reporting in bad matrix access, uncalculated std. errors, and poor omxAllint thresholds

• implemented rvectorize, cvectorize algebra functions: vectorize by row, and vectorize by column

• not allowing the following forbidden characters in names or labels: “+-!~?:*/^%<>=&|$”

• added timestamp to summary() output

• reimplemented summary() function to handle unused data rows, and independent submodels

• reimplemented names(model), model$foo, and model$foo <- value to return all components of a model tree

• started work on an “OpenMx style guide” section to the User Guide.

• fix documentation + demo errors brought to our attention by dbishop

5.27 Release 0.2.9-1147 (Mar 04, 2010)

• bugfix for ordinal FIML with columns that are not threshold columns

• bugfix for detection of algebraic cycles when multiple objective functions are present

• test cases included for standard error calculation

• enabled standard error calculation by default

5.28 Release 0.2.8-1133 (Mar 02, 2010)

• bugfix for memory leak behavior in kronecker product calculation

• implemented kronecker exponentiation operator %^%.

• actually updating means calculations in ordinal FIML models

• removing standard errors from summary() until they are computed correctly

5.29 Release 0.2.7-1125 (Feb 28, 2010)

• added ‘unsafe’ argument to mxRun function. See ?mxRun for more information.

• bugfix for filtering definition variable assignment to current data source.

• bugfix for using data.frame with integer type columns that are not factors.

5.30 Release 0.2.6-1114 (Feb 23, 2010)

• implemented omxAllInt, use ?omxAllInt for R help on this function

• implemented omxMnor, use ?omxMnor for R help on this function
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• added option to calculate Hessian after optimization. See ?mxOption for R help.

• added option to calculate standard errors after optimization. See ?mxOption for R help.

• added R documentation for vech, vechs, vec2diag, and diag2vec

• performance improvements for independent submodels

• added ‘silent=FALSE’ argument to mxRun() function

• added R documentation for omxApply(), omxSapply(), and omxLapply()

• wrote mxRename() and added R documentation for function

• added ‘indep’ argument to summary() to ignore independent submodels (see ?summary)

• added ‘independentTime’ to summary() output. Wall clock time for independent submodels.

• added ‘wallTime’ and ‘cpuTime’ to summary() output. Total wall clock time and total cpu time.

• implemented ‘:’ operator for MxAlgebra expressions. 1:5 returns the vector [1,2,3,4,5]

• implemented subranges for ‘[’ operator in MxAlgebra expressions. foo[1:5,] is valid inside algebra.

• added omxGetParameters, omxSetParameters, omxAssignFirstParameters. Use ? for documentation.

• renamed all objective function generic functions from omxObj* to genericObj*

• enumerated OpenMx and NPSOL options in ?mxOption documentation

• implemented foo[x,y] and foo[x,y] <- z for MxMatrix objects

5.31 Release 0.2.5-1050 (Jan 22, 2010)

• added ‘mxVersion’ slot to output of summary() function.

• added documentation of summary() function.

• set default function precision for ordinal FIML evaluation to “1e-9”

• not throwing an error on mxMatrix(‘Full’, 3, 3, labels = c(NA, NA, NA))

• applying identical error checking to single thresholds matrix and single thresholds algebra

• implemented generic method names() for MxModel objects.

• implemented vec2diag() and diag2vec() matrix algebra functions.

5.32 Release 0.2.4-1038 (Jan 15, 2010)

• definition variables can now be used inside algebra expressions

• definition variables inside of MxMatrices will populate to the 1st row before conformability checking. In plain
english: you do not need to specify the starting values for definition variables.

• the square-bracket operator when used in MxMatrix labels is no longer restricted to constants for the row and
column. The row and column arguments will accept any term that evaluates to a scalar value or a (1 x 1) matrix.

• summary() on a model returns a S3 object. Behaves like summary() in stats package.

• eliminated UnusualLabels.R test case. Too many problems with windows versus OS X versus linux.

• implemented vech() and vechs() functions: half-vectorization and strict half-vectorization
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• fixed bug in ordinal FIML when # of data columns > # of thresholds

• added ‘frontendTime’ and ‘backendTime’ values to summary() output. They store the elapsed time of a model
in the R front-end and C back-end, respectively.

• created a name space for the OpenMx library. Only mx**() and omx**() functions should be exported to the
user, plus several miscellaneous matrix functions and S4 generic functions.

• corrected ‘observedStatistics’ output of summary() to exclude definition variables

• corrected ‘observedStatistics’ output of summary() count the number of equality constraints

5.33 Release 0.2.3-1006 (Dec 04, 2009)

• added ‘vector’ argument to mxFIMLObjective() function. Specifies whether to return the likelihood vector (if
TRUE) or the sum of log likelihoods (if FALSE). Default value is FALSE.

• renamed omxCheckEquals() to omxCheckIdentical(). omxCheckIdentical() call “identical” so that NAs can be
compared.

• added checking of column names of F and M matrices in RAM objective functions.

• added ‘dimnames’ argument to mxRAMObjective() function. Populates the column names of F and M matrices.

• added square bracket operator to MxAlgebra expressions. A[x,y] or A[,y] or A[x,] or A[,] are valid.

• square bracket operator supports row and column string arguments.

• mxModel(remove=TRUE) accepts both character names or S4 named entities.

• added support for x86_64 on OS X 10.6 (snow leopard)

• fixed support for x86_64 on Ubuntu 9.10 (gcc 4.4)

• throw error message when inserting a named entity into a model with an identical name

• added Anthony William Fairbank Edwards “Likelihood” (1972; 1984) A, B, O blood group example to online
documentation

5.34 Release 0.2.2-951 (Oct 29, 2009)

• omxGraphviz() either prints to stdout or to a filename

• updated omxGraphviz() to draw an arrow if (value != 0 || free == TRUE || !is.na(label))

• omxGraphviz() returns a character string invisibly

• error checking for bogus definition variables

• summary() uses matrix dimnames by default, use options(‘mxShowDimnames’=FALSE) to disable

• added support for gcc 4.4 (Ubuntu 9.10) on x86 and x86_64 architectures

• created R documention for omxGraphviz() function

• generalized dependency specification for objective functions (omxObjDependencies)

• fixed cross-reference links in User Guide
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5.35 Release 0.2.1-922 (Oct 10, 2009)

• checked observed data for dimnames on ML objective functions

• using dimnames= argument to mxMLObjective() and mxFIMLObjective() propagates to MxMatrix objects on
output.

• bug fix for error message where model name is incorrect

• updated user guide in response to feedback from beta testers

• incremented version number to 0.2.1-922 to sync demos and user guide

5.36 Release 0.2.0-905 (Oct 06, 2009)

• several of the twin model demo examples have been recoded.

• fixed bug with non-floating point matrices.

• more error checking for mxPath().

• tools/mxAlgebraParser.py will convert Mx 1.0 algebra expressions (Python PLY library is required).

• renamed “parameter estimate” column to “Estimate” and “error estimate” to “Std.Error” in summary().

• added ‘dimnames’ argument to mxFIMLObjective() and mxMLObjective().

• error checking for RAM models with non-RAM objective functions.

5.37 Release 0.1.5-851 (Sep 25, 2009)

• improved error messages on unknown identifier in a model (beta tester issue)

• fixed bug in mxMatrix() when values argument is matrix and byrow=TRUE

• implemented square-bracket substitution for MxMatrix labels

• fixed a bug in computation of omxFIMLObjective within an algebra when definition variables are used

• significant alterations to back-end debugging flags

• tweaked memory handling in back-end matrix copying

• added support for x86_64 linux with gcc 4.2 and 4.3

5.38 Release 0.1.4-827 (Sep 18, 2009)

• added checking and type coercion to arguments of mxPath() function (a beta tester alerted us to this)

• moved matrices into submodels in UnivariateTwinAnalysis_MatrixRaw demo

• added Beginners Guide to online documentation

• mxRun() issues an error when the back-end reports a negative status code

• named entities and free or fixed parameter names cannot be numeric values

• constant literals are allowed inside mxAlgebra() statements, e.g. mxAlgebra(1 + 2 + 3)
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• constant literals can be of the form 1.234E+56 or 1.234e+56.

• type checking added to mxMatrix arguments (prompted by a forum post)

• mxPath() issues an error if any of the arguments are longer than the number of paths to be generated

• data frames are now accepted at the back-end

• FIML ordinal objective function is now working. Still a bit slow and inelegant, but working

• FIML ordinal now accepts algebras and matrices. dimnames of columns must match data elements

• implemented free parameter and fixed parameter substitution in mxAlgebra statements

• implemented global variable substitution in mxAlgebra statements

• turned off matrix and algebra substitution until a new proposal is decided

• snow and snowfall are no longer required packages

• added cycle detection to algebra expressions

• mxEval() with compute = TRUE will assign dimnames to algebras

• added dimnames checking of algebras in the front-end before optimization is called

• added ‘make rproftest’ target to makefile

5.39 Release 0.1.3-776 (Aug 28, 2009)

• mxEvaluate() was renamed to mxEval() after input from beta testers on the forums.

• new function mxVersion that prints out the current version number (beta tester request).

• When printing OpenMx objects, the @ sign is used where it is needed if you would want to print part of the
object (beta tester request).

• now supports PPC macs.

• implemented AIC, BIC and RMSEA calculations.

• mxMatrix documentation now talks about lower triangular matrices (beta tester request).

• fixed bugs in a number of demo scripts.

• added chi-square and p-value patch from beta tester Michael Scharkow.

• added comments to demo scripts.

• fixed a bug in the quadratic operator (a beta tester alerted us to this).

• means vectors are now always 1xn matrices (beta tester request).

• added an option “compute” to mxEval() to precompute matrix expressions without going to the optimizer.

• Matrix algebra conformability is now tested in R at the beginning of each mxRun().

• named entities (i.e. mxMatrices, mxAlgebras, etc.) can no longer have the same name as the label of a free
parameter. (This seems obscure, but you will like what we do with it in the next version!)

• can use options(mxByrow=TRUE) in the R global options if you always read your matrices in with the by-
row=TRUE argument. Saves some typing. (beta tester request)

• fixed the standard error estimates summary.

• added mxVersion() function to return the version number (as a string).
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5.40 Release 0.1.2-708 (Aug 14, 2009)

• Added R help documentation for omxCheckCloseEnough(), omxCheckWithinPercentError(),
omxCheckTrue(), omxCheckEquals(), and omxCheckSetEquals()

• (mxMatrix) Fixed a bug in construction of symmetric matrixes.

– now supports lower, standardized, and subdiagonal matrices.

5.41 Release 0.1 (Aug 03, 2009)

• (mxEvaluate) mxEvaluate translates MxMatrix references, MxAlgebra references, MxObjectiveFunction refer-
ences, and label references.

• (mxOptions) added ‘reset’ argument to mxOptions()

• (mxPath) renamed ‘start’ argument of mxPath() to ‘values’

– renamed ‘name’ argument of mxPath() to ‘labels’

– renamed ‘boundMin’ argument of mxPath() to ‘lbound’

– renamed ‘boundMax’ argument of mxPath() to ‘ubound’

– eliminated ‘ciLower’ argument of mxPath()

– eliminated ‘ciUpper’ argument of mxPath()

– eliminated ‘description’ argument of mxPath()

• (dimnames) implemented dimnames(x) for MxMatrix objects

– implemented dimnames(x) <- value for MxMatrix objects

– implemented dimnames(x) for MxAlgebra objects

– implemented dimnames(x) <- value for MxAlgebra objects

• (mxMatrix) added ‘dimnames’ argument to mxMatrix()

• (mxData) renamed ‘vector’ argument of mxData() to ‘means’
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• OpenMx R documentation

173



OpenMx User Guide, Release 1.2.0-1919

174 Chapter 6. Reference



CHAPTER

SEVEN

INDICES AND TABLES

• search
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