OpenMx Documentation
Release 0.1

OpenMx Development Team

October 07, 2009

Introduction
1.1 Tutorial
1.2 Two Model Styles - Two Data Styles

Beginners Guide to OpenMx

2.1
22
2.3

Pass By Value (READ THIS)
Matrix Model Specification
Path Model Specification.

Examples, Path Specification

3.1
3.2
33
34
35
3.6

Regression, Path Specification

Factor Analysis, Path Specification

Time Series, Path Specification

Multiple Groups, Path Specification

Examples, Matrix Specification

4.1 Regression, Matrix Specification.
4.2 Factor Analysis, Matrix Specification

4.3 Time Series, Matrix Specification
4.4 Multiple Groups, Matrix Specification

4.5 Genetic Epidemiology, Matrix Specification

4.6 Definition Variables, Matrix Specification

Changes in OpenMx

51 trunk
52 Release 0.1.5-851
5.3 Release 0.1.4-827
54 Release 0.1.3-776
5.5 Release 0.1.2-708
5.6 Release 0.1 (August 3,2009)
Reference

Indices and tables

Genetic Epidemiology, Path Specification
Definition Variables, Path Specification

CONTENTS

OpenMx Documentation, Release 0.1

Contents:

CONTENTS 1

OpenMx Documentation, Release 0.1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

1.1 Tutorial

1.1.1 Prerequisites
Congratulations! You have decided to check out OpenMx, the open source version of the statistical modeling package
Mx, rewritten in R. Before we get started, let’s make sure you have the software installed and ready to go. You need:
* R
* OpenMx

1.1.2 Simple OpenMx Script

We will start by showing some of the main features of OpenMx using simple examples. For those familiar with Mx, it
is basically a matrix interpreter combined with a numerical optimizer to allow fitting statistical models. Of course you
do not need OpenMx to perform matrix algebra as that can already be done in R. However, to accommodate flexible
statistical modeling of the type of models typically fit in Mx, Mplus or other SEM packages, special kinds of matrices
and functions are required which are bundled in OpenMx. We will introduce key features of OpenMx using a matrix
algebra example. Remember that R is object-oriented, such that the results of operations are objects, rather than just
matrices, with various properties/characteristics attached to them. We will describe the script line by line; a link to the
complete script is here.

Say, we want to create two matrices, A and B, each of them a ‘Full’ matrix with 3 rows and 1 column and with the
values 1, 2 and 3, as follows:

1 1
A= 2 B=]2
3 3

we use the mxMatrix command, and define the type of the matrix (type=), number of rows (nrow=) and
columns (ncol=), its specifications (free=) and starting values (values=), optionally labels (1abels=), up-
per (ubound=) and lower (1bound=) bounds>, and a name (name=). The matrix A will be stored as the object
‘A

mxMatrix (
type="Full",
nrow=3,
ncol=1,

http://www.r-project.org/
http://openmx.psyc.virginia.edu
http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/MatrixAlgebra20090924.R

OpenMx Documentation, Release 0.1

values=c(1,2,3),
name="A"'

)

mxMatrix (
type="Full",
nrow=3,
ncol=1,
values=c(1,2,3),
name='B’

)

Assume we want to calculate the (1) the sum of the matrices A and B, (2) the element by element multiplication (Dot
product) of A and B, (3) the transpose of matrix A, and the (4) outer and (5) inner products of the matrix A, using
regular matrix multiplication, i.e.:

2 = A+B (1.1)
gl = AA (1.2)
B3 = t(A) (1.3)
¢ = Axt(4) (1.4)
B = t(A)xA (1.5)

we invoke the mxAlgebra command which performs an algebra operation between previously defined matrices.
Note that in R, regular matrix multiplication is represented by \ $+\ % and dot multiplication as =. We also assign the
algebras a name to refer back to them later:

mxAlgebra (
A + B,
name="qgl’

)

mxAlgebra (
A « A,
name='qg2’

)

mxAlgebra (
t(a),
name='qg3’

)

mxAlgebra (
A $x% t(Rh),
name='"qg4’

)

mxAlgebra (
t(A) %+% A,
name='"qgb’

)

For the algebras to be evaluated, they become arguments of the mxModel command, as do the defined matrices, each
separated by comma’s. The model, which is here given the name ‘algebraExercises’, is then executed by the mxRun
command, as shown in the full code below:

require (OpenMx)

algebraExercises <- mxModel (
mxMatrix (type="Full", nrow=3, ncol=1, values=c(l,2,3), name='A’"),
mxMatrix (type="Full", nrow=3, ncol=1, values=c(l,2,3), name='B’),
mxAlgebra (A+B, name="qgl’),

4 Chapter 1. Introduction

OpenMx Documentation, Release 0.1

mxAlgebra (AxA, name="qg2’),

mxAlgebra (t (A), name="9g3’),
mxAlgebra (A%+%t (A), name='g4’),
mxAlgebra (t (A) $*x%A, name=’'g5’))

answers <- mxRun (algebraExercises)
answers@algebras
result <- mxEval (list(gl,qg2,93,94,95),answers)

As you notice, we added some lines at the end to generate the desired output. The resulting matrices and algebras
are stored in answers; we can refer back to them by specifying answers@matrices or answers@algebras.
We can also calculate any additional quantities or perform extra matrix operations on the results using the mxEval
command. For example, if we want to see all the answers to the questions in matrixAlgebra.R, the results would look
like this:

(0111

[,1]
[1,] 2
[2,] 4
[3,] 6
[[2]]

[,1]
[1,] 1
[2,] 4
[3,] 9
[[3]]

(11 [,2] [,3]
[1,1] 1 2 3
[[4]]

(11 [,2]1 [,3]
[1,] 1 2 3
(2,1 2 4 6
[3,] 3 6 9
[[5]]

[,1]
[1,1] 14

So far, we have introduced five new commands: mxMatrix, mxAlgebra, mxModel, mxRun and mxEval. These
commands allow us to run a wide range of jobs, from simple matrix algebra to rather complicated SEM models. Let’s
move to an example involving optimizing the likelihood of observed data.

1.1.3 Optimization Script

When collecting data to test a specific hypothesis, one of the first things one typically does is checking the basic
descriptive statistics, such as the means, variances and covariances/correlations. We could of course use basic functions
in R, i.e., meanCol(Data) or cov(Data) to perform these operations. However, if we want to test specific hypotheses
about the data, for example, test whether the correlation between two variables is significantly different from zero, we
need to compare the likelihood of the data when the correlation is freely estimated with the likelihood of the data when
the correlation is fixed to zero. Let’s work through a specific example.

1.1. Tutorial 5

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/BivariateCorrelation20090925.R

OpenMx Documentation, Release 0.1

Say, we have collected data on two variables X and Y in 1000 individuals, and R descriptive statistics has shown that
the correlation between them is 0.5. For the sake of this example, we used another built-in function in the R package
MASS, namely mvrnorm, to generate multivariate normal data for 1000 individuals with means of 0.0, variances of
1.0 and a correlation (rs) of 0.5 between X and Y. Note the that first argument of mvrnorm is the sample size, the
second the vector of means, and the third the covariance matrix to be simulated. We save the data in the object xy and
create a vector of labels for the two variables in selVars which is used in the dimnames statement later on. The R
functions summary () and cov () are used to verify that the simulations appear OK.

#Simulate Data

require (MASS)

set.seed (200)

rs=.5

xy <- mvrnorm (1000, c(0,0), matrix(c(l,rs,rs,1l),2,2))
testData <- xy

selVars <— c('X’',’Y")

dimnames (testData) <- list (NULL, selVars)

summary (testData)

cov (testData)

To evaluate the likelihood of the data using SEM, we estimate a saturated model with free means, free variances and
a covariance. Let’s start with specifying the mean vector. We use the mxMat rix command, provide the type, here
Full, the number of rows and columns, respectively 1 and 2, the specification of free/fixed parameters, the starting
values, the dimnames and a name. Given all the elements of this 1x2 matrix are free, we can use free=True. The
starting values are provided using a list, i.e. ¢ (0, 0) . The dimnames are a type of label that is required to recognize
the expected mean vector and expected covariance matrix and match up the model with the data. For a mean vector,
the first element is NULL given mean vectors always have one row. The second element of the list should have the
labels for the two variables c (* X',/ Y’) which we have previously assigned to the object selVars. Finally, we
are explicit in naming this matrix expMean. Thus the matrix command looks like this. Note the soft tabs to improve
readability.

bivCorModel <- mxModel ("bivCor",
mxMatrix (

type="Full",
nrow=1,
ncol=2,
free=TRUE,
values=c(0,0),
name="expMean"

)y

Next, we need to specify the expected covariance matrix. As this matrix is symmetric, we could estimate it directly as
a symmetric matrix. However, to avoid solutions that are not positive definite, we will use a Cholesky decomposition.
Thus, we specify a lower triangular matrix (matrix with free elements on the diagonal and below the diagonal, and
zero’s above the diagonal), and multiply it with its transpose to generate a symmetric matrix. We will use a mxMat rix
command to specify the lower triangular matrix and a mxAlgebra command to set up the symmetric matrix. The
matrix is a 2x2 free lower matrix with ¢ (* X’ , "Y') (previously defined as selVars) as dimnames for the rows
and columns, and the name “Chol”. We can now refer back to this matrix by its name in the mxAlgebra statement.
We use a regular multiplication of Chol with its transpose t (Chol), and name this as “expCov”.

mxMatrix (
type="Lower",
nrow=2,
ncol=2,
free=TRUE,
values=.5,
name="Chol"

6 Chapter 1. Introduction

OpenMx Documentation, Release 0.1

)I

mxAlgebra (
expression=Chol %%% t (Chol),
name="expCov"

),

Now that we have specified our ‘model’, we need to supply the data. This is done with the mxData command. The
first argument includes the actual data, in the type given by the second argument. Type can be a covariance matrix
(cov), a correlation matrix (cor), a matrix of cross-products (sscp) or raw data (raw). We will use the latter option and
read in the raw data directly from the simulated dataset testData.

mxData (
observed=testData,
type="raw"

),

Next, we specify which objective function we wish to use to obtain the likelihood of the data. Given we fit to the raw
data, we use the full information maximum likelihood (FIML) objective function mxF IMLOb ject ive. Its arguments
are the expected covariance matrix, generated using the mxMatrix and mxAlgebra commands as “expCov”, and
the expected means vectors, generated using the mxMat rix command as “expMeans”.

mxFIMLObjective (
covariance="expCov",
means="expMean",
dimnames=selVars)

)

All these elements become arguments of the mxMode 1l command, seperated by comma’s. The first argument can be
a name, as in this case “bivCor” or another model (see below). The model is saved in an object ‘bivCorModel’. This
object becomes the argument of the mxRun command, which evaluates the model and provides output - if the model
ran successfully - using the following command.

bivCorFit <- mxRun (bivCorModel)

We can request various parts of the output to inspect by referring to them by the name of the object resulting from
the mxRun command, i.e. bivCorFit, followed by the name of the objects corresponding to the expected mean
vector, i.e. [[’ ExpMean’]], and covariance matrix, i.e. [[/ ExpCov’]], in quotes and double square brackets,
followed by @values. The command mxEval can also be used to extract relevant information, such as the like-
lihood, (objective) where the first argument of the command is the object of interest and the second the object
obtaining the results.

EM <- bivCorFit[[’expMean’]]@values
EC <- bivCorFit[[’expCov’]]@values
LL <- mxEval (objective,bivCorFit);

These commands generate the following output:

EM
X Y
[1,] 0.03211646 -0.004883803

EC

X Y
X 1.0092847 0.4813501
Y 0.4813501 0.9935387

1.1. Tutorial 7

OpenMx Documentation, Release 0.1

LL
[,1]
[1,]1 5415.772

Standard lists of parameter estimates and goodness-of-fit statistics can also be obtained with the summary command.

> summary (bivCorFit)
X Y
Min. :—2.942561 Min.
Ist Qu.:-0.633711 1st Qu.
Median :-0.004139 Median
Mean : 0.032116 Mean

3rd Qu.: 0.739236 3rd Qu.:

Max. : 4.173841 Max.

=3,
:=0.
:=0.
:=0.
0.
4.

296159
596177
010538
004884
598326
006771

name matrix row col parameter estimate error

1 <NA> expMean 1 1
2 <NA> expMean 1 2
3 <NA> Chol 1 1
4 <NA> Chol 2 1
5 <NA> Chol 2 2

Observed statistics: 2000
Estimated parameters: 5
Degrees of freedom: 1995

-2 log likelihood: 5415.772
Saturated -2 log likelihood:
Chi-Square:

p:
AIC (Mx): 1425.772
BIC (Mx): -4182.6
adjusted BIC:
RMSEA: 0

0.
-0.
1
0.
0.

032116456
004883803

.004631642

479130899
874055066

0.
.02235021
.01575904
.02099642
.01376876

o O O O

estimate
02228409

If we want to test whether the covariance/correlation is significantly different from zero, we could fit a submodel and
compare it with the previous saturated model. Given that this model is essentially the same as the original, except for
the covariance, we create a new mxModel (named ‘bivCorModelSub) with as first argument the old model (named
‘bivCorModel). Then we only have to specify the matrix that needs to be changed, in this case the lower triangular
matrix becomes essentially a diagonal matrix, obtained by fixing the off-diagonal elements to zero in the free and

values arguments

#Test for Covariance=Zero

bivCorModelSub <-mxModel (bivCorModel,

mxMatrix (

type="Diag",

nrow=2,
ncol=2,

free=TRUE,

dimnames=1list (selVars,

name="Chol"

selVars),

We can output the same information as for the saturated job, namely the expected means and covariance matrix and
the likelihood, and then use R to calculate other statistics, such as the Chi-square goodness-of-fit.

Chapter 1. Introduction

OpenMx Documentation, Release 0.1

bivCorFitSub <- mxRun (bivCorModelSub)
EMs <- mxEval (expMean, bivCorFitSub)
ECs <- mxEval (expCov, bivCorFitSub)
LLs <- mxEval (objective, bivCorFitSub)
Chi= LLs-LL;

LRT= rbind(LL,LLs,Chi); LRT

1.1.4 More in-depth Example

Now that you have seen the basics of OpenMXx, let us walk through an example in more detail. We decided to use
a twin model example for several reasons. Even though you may not have any background in behavior genetics or
genetic epidemiology, the example illustrates a number of features you are likely to encounter at some stage. We will
present the example in two ways: (i) path analysis representation, and (ii) matrix algebra representation. Both give
exactly the same answer, so you can choose either one or both to get some familiarity with the two approaches.

We will not go into detail about the theory of this model, as that has been done elsewhere (refs). Briefly, twin studies
rely on comparing the similarity of identical (monozygotic, MZ) and fraternal (dizygotic, DZ) twins to infer the role
of genetic and environmental factors on individual differences. As MZ twins have identical genotypes, similarity
between MZ twins is a function of shared genes, and shared environmental factors. Similarity between DZ twins is a
function of some shared genes (on average they share 50% of their genes) and shared environmental factors. A basic
assumption of the classical twin design is that the MZ and DZ twins shared environmental factors to the same extent.

The basic model typically fit to twin data from MZ and DZ twins reared together includes three sources of latent
variables: additive genetic factors (A), shared environmental influences (C) and unique environmental factors (E), We
can estimate these three sources of variance from the observed variances, the MZ and the DZ covariance. The expected
variance is the sum of the three variance components (A + C + E). The expected covariance for MZ twins is (A + C)
and that of DZ twins is (.5A + C). As MZ and DZ twins have different expected covariances, we have a multiple group
model.

It has been standard in twin modeling to fit models to the raw data, as often data are missing on some co-twins. When
using FIML, we also need to specify the expected means. There is no reason to expect that the variances are different
for twin 1 and twin 2, neither are the means for twin 1 and twin 2 expected to differ. This can easily be verified by
fitting submodels to the saturated model, prior to fitting the *ACE* model.

Let us start by simulating the data following by fitting a series of models. The code. includes both the twin data
simulation and several OpenMx scripts to analyze the data. We will describe each of the parts in turn and include the
code for the specific part in the code blocks.

First, we simulate twin data using the mvrnorm R function. If the additive genetic factors (A) account for 50% of the
total variance and the shared environmental factors (C) for 30%, thus leaving 20% explained by specific environmental
factors (E), then the expected MZ twin correlation is a~2 + c”2 or 0.8 in this case, and the expected DZ twin
correlation is 0.65, calculated as .5+«a”2 + c”2. We simulate 1000 pairs of MZ and DZ twins each with zero
means and a correlation matrix according to the values listed above. We run some basic descriptive statistics on the
simulated data, using regular R functions.

require (OpenMx)

require (MASS)
set.seed (200)

az2<-0.5 #Additive genetic variance component (a squared)
c2<-0.3 #Common environment variance component (c squared)
e2<-0.2 #Specific environment variance component (e squared)

rMZ <- a2+c2

1.1. Tutorial 9

http://openmx.psyc.virginia.edu/repoview/1/trunk/demo/UnivariateTwinAnalysis20090925.R

OpenMx Documentation, Release 0.1

rDZ <- .5%a2+c2
MZ <- mvrnorm (1000, <(0,0), matrix(c(l,rMZ,rMZ,1),2,2))
DZ <- mvrnorm (1000, c(0,0), matrix(c(l,rDZ,rDZ,1),2,2))

selVars <— c("tl’,’t2")

dimnames (DataMZ) <- list (NULL, selVars)
dimnames (DataDZ) <- list (NULL,selVars)
summary (DataMZz)

summary (DataDZ)

colMeans (DataMZ, na.rm=TRUE)

colMeans (DataDZ, na.rm=TRUE)

cov (DataMZ,use="complete™)

cov (DataDZ,use="complete™)

We typically start with fitting a saturated model, estimating means, variances and covariances separately by order
of the twins (twin 1 vs twin 2) and by zygosity (MZ vs DZ pairs), to establish the likelihood of the data. This is
essentially similar to the optimization script discussed above, except that we now have two variables (same variable
for twin 1 and twin 2) and two groups (MZ and DZ). Thus, the saturated model will have two matrices for the expected
means of MZs and DZs, and two for the expected covariances, generated from multiplying a lower triangular matrix
with its transpose. The raw data are read in using the mxData command, and the corresponding objective function
mxFIMLObjective applied.

mxModel ("Mz",

mxMatrix (
type="Full",
nrow=1,
ncol=2,
free=TRUE,
values=c (0,0),
dimnames=1ist (NULL, selVars),
name="expMeanMz"),

mxMatrix (
type="Lower",
nrow=2,
ncol=2,
free=TRUE
values=.5,
dimnames=1list (NULL, selVars),
name="CholMz"),

mxAlgebra (
CholMZ %+% t (CholMZ),
name="expCovMz",
dimnames=1list (selVars, selVars)),

mxData (
DataMZz,
type="raw"),
mxFIMLObjective (
"expCovMzZ",
"expMeanMzZ"))

Note that the mxMode1 statement for the DZ twins is almost identical to that for MZ twins, except for the names of
the objects and data. If the arguments to the OpenMx command are given in the default order (see i.e. ?mxMatrix to
go to the help/reference page for that command), then it is not necessary to include the name of the argument. Given
we skip a few optional arguments, the argument names dimnames= and name= are included to refer to the right
arguments. For didactic purposes, we prefer the formatting used for the MZ group, with soft tabs and each argument
on a separate line, etc. (see list of formatting rules). However, the experienced user may want to use a more compact
form, as the one used for the DZ group.

10 Chapter 1. Introduction

OpenMx Documentation, Release 0.1

mxModel ("DZ",
mxMatrix ("Full", 1, 2, T, c¢(0,0), dimnames=list (NULL, selVars), name="expMeanDz"),
mxMatrix ("Lower", 2, 2, T, .5, dimnames=list (NULL, selVars), name="CholDZzZ"),
mxAlgebra (CholDZ %$x% t (CholDZ), name="expCovDZ", dimnames=list (selVars, selVars)),
mxData (DataDZ, type="raw"),
mxFIMLObjective ("expCovDz", "expMeanDZ")),

The two models are then combined in a ‘super’model which includes them as arguments. Additional arguments are
an mxAlgebra statement to add the objective funtions/likelihood of the two submodels. To evaluate them simultane-
ously, we use the mxAlgebraObjective with the previous algebra as its argument. The mxRun command is used
to start optimization.

twinSatModel <- mxModel ("twinSat",
mxModel ("Mz",
mxMatrix ("Full"™, 1,
mxMatrix ("Lower", 2
mxAlgebra (CholMZ $x*
mxData (DataMzZ, type="raw"),
mxFIMLObjective ("expCovMz", "expMeanMz")),
mxModel ("Dz",
mxMatrix ("Full", 1,
mxMatrix ("Lower", 2
mxAlgebra (CholDZ $x*
mxData (DataDZ, type="raw"),
mxFIMLObjective ("expCovDz", "expMeanDZ")),
mxAlgebra (MZ.objective + DZ.objective, name="twin"),
mxAlgebraObjective ("twin"))
twinSatFit <- mxRun (twinSatModel)

’
2, T, .5, dimnames=1list (NULL, selVars), name="CholMz"),
t

2, T, .5, dimnames=1list (NULL, selVars), name="CholDz"),

It is always helpful/advised to check the model specifications before interpreting the output. Here we are interested
in the values for the expected mean vectors and covariance matrices, and the goodness-of-fit statistics, including the
likelihood, degrees of freedom, and any other derived indices.

ExpMeanMZ <- mxEval (MZ.expMeanMZ, twinSatFit)
ExpCovMZ <- mxEval (MZ.expCovMZ, twinSatFit)
ExpMeanDZ <- mxEval (DZ.expMeanDZ, twinSatFit)
ExpCovDZ <- mxEval (DZ.expCovDZ, twinSatFit)
LL_Sat <- mxEval (objective, twinSatFit)

Before we move on to fit the ACE model to the same data, we may want to test some of the assumptions of the twin
model, i.e. that the means and variances are the same for twin 1 and twin 2, and that they are the same for MZ and DZ
twins. This can be done as an omnibus test, or stepwise. Let us start by equating the means for both twins, separately
in the two groups. We accomplish this by using the same label (just one label which will be reused by R) for the two
free parameters for the means per group. As the majority of the previous script stays the same, we start by copying the
old model into a new one. We then include the arguments of the model that require a change.

twinSatModelSubl <- mxModel (twinSatModel,
mxModel ("MZ",
mxMatrix ("Full", 1, 2, T, 0, "mMZ", dimnames=1list (NULL, selVars), name="expMeanMz"),
mxModel ("Dz",
mxMatrix ("Full", 1, 2, T, 0, "mDZ", dimnames=list (NULL, selVars), name="expMeanDZ"))
twinSatFitSubl <- mxModel (twinSatModelSubl)

If we want to test if we can equate both means and variances across twin order and zygosity at once, we will end up
with the following specification. Note that we use the same label across models for elements that need to be equated.

1.1. Tutorial 11

T, c(0,0), dimnames=1list (NULL, selVars), name="expMeanMz"),

(CholMZ), name="expCovMz", dimnames=list (selVars, selVars)),

2, T, c(0,0), dimnames=list (NULL, selVars), name="expMeanDz"),

14
% t(CholDZ), name="expCovDZ", dimnames=list (selVars, selVars)),

OpenMx Documentation, Release 0.1

twinSatModelSub2 <- mxModel (twinSatModelSubl,
mxModel ("MZ",
mxMatrix ("Full", 1, 2, T, 0, "mean", dimnames=list (NULL, selVars),
mxMatrix ("Lower", 2, 2, T, .5, labels= c("var","MZcov","var"),
dimnames=1ist (NULL, selVars), name="CholMz"),
mxModel ("Dz",
mxMatrix ("Full", 1, 2, T, 0, "mean", dimnames=list (NULL, selVars),
mxMatrix ("Lower", 2, 2, T, .5, labels= c("var","DZcov","var"),
dimnames=1ist (NULL, selVars), name="CholDZz"))
twinSatFitSub2 <- mxRun (twinSatModelSub?2)

name="expMeanMz"),

name="expMeanDzZ"),

We can compare the likelihood of this submodel to that of the fully saturated model or the previous submodel using
the results from mxEval commands with regular R algebra. A summary of the model parameters, estimates and

goodness-of-fit statistics can also be obtained using summary (twinSatFit).

LL_Sat <- mxEval (objective, twinSatFit)
LL_Subl <- mxEval (objective, twinSatFitSubl)
LRT1= LL_Subl - LIL_Sat

LL_Sub2 <- mxEval (objective, twinSatFitSubl)
LRT2= LL_Sub2 - LIL_Sat

Now, we are ready to specify the ACE model to test which sources of variance significantly contribute to the phenotype
and estimate their best value. The structure of this script is going to mimic that of the saturated model. The main
difference is that we no longer estimate the variance-covariance matrix directly, but express it as a function of the three
sources of variance, A, C and E. As the same sources are used for the MZ and the DZ group, the matrices which will
represent them are part of the ‘super’model. As these sources are variances, which need to be positive, we typically

use a Cholesky decomposition of the standard deviations (and effectively estimate a rather then a2,

see later for more

in depth coverage). Thus, we specify three separate matrices for the three sources of variance using the mxMatrix
command and ‘calculate’ the variance components with the mxAlgebra command. Note that there are a variety of
ways to specify this model, we have picked one that corresponds well to previous Mx code, and has some intuitive

appeal.

#Specify ACE Model
twinACEModel <- mxModel ("twinACE",

mxMatrix ("Full", 1, 2, T, 20, "mean", dimnames=1list (NULL, selVars)
Matrix expMean for expected mean vector for MZ and DZ twins
mxMatrix ("Full", nrow=1, ncol=1, free=TRUE, values=.6, label="a"
mxMatrix ("Full", nrow=1l, ncol=1, free=TRUE, values=.6, label="c"
mxMatrix ("Full", nrow=1, ncol=1, free=TRUE, values=.6, label="e"
Matrices X, Y, and Z to store the a, c¢, and e path coefficients
mxMatrix ("Full", nrow=1l, ncol=1, free=FALSE, values=.5, name="h"),
mxAlgebra (X * t(X), name="A"),
mxAlgebra (Y = t(Y), name="C"),
mxAlgebra(Zz *~ t(Z), name="E"),
Matrixes A, C, and E to compute A, C, and E variance components
mxAlgebra (rbind (cbind (A+C+E , A+C),
cbind (A+C , A+C+E)), dimnames = list (selVars, selVars), name="
Matrix expCOVMZ for expected covariance matrix for MZ twins
mxAlgebra (rbind (cbind (A+C+E , $xSA+C),
cbind (h%$x%A+C , A+C+E)), dimnames = list (selVars, selVars), name="
Matrix expCOVMZ for expected covariance matrix for DZ twins
mxModel ("Mz",

mxData (DataMzZ, type="raw"),

mxFIMLObjective ("twinACE.expCovMzZ", "twinACE.expMean")),
mxModel ("Dz",

mxData (DataDZ, type="raw"),

, name="expMean"),

name="X"),
name="Y"),
name="272"),

expCovMzZ"),

expCovDZ"),

12 Chapter 1. Introduction

OpenMx Documentation, Release 0.1

mxFIMLObjective ("twinACE.expCovDZ", "twinACE.expMean")),
mxAlgebra (MZ.objective + DZ.objective, name="twin"),
mxAlgebraObjective ("twin"))
twinACEFit <- mxRun (twinACEModel)

Relevant output can be generate with print or summary statements or specific output can be requested using the
mxEval command. Typically we would compare this model back to the saturated model to interpret its goodness-
of-fit. Parameter estimates are obtained and can easily be standardized. A typical analysis would likely include the
following output.

LL_ACE <- mxEval (objective, twinACEFit)
LRT_ACE= LIL_ACE - LIL_Sat

#Retrieve expected mean vector and expected covariance matrices
MZc <- mxEval (expCovMZ, twinACEFit)
DZc <- mxEval (expCovDZ, twinACEFit)
M <- mxEval (expMean, twinACEFit)
#Retrieve the A, C, and E variance components
A <- mxEval (A, twinACEFit)
C <- mxEval (C, twinACEFit)
E <- mxEval (E, twinACEFit)
#Calculate standardized variance components
V <- (A+C+E)

a2 <- A/V
c2 <- C/V
e2 <- E/V

#Build and print reporting table with row and column names
ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
ACEest <- data.frame (ACEest, row.names=c ("Variance Components","Standardized VC"))
names (ACEest) <-c("A", "C", "E")
ACEest; LL_ACE; LRT_ACE

Similarly to fitting submodels from the saturated model, we typically fit submodels of the ACE model to test the
significance of the sources of variance. One example is testing the significance of shared environmental factors by
dropping the free parameter for c (fixing it to zero). We call up the previous model and include the new specification
for the matrix to be changed, and rerun.

twinAEModel <- mxModel (twinACEModel,
mxMatrix ("Full", nrow=1l, ncol=1, free=F, values=0, label="c", name="Y"))
twinAEFit <- mxRun (twinAEModel)

We discuss twin analysis examples in more detail in the example code.

1.2 Two Model Styles - Two Data Styles

In this first detailed example, we introduce the different styles available to specify models and data. There are two
main approaches to specifying models: (i) paths specification and (ii) matrix specification. We will go through all the
examples in both approaches, so you can choose which fits your style better, or check them both out to get a sense of
their advantage/disadvantages. The ‘path specification’ model style translates path diagrams into OpenMx code; the
‘matrix specification’ model style relies on matrices and matrix algebra to produce OpenMx code. For each of the two
approaches, the data may come in (a) summary format, i.e. covariance matrices and possibly means, or (b) raw data
format. We will illustrate both, as arguments of functions may differ. Thus, we will here describe the same example
four different ways:

* i.a Path Specification - Covariance Matrices

1.2. Two Model Styles - Two Data Styles 13

OpenMx Documentation, Release 0.1

* i.b Path Specification - Raw Data
* ii.a Matrix Specification - Covariance Matrices
* ii.b Matrix Specification - Raw Data

Our first example is fitting a simple model to one variable to estimate its mean and variance. This is also referred to as
fitting a saturated model. We start with a univariate example, and also work through a bivariate example which differs
in minor ways from the univariate one, as it forms the basis for later examples.

1.2.1 Univariate Saturated Model

The four versions of univariate example are available in the following files:
¢ UnivariateSaturated_PathCov.R
¢ UnivariateSaturated_PathRaw.R
¢ UnivariateSaturated_MatrixCov.R
¢ UnivariateSaturated_MatrixRaw.R
* UnivariateSaturated.R
The last file includes all four example in one. The bivariate examples are available in the following files:
¢ BivariateSaturated_PathCov.R
¢ BivariateSaturated_PathRaw.R
¢ BivariateSaturated_MatrixCov.R
* BivariateSaturated_MatrixRaw.R
¢ BivariateSaturated_MatrixCovCholesky.R
* BivariateSaturated_MatrixRawCholesky.R
* BivariateSaturated.R

Note that we have additional version of the matrix-style examples which use a Cholesky decomposition to estimate
the expected covariance matrices, which is preferred to directly estimation the symmetric matrices.

Data

To avoid reading in data from an external file, we simulate a simple dataset directly in R, and use some of its great
capabilities. As this is not an R manual, we just provide the code here with minimal explanation.

#Simulate Data

set.seed (100)

x <— rnorm (1000, 0O, 1)

testData <- as.matrix(x)

selVars <— c("X")

dimnames (testData) <- list (NULL, selVars)
summary (testData)

mean (testData)

var (testData)

The first line is a comment (starting with a #). We set a seed for the simulation so that we generate the same data each
time and get a reproducible answer. We then create a variable x for 1000 subjects, with mean of 0 and a variance of 1,
using the normal distribution function. We read the data in as a matrix into an object ‘testData’ and give the variable

14 Chapter 1. Introduction

OpenMx Documentation, Release 0.1

a name “X” using the ‘dimnames’ command. We can easily produce some descriptive statistics in R using built-in
functions ‘summary’, ‘mean’ and ‘var’, just to make sure the data look like what we expect.

1.2.2 Covariance Matrices and Path-style Input

Model Specification

We call this model saturated because there is a free parameter corresponding to each and every observed statistic. Here
we have covariance matrix input only, so we can estimate one variance. We use the mxModel command to specify
the model. Its first argument is a name. All arguments are separated by commas.

univSatModell <- mxModel ("univSatl",

When using the path specification, it is easiest to have a matching path diagram. Assuming you are familiar with
path analysis (for those who are not, there are several excellent introductions, see refs), we have a box for the ob-
served/manifest variable x, specified with the manifestVars argument, and one double arrow on the box to repre-
sent its variance, specified with the mxPath command. The mxPath command indicates where the path originates:
from= and where it ends: to. If the to= argument is omitted, the path ends at the same variable where it started.
The arrows argument distinguished with one-head arrows (if arrows=1) or two-headed arrows (if arrows=2). The
free command is used to specify which elements are free or fixed with a ‘TRUE’ or ‘FALSE’ option. If the mxPath
command creates more than one path, a single ‘T” implies that all paths created here are free. If some of the paths
are free and others fixed, a list is expected. The same applies for values command which is used to assign starting
values or fixed final values, depending on the corresponding ‘free’ status. Optionally, lower and upper bounds can be
specified (using 1bound and ubound, again generally for all the paths or specifically for each path). Labels can also
be assigned using the 1abels command which expects as many labels (in quotes) as there are elements.

manifestVars=selVars ,

mxPath (
from=c ("X"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels="vX"

)I

We specify which data the model is fitted to with the mxData command. Its first argument, matrix????, reads in
the data from an R matrix or data.frame, with the t ype given in the second argument. Given we read a covariance
matrix here, we use the ‘var’ function (as there is no covariance for a single variable). When summary statistics are
used as input, the number of observations (numObs) needs to be supplied.

mxData (
observed=var (testData),
type="cov",
numObs=1000

)I

With the path specification, the ‘RAM’ objective function is used by default, as indicated by the type argument.
Internally, OpenMx translates the paths into RAM notation in the form of the matrices A, S, and F [see ?]

type="RAM"

1.2. Two Model Styles - Two Data Styles 15

OpenMx Documentation, Release 0.1

Model Fitting

So far, we have specified the model, but nothing has been evaluated. We have ‘saved’ the specification in the object
‘univSatModel1’. This object is evaluated when we invoke the mxRun command with the object as its argument.

univSatFitl <- mxRun (univSatModell)

There are a variety of ways to generate output. We will promote the use of the mxEval command, which takes two
arguments: an expression and amodel name. The expression can be a matrix or algebra name defined in the
model, new calculations using any of these matrices/algebras, the objective function, etc. We can then use any regular
R function to generate derived fit statistics, some of which will be built in as standard. When fitting to covariance
matrices, the saturated likelihood can be easily obtained and subtracted from the likelihood of the data to obtain a
Chi-square goodness-of-fit. [How do we specify other$Saturated in mxEval?]

EC1l <- mxEval (S, univSatFitl) #univSatFitl[[’S’]]@values
LL1 <- mxEval (objective, univSatFitl)

SL1 <- univSatFitl@outputS$others$Saturated

Chil <- LL1-SL1

The output of these objects like as follows:

> EC1

[,1]
[1,] 1.062112
> LL1

[,1]
[1,] 1.060259
> SL1
[1] 1.060259
> Chil

[,1]
[1,] 2.220446e-16

In addition to providing a covariance matrix as input data, we could use add a means vector. As this requires a few
minor changes, lets highlight those. We have one additional mxPath command for the means. In the path diagram,
the means are specified by a triangle which as a fixed value of one, reflected in the from="one" argument, with the
to= argument referring to the variable which mean is estimated.

mxPath (
from="one",
to="X",
arrows=1,
free=T,
values=0,
labels="mxX"

)

The other required change is in the mxData command, which now takes a fourth argument means for the vector of
observed means from the data calculated using the R ‘mean’ command.

mxData (
observed=matrix (var (testData),1,1),
type="cov",
numObs=1000,
means=mean (testData)

16 Chapter 1. Introduction

OpenMx Documentation, Release 0.1

When a mean vector is supplied and a parameter added for the estimated mean, the RAM matrices A, S and F are
augmented with an M matrix which can be referred to in the output in a similar was as the expected variance before.

EMIm <- mxEval (M, univSatFitlm)

1.2.3 Raw Data and Path-style Input

Instead of fitting models to summary statistics, it is now popular to fit models directly to the raw data and using full
information maximum likelihood (FIML). Doing so requires specifying not only a model for the covariances, but also
one for the means, just as in the case of fitting to covariance matrices and mean vectors, described above. #With RAM
path specification, and raw data input, OpenMx has a default model for the means, in which every observed variable
has a free parameter for its mean [NB this should change in future versions to require means model]. The only change
required is in the mxData command, which now takes either an R matrix or a data.frame with the observed data as
first argument, and the t ype="raw" as the second argument.

mxData (
observed=testData,
type="raw"

)

A nice feature of OpenMx is that an existing model can be modified in any respect. So to change the above ‘univSat-
Modell’ can be effected this way:

univRawModell <- mxModel (univSatModell, mxData (
observed=testData,
type="raw"

))

This model can be run as usual with an mxRun command: .. code-block:: r
univRawFit]l <- mxRun(univSatModell)

Note The output generated from this model now includes the expected mean, the expected covariance matrix and -2
times the log-likelihood of the data.

> EM2
[,1]
[1,] 0.01680498
> EC2
[,1]
[1,] 1.061049
> LL2
[,1]
[1,] 2897.135

1.2.4 Covariance Matrices and Matrix-style Input

We now specify essentially the same models with matrices. Starting with the model fitted to the summary covariance
matrix, we need a specify one matrix for the expected covariance matrix. We use the mxMat rix command for this.
The first argument is its type, which is symmetric for a covariance matrix. The second and third arguments are the
number of rows (nrow) and columns (ncol). The free and values command work in the same way as in the path
specification. If only one element is given, it is applied to all the elements in the matrix. Alternatively, each element
can be assigned its free/fixed status and starting value with a list command. Note that in the current example, the matrix
is a simple 1x1 matrix, but that will change rapidly in the following examples. The code to specify the model includes

1.2. Two Model Styles - Two Data Styles 17

OpenMx Documentation, Release 0.1

four commands, (i) mxModel, (ii) mxMatrix, (iii) mxData and (iv) mxMLObjective. The ‘‘mxData is
the same for paths and matrices specifications. A different objective function is used, namely the mxMLOb jective
command which takes one argument, the expression/name of the expected covariance matrix, which we specified in
the mxMat rix command.

univSatModel3 <- mxModel ("univSat3",
mxMatrix (
type="Symm",
nrow=1,
ncol=1,
free=T,
values=1,
name="expCov"
)I
mxData (
observed=var (testData),
type="cov",
numObs=1000
)I
mxMLObjective (
"expCov", dimnames=selVars)
)

univSatFit3 <—- mxRun (univSatModel3)

A means vector can also be added here as part of the input summary statistics (as the fourth argument of the mxData
command). In that case, a second mxMatrix command is used to specify the expected mean vector, which is of
type ‘Full’, has 1 row and 1 column, is assigned ‘free’ with start value 0, dimnames for the column, and the name
“expMean”. The second change is an additional argument to the mxMLOb ject ive function for the expected mean,
here “expMean”.

mxMatrix (
type="Full",
nrow=1,
ncol=1,
free=T,
values=0,
name="expMean"

),

mxData (
observed=var (testData),
type="cov",

numObs=1000,
means=mean (testData)

)I

mxMLObjective (
"expCov",
"expMean",
dimnames=selVars

1.2.5 Raw Data and Matrix-style Input

Finally, if we want to use the matrix specification with raw data, we again specify two matrices using the mxMat rix
command, one for the expected covariance matrix and one for the expected mean vector, in the same way as before. The
mxData command directly read the raw data from a matrix or data.frame and the mxFIMLOb jective command is

18 Chapter 1. Introduction

OpenMx Documentation, Release 0.1

used to evaluate the likelihood of the data using FIML. This function also takes two arguments, one for the expected
covariance matrix and one for the expected mean.

univSatModeld <- mxModel ("univSat4",

mxMatrix (
type="Symm",
nrow=1,
ncol=1,
free=T,
values=1,
name="expCov"

)I

mxMatrix (
type="Full",
nrow=1,
ncol=1,
free=T,
values=0,
name="expMean"

)I

mxData (
observed=testData,
type="raw"

)I

mxFIMLObjective (
"expCov",
"expMean",
dimnames=selVars)

)

Note that the output generated for the paths and matrices specification are completely equivalent.

1.2.6 Bivariate Saturated Model

Rarely will we analyze a single variable. As soon as a second variable is added, not only can be then estimate two
means and two variances, but also a covariance between the two variables.

Data

The data used for the example were generated using the multivariate normal function (mvrnorm in the R package
MASS). We have simulated data on two variables named ‘X’ and ‘Y’ with means of zero, variances of one and a
covariance of .5 using the following R code, and saved is as ‘testData’. Note that we can now use the R function ‘cov’
to generate the observed covariance matrix.

#Simulate Data

require (MASS)

set.seed (200)

rs=.5

xy <- mvrnorm (1000, c(0,0), matrix(c(l,rs,rs,1l),2,2))
testData <- xy

selVars <— c('X’,’Y")

dimnames (testData) <- list (NULL, selVars)

summary (testData)

cov (testData)

1.2. Two Model Styles - Two Data Styles 19

OpenMx Documentation, Release 0.1

The path diagram for our bivariate example includes two boxes for the observed variables ‘X’ and “Y’, each with a
two-headed arrow for the variance of each variables. We also estimate a covariance between the two variables with
the two-headed arrow connecting the two boxes. The optional means are represented as single-headed arrows from a
triangle to the two boxes.

Model Specification

The mxPath commands look as follows. The first one specifies two-headed arrows from X and Y to themselves. This
command now generates two free parameters, each with start value of 1 and lower bound of .01, but with a different
label indicating that these are separate free parameters. Note that we could test whether the variances are equal by
specifying a model with the same label for the two variances and comparing it with the current one. The second
mxPath command specifies a two-headed arrow from ‘X’ to “Y’, which is also assigned ‘free’ and given a start value
of .2 and a label.

mxPath (
from=c("xX", "Y"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels=c ("varX", "vary")

mxPath (
from="X",
to="Y",
arrows=2,
free=T,
values=.2,
lbound=.01,
labels="covXYy"

)

When observed means are included in addition to the observed covariance matrix, we add an mxPath command with
single-headed arrows from ‘one’ to the variables to represent the two means.

mxPath (
from="one",
to=c ("X", "vy"),
arrows=1,
free=T,
values=.01,
labels=c ("meanX", "mean¥")

)

Changes for fitting to raw data just require the mxData command to read in the data directly with type="raw”.

Using matrices instead of paths, our mxMat rix command for the expected covariance matrix now specifies a 2x2
matrix with all elements free. Start values have to be given only for the unique elements (diagonal elements plus upper
or lower diagonal elements), in this case we provide a list with values of 1 for the variances and .5 for the covariance

mxMatrix (
type="Symm",
nrow=2,
ncol=2,
free=T,

20 Chapter 1. Introduction

OpenMx Documentation, Release 0.1

values=c (1, .5,1),
dimnames=1list (selVars, selVars),
name="expCov"

)

The optional expected means command specifies a 1x2 row vector with two free parameters, each given a 0 start value.

mxMatrix (
type="Full",
nrow=1,
ncol=2,
free=T,
values=c (0,0),
dimnames=1ist (NULL, selVars)
name="expMean"

)

Combining these two mxMatrix commands with the raw data, specified in the mxData command and the
mxFIMLObjective command with the appropriate arguments is all that’s need to fit a saturated bivariate model.
So far, we have specified the expected covariance matrix directly as a symmetric matrix. However, this may cause
optimization problems as the matrix could become not positive-definite which would prevent the likelihood to be eval-
vated. To overcome this problem, we can use a Cholesky decomposition of the expected covariance matrix instead,
by multiplying a lower triangular matrix with its transpose. To obtain this, we use a mxMat rix command but now
create a lower triangular matrix (by using a 2x2 full matrix and fixing the element above the diagonal to zero; note that
the matrix type="lower” will be implemented later). We then use an mxAlgebra command to multiply this matrix,
named ‘Chol’ with its transpose (R function t()). As this resulting matrix represents the expected covariance matrix,
dimnames are required such that the matrix elements can be properly matched to the data.

mxMatrix(
type="Full",
nrow=2,
ncol=2,
free=c(T,T,F,T),
values=c(1,.2,0,1),
name="Chol"

)

mxAlgebra (
Chol %*% t (Chol),
name="expCov",
dimnames=1ist (selVars, selVars)

1.2. Two Model Styles - Two Data Styles 21

OpenMx Documentation, Release 0.1

22 Chapter 1. Introduction

[FRNY

© ® 9w A

CHAPTER
TWO

BEGINNERS GUIDE TO OPENMX

This document will walk the reader through the basic concepts used in the OpenMx library. It will assume that you
have successfully installed the R statistical programming language and the OpenMx library for R. Before we begin, let
us start with a mini-lecture on the R programming language. Our experience has found that this exercise will greatly
increase your understanding of subsequent sections of the introduction.

2.1 Pass By Value (READ THIS)

addone <- function (number) {
number <- number + 1
return (number)

}
avariable <- 5

print (addone (avariable))
print (avariable)

In the previous code block, the variables addone and avariable are defined. The value assigned to addone is a
function, while the value assigned to avariable is the number 5. The function addone takes a single argument,
adds one to the argument, and returns the argument back to the user. What is the result of executing this code block?
Try it. The correct result is 6 and 5. But why is the variable avariable still 5, even after the addone function was
called? The answer to this question is that R uses pass-by-value function call semantics.

In order to understand pass-by-value semantics, we must understand the difference between variables and values. The
variables declared in this example are addone, avariable, and number. The values refer to the things that are
stored by the variables. In programming languages that use pass-by-value semantics, at the beginning of a function
call it is the values of the argument list that are passed to the function. The variable avariable cannot be modified
by the function addone. If I wanted to update the value stored in the variable, I would have needed to replace line 8
with the expression print (avariable <- addone (avariable)). Try it. The updated example prints out 6
and 6. The lesson from this exercise is that the only way to update a variable in a function call is to capture the result
of the function call !. This lesson is sooo important that we’ll repeat it:

* the only way to update a variable in a function call is to capture the result of the function call.

R has several built-in types of values that are familiar with: numerics, integers, booleans, characters, lists, vectors, and
matrices. In addition, R supports S4 object values to facilitate object-oriented programming. Most of the functions in
the OpenMx library return S4 object values. You must always remember that R does not discriminate between built-in
types and S4 object types in its call semantics. Both built-in types and S4 object types are passed by value in R (unlike
many other languages).

! There are a few exceptions to this rule, but you can be assured such trickery is not used in the OpenMx library.

23

OpenMx Documentation, Release 0.1

2.2 Matrix Model Specification

require (OpenMx)

data (demoOneFactor)

factorModel <- mxModel (name = "One Factor")

matrixA <- mxMatrix("Full", 5, 1, values=0.2, free=T, name="A")

matrixlL <- mxMatrix("Symm", 1, 1, values=1, free=F, name="L")
matrixU <- mxMatrix("Diag", 5, 5, values=1l, free=T, name="U")

o
*
o°

algebraR <- mxAlgebra(A %*% L t(A) + U, name="R")

objective <- mxMLObjective ("R", dimnames = names (demoOneFactor))
data <- mxData (cov (demoOneFactor), type="cov", numObs=500)

factorModel <- mxModel (factorModel, matrixA, matrixL, matrixU,
algebraR, objective, data)

factorModelFit <- mxRun (factorModel)
summary (factorModelFit)

Above is an example that creates a one factor model with five indicators. The script reads data from disk, creates the
one factor model, fits the model to the observed covariances, and prints a summary of the results. Let’s break down
what is happening in each section of this example.

2.2.1 Preamble

Every OpenMx script must begin with either 1ibrary (OpenMx) or require (OpenMx). These commands will
load the OpenMx library.

2.2.2 Reading Data

The data function can be used to read sample data that has been pre-packaged into the R library. In order to read
your own data, you will most likely use the read.table, read.csv, read.delim functions, or other specialized
functions available from CRAN to read from 3rd party sources.

2.2.3 Model Creation

The basic unit of abstraction in the OpenMx library is the model. A model serves as a container for a collection of
matrices, algebras, objective functions, data sources, and nested sub-models. In the parlance of R, a model is a value
that belongs to the class MxModel that has been defined by the OpenMx library. The following table indicates what
classes are defined by the OpenMx library.

entity S4 class

model MxModel

algebra MxAlgebra

objective function | MxObjectiveFunction
constraint MxConstraint

data source MxData

24 Chapter 2. Beginners Guide to OpenMx

OpenMx Documentation, Release 0.1

All of the entities listed in the table are identified by the OpenMx library by the name assigned to them. A name is any
character string that does not contain the “.” character. In the parlance of the OpenMx library, a model is a container
of named entities. The name of an OpenMx entity bears no relation to the R variable that is used to identify the entity.

In our example, the variable model stores a value that is a MxModel object with the name “One Factor”.

2.2.4 Matrix Creation

The next three lines create three MxMatrix objects. The first argument declares the type of the matrix, the second
argument declares the number of rows in the matrix, and the third argument declares the number of columns. The
‘values’ argument specifies the starting values in the matrix. The ‘free’ argument specifies whether a cell is a free
or fixed parameter, and the ‘name’ argument specifies the name of the matrix. To repeat ourselves, the name of an
OpenMx entity bears no relation to the R variable that is used to identify the entity. In our example, the variable
matrixA stores a value that is a MxMatrix object with the name “A”.

Each MxMatrix object is a container that stores five matrices of equal dimensions. The five matrices stored in a
MxMatrix object are: ‘values’, ‘free’, ‘labels’, ‘Ibound’, and ‘ubound’. ‘Values’ stores the current values of each cell
in the matrix. ‘Free’ stores a boolean that determines whether a cell is free or fixed. ‘Labels’ stores a character label
for each cell in the matrix. And ‘lbound’ and ‘ubound’ store the lower and upper bounds, respectively, for each cell
that is a free parameter. If a cell has no label, lower bound, or upper bound, then an NA value is stored in the cell of
the respective matrix.

2.2.5 Algebra Creation

Lines 11-12 construct an expression for the expected covariance algebra. The first argument is the algebra expression
that will be evaluated by the numerical optimizer. The matrix operations and functions that are permitted in an MxAlI-
gebra expression are listed in the help for the mxAlgebra function (?mxAlgebra). The algebra expression refers to
entities according to their names.

2.2.6 Objective Function Creation

Line 14 constructs an objective function for the model. For this example, we are using a maximum likelihood objec-
tive function and specifying an expected covariance algebra and omitting an expected means algebra. The expected
covariance algebra is referenced according to its name. The objective function for a particular model is given the
name “objective”. Consequently there is no need to specify a name for objective function objects. We need to assign
dimnames for the rows and columns of the covariance matrix, such that a correspondance can be determined between
the expected covariance matrix and the observed covariance matrix.

2.2.7 Data Source Creation

Line 15 constructs a data source for the model. In this example, we are specifying a covariance matrix. The data source
for a particular model is given the name “data”. Consequently there is no need to specify a name for data objects.

2.2.8 Model Population

The mxModel function is somewhat of a swiss-army knife. If the first argument to the mxModel function is an existing
model, then the result of the function call is a new model with the remaining arguments to the function call added or
removed from the model (depending on the ‘remove’ argument, which defaults to FALSE). In our example, we are
populating the model with three matrices, an algebra, an objective function, and a data source. Lines 5, 17, and
18 could have been combined with the following call: factorModel <- mxModel (matrixA, matrixL,
matrixU, algebraR, objective, data, name = "One Factor").

2.2. Matrix Model Specification 25

OpenMx Documentation, Release 0.1

2.2.9 Model Execution

The mxRun function will run a model through the optimizer. The return value of this function is an identical model,
with all the free parameters in the cells of the matrices of the model assigned to their final values. The summary
function is a convenient method for displaying the highlights of a model after it has been executed.

2.3 Path Model Specification

x1 x4

x5

Y

x2 X3
O O O ©
require (OpenMx)

data (demoOneFactor)

manifests <- names (demoOneFactor)
latents <- c("G")

factorModel <- mxModel ("One Factor",
manifestVars = manifests,
latentVars = latents,

O

type="RAM",

mxPath (from=latents, to=manifests),
mxPath (from=manifests, arrows=2),

mxPath (from=latents, arrows=2,

free=F, values=1.0),

mxData (cov (demoOneFactor), type="cov",

numObs=500))

summary (mxRun (factorModel))

We will now re-create the model from the previous section, but this time we will use a RAM-style specification
technique. Let’s break down what is happening in each section of this example.

2.3.1 Preamble

Every OpenMx script must begin with either 1ibrary (OpenMx) or require (OpenMx). These commands will

load the OpenMx library.

26

Chapter 2. Beginners Guide to OpenMx

OpenMx Documentation, Release 0.1

2.3.2 Reading Data

The data function can be used to read sample data that has been pre-packaged into the R library. In order to read
your own data, you will most likely use the read.table, read.csv, read.del im functions, or other specialized
functions available from CRAN to read from 3rd party sources.

2.3.3 Model Creation

The mxModel function is used to create a model. By specifying the t ype argument to equal ‘RAM’, we create a path
style model. A RAM style model must include a vector of manifest variables and a vector for latent variables. In this
case the manifest variables are ¢ ("x1", "x2", "x3", "x4", "x5") and the latent variable is ¢ ("G").

2.3.4 Path Creation

Paths are created using the mxPath function. Multiple paths can be created with a single invocation of the mxPath
function. The ‘from’ argument specifies the path sources, and the ‘to’ argument specifies the path sinks. If the ‘to’
argument is missing, then it is assumed to be identical to the ‘from’ argument. By default, the i*" element of the ‘from’
argument is matched with the i*" element of the ‘to’ argument, in order to create a path. ‘free’ is a boolean vector
that specifies whether a path is free or fixed. ‘values’ is a numeric vector that specifies the starting value of the path.
‘labels’ is a character vector that assigns a label to each free or fixed parameter.

2.3. Path Model Specification 27

OpenMx Documentation, Release 0.1

28 Chapter 2. Beginners Guide to OpenMx

CHAPTER
THREE

EXAMPLES, PATH SPECIFICATION

3.1 Regression, Path Specification

Our next example will show how regression can be carried out from a path-centric structural modeling perspective.
This example is in three parts; a simple regression, a multiple regression, and multivariate regression. There are two
versions of each example are available; one with raw data, and one where the data is supplied as a covariance matrix
and vector of means. These examples are available in the following files:

» SimpleRegression_PathCov.R

» SimpleRegression_PathRaw.R

* MultipleRegression_PathCov.R

¢ MultipleRegression_PathRaw.R

e MultivariateRegression_PathCov.R
e MultivariateRegression_PathRaw.R

A parallel version of this example, using matrix specification of models rather than paths, can be found here link.

3.1.1 Simple Regression

We begin with a single dependent variable (y) and a single independent variable (x). The relationship between these
variables takes the following form:

y=080+Bi*xx+e

29

OpenMx Documentation, Release 0.1

In this model, the mean of y is dependent on both regression coefficients (and by extension, the mean of x). The
variance of y depends on both the residual variance and the product of the regression slope and the variance of x. This
model contains five parameters from a structural modeling perspective (3, 31, o2, and the mean and variance of x).
We are modeling a covariance matrix with three degrees of freedom (two variances and one variance) and a means
vector with two degrees of freedom (two means). Because the model has as many parameters (5) as the data have
degrees of freedom, this model is fully saturated.

Data

Our first step to running this model is to put include the data to be analyzed. The data must first be placed in a variable
or object. For raw data, this can be done with the read.table function. The data provided has a header row, indicating
the names of the variables.

myRegDataRaw <- read.table("myRegData.txt",header=TRUE)
The names fo the variables provided by the header row can be displayed with the names() function.

> names (myRegDataRaw)
[1] "'V\]" "X" Hy" "Z"

As you can see, our data has four variables in it. However, our model only contains two variables, x and y. To use only
them, we’ll select only the variables we want and place them back into our data object. That can be done with the R
code below.

30 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

SimpleDataRaw <- myRegDataRaw[,c("x","y")]

For covariance data, we do something very similar. We create an object to house our data. Instead of reading in raw
data from an external file, we can also include a covariance matrix. This requires the matrix() function, which needs to
know what values are in the covariance matrix, how big it is, and what the row and column names are. As our model
also references means, we’ll include a vector of means in a separate object. Data is selected in the same way as before.

myRegDataCov <— matrix(

c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),
nrow=4,
dimnames=1ist (
c(Mw, ety 2,
c(Mw", "x", My, "z

SimpleDataCov <- myRegDataCov[c ("x","y"),c("x","y")]
myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)

SimpleDataMeans <- myRegDataMeans([c (2, 3)]

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require () or library () function. All objects required for estimation (data,
paths, and a model type) are included in their own arguments or functions. This code uses the mxModel function to
create an MxMode1 object, which we’ll then run.

require (OpenMx)

uniRegModel <- mxModel ("Simple Regression —-- Path Specification",
type="RAM",
mxData (
observed=SimpleDataRaw,
type="raw"

)
manifestVars=c("x", "y"),
variance paths
mxPath (
from=c ("x", "y"),
arrows=2,
free=TRUE,
values = c(1, 1),
labels=c ("varx", "residual")
) s
regression weights
mxPath (
from="x"
to="y"
arrows=1,
free=TRUE,
values=1,
labels="betal"

3.1. Regression, Path Specification 31

OpenMx Documentation, Release 0.1

)
means and intercepts
mxPath (

from="one",

to=c("x", "y"),

arrows=1,

free=TRUE,

values=c (1, 1),

labels=c ("meanx", "betalO")
)

) # close model

This mxModel function can be split into several parts. First, we give the model a title. The first argument in an
mxModel function has a special function. If an object or variable containing an MxMode 1 object is placed here, then
mxModel adds to or removes pieces from that model. If a character string (as indicated by double quotes) is placed
first, then that becomes the name of the model. Models may also be named by including a name argument. This
model is named Simple Regression -— Path Specification.

The next part of our code is the t ype * argument. By setting t ype="RAM", we tell OpenMx that we are specifying
a RAM model for covariances and means, and that we are doing so using the mxPath function. With this setting,
OpenMx uses the specified paths to define the expected covariance and means of our data.

The third component of our code creates an MxDat a object. The example above, reproduced here, first references the
object where our data is, then uses the t ype argument to specify that this is raw data.

mxData (
observed=SimpleDataRaw,
type="raw"

)

If we were to use a covariance matrix and vector of means as data, we would replace the existing mxData function
with this one:

mxData (
observed=SimpleDataCov,
type="cov",
numObs=100,
means=SimpleRegMeans

)

We must also specify the list of observed variables using the manifestVars argument. In the code below, we
include a list of both observed variables, x and y.

The last features of our code are three mxPath functions, which describe the relationships between variables. Each
function first describes the variables involved in any path. Paths go from the variables listed in the from argument,
and to the variables listed in the to argument. When arrows is set to 1, then one-headed arrows (regressions) are
drawn from the from variables to the to variables. When arrows is set to 2, two headed arrows (variances or
covariances) are drawn from the the £ rom variables to the t o variables. If arrows is set to 2, then the t o argument
may be omitted to draw paths both to and from the list of from ‘ variables.

The variance terms of our model (that is, the variance of x and the residual variance of y) are created with the following
mxPath function. We want two headed arrows from x to x, and from y to y. These paths should be freely estimated
(free=TRUE), have starting values of 1, and be labeled "varx" and "residual", respectively.

mxPath (
from:C("X", "y"),
arrows=2,

32 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

free=TRUE,
values = c (1, 1),
labels=c ("varx", "residual")

)

The regression term of our model (that is, the regression of y on x) is created with the following mxPath function.
We want a single one-headed arrow from x to y. This path should be freely estimated (f ree=TRUE), have a starting
value of 1, and be labeled "betal™".

mxPath (
from="x",
to="y",
arrows=1,
free=TRUE,
values=1,
labels="betal"
)

We also need means and intercepts in our model. Exogenous or independent variables have means, while endogenous
or dependent variables have intercepts. These can be included by regressing both x and y on a constant, which
can be refered to in OpenMx by "one". The intercept terms of our model are created with the following mxPath
function. We want single one-headed arrows from the constant to both x and y. These paths should be freely estimated
(free=TRUE), have a starting value of 1, and be labeled meanx and "betal", respectively.

mxPath (
from="one",
to=c("x", "y"),
arrows=1,
free=TRUE,
values=c (1, 1),
labels=c ("meanx", "betalO")

)

Our model is now complete!

Model Fitting

We’ve created an MxModel object, and placed it into an object or variable named uniRegModel. We can run this
model by using the mxRun function, which is placed in the object uniRegFit in the code below. We then view the
output by referencing the output slot, as shown here.

uniRegFit <- mxRun (uniRegModel)
uniRegFit@output

The output slot contains a great deal of information, including parameter estimates and information about the matrix
operations underlying our model. A more parsimonious report on the results of our model can be viewed using the
summary function, as shown here.

summary (uniRegFit)

3.1. Regression, Path Specification 33

OpenMx Documentation, Release 0.1

3.1.2 Multiple Regression

In the next part of this demonstration, we move to multiple regression. The regression equation for our model looks
like this:

y=P0o+Pexx+P.xz+e

Our dependent variable y is now predicted from two independent variables, x and z. Our model includes 3 regression
parameters (3, B, .), a residual variance (a?) and the observed means, variances and covariance of x and z, for a
total of 9 parameters. Just as with our simple regression, this model is fully saturated.

We prepare our data the same way as before, selecting three variables instead of two.

MultipleDataRaw <- myRegDataRaw[,c("x","y","z")]
MultipleDataCov <- myRegDataCov[c ("x","y","z"),c("x","y","z")]
MultipleDataMeans <- myRegDataMeans[c(2,3,4)]

Now, we can move on to our code. It is identical in structure to our simple regression code, but contains additional
paths for the new parts of our model.

require (OpenMx)
multiRegModel <- mxModel ("Multiple Regression -- Path Specification",
type="RAM",

34 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

mxData (
observed=MultipleDataRaw,
type="raw"
),
manifestvVars=c("x", "y", "z"),
variance paths
mxPath (
from=c ("x", "y", "z"),
arrows=2,
free=TRUE,
values = c(1, 1, 1),
labels=c("varx", "residual", "varz")
),
covariance of x and z
mxPath (
from="x"
to="y",
arrows=2,
free=TRUE,
values=0.5,
labels="covxz"
)I
regression weights
mxPath (
from=c ("x","z"),
to="y",
arrows=1,
free=TRUE,
values=1,
labels=c ("betax", "betaz")
)I
means and intercepts
mxPath (
from="one",
to=c("x", "y", "z"),
arrows=1,
free=TRUE,
values=c (1, 1),
labels=c ("meanx", "betalO", "meanz")
)

) # close model

multiRegFit <- mxRun (multiRegModel)
multiRegFitQ@output

summary (multiRegFit)

The first bit of our code should look very familiar. require (OpenMx) makes sure the OpenMx library is loaded
into R. This only needs to be done at the first model of any R session. The type="RAM" argument is identical.
The mxData function references our multiple regression data, which contains one more variable than our simple
regression data. Similarly, our manifestVars list contains an extra label, "z".

The mxPath functions work just as before. Our first function defines the variances of our variables. Whereas our
simple regression included just the variance of x and the residual variance of y, our multiple regression includes the
variance of z as well.

Our second mxPath function specifies a two-headed arrow (covariance) between x and z. We’ve omitted the to

3.1. Regression, Path Specification 35

OpenMx Documentation, Release 0.1

argument from two-headed arrows up until now, as we have only required variaces. Covariances may be specified
by using both the from and to arguments. This path is freely estimated, has a starting value of 0.5, and is labeled
"covxz.

mxPath (
from="x",
to="y",
arrows=2,
free=TRUE,
values=0.5,
labels="covxz"

)I

The third and fourth mxPath functions mirror the second and third mxPath functions from our simple regression,
defining the regressions of y on both x and z as well as the means and intercepts of our model.

The model is run and output is viewed just as before, using the mxRun function, @out put and the summary function
to run, view and summarize the completed model.

3.1.3 Multivariate Regression

The structural modeling approach allows for the inclusion of not only multiple independent variables (i.e., multiple
regression), but multiple dependent variables as well (i.e., multivariate regression). Versions of multivariate regression
are sometimes fit under the heading of path analysis. This model will extend the simple and multiple regression
frameworks we’ve discussed above, adding a second dependent variable “w”.

y:ﬂy+ﬂyz*1’+ﬁyz*26
W = By + Buwz * T+ Pu: * 2z€

36 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

N

h 4

N

2
(o) v

C

We now have twice as many regression parameters, a second residual variance, and the same means, variances and
covariances of our independent variables. As with all of our other examples, this is a fully saturated model.

Data import for this analysis will actually be slightly simpler than before. The data we imported for the previous
examples contains only the four variables we need for this model. We can use myRegDataRaw, myRegDataCov,
and‘‘myRegDataMeans‘‘ in our models.

myRegDataRaw<-read.table ("myRegData.txt", header=TRUE)

myRegDataCov <— matrix(

c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),

nrow=4,

dimnames=1ist (
C("W","X","y", ,

"))

c (HWH, U X", n,moon

Yo

myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)

Our code should look very similar to our previous two models. It includes the same t ype argument, mxDat a function,
and manifestVars argument as previous models, with a different version of the data and additional variables in the
latter two components.

3.1. Regression, Path Specification 37

OpenMx Documentation, Release 0.1

multivariateRegModel <- mxModel ("MultiVariate Regression -- Path Specification",
type="RAM",
mxData (
observed=myRegDataRaw,
type="raw"

) 14
manifestVars=c("w", "x", "y", "z"),
variance paths
mxPath (
from=c("w", "x", "y", "z"),
arrows=2,
free=TRUE,
values = c(1, 1, 1),

labels=c ("residualw", "varx", "residualy", "varz")

) s
covariance of x and z
mxPath (
from="x"
to="y"
arrows=2,
free=TRUE,
values=0.5,
labels="covxz"
) ’
regression weights for y
mxPath (
from=c("x",
to="y"
arrows=1,
free=TRUE,
values=1,
labels=c ("betayx", "betayz")

levl) ,

)I
regression weights for w
mxPath (

from=c ("x","z"),

to="w"

arrows=1,

free=TRUE,

values=1,

labels=c ("betawx", "betawz")
)I
means and intercepts
mxPath (

from="one",

to=c("w", "x", "y", "z"),

arrows=1,

free=TRUE,

values=c (1, 1),

labels=c ("betaw", "meanx", "betay", "meanz")
)

) # close model
multivariateRegFit <- mxRun (multivariateRegModel)

multivariateRegFit@output

38 Chapter 3.

Examples, Path Specification

OpenMx Documentation, Release 0.1

summary (multivariateRegFit)
The only additional components to our mxPath functions are the inclusion of the “w” variable and the additional set
of regression coefficients for “w”. Running the model and viewing output works exactly as before.

These models may also be specified using matrices instead of paths. See link for matrix specification of these models.

3.2 Factor Analysis, Path Specification

This example will demonstrate latent variable modeling via the common factor model using path-centric model spec-
ification. We’ll walk through two applications of this approach: one with a single latent variable, and one with two
latent variables. As with previous examples, these two applications are split into four files, with each application
represented separately with raw and covariance data. These examples can be found in the following files:

* OneFactorModel_PathCov.R
¢ OneFactorModel_PathRaw.R
¢ TwoFactorModel_PathCov.R
¢ TwoFactorModel_PathRaw.R

A parallel version of this example, using matrix specification of models rather than paths, can be found here link.

3.2.1 Common Factor Model

The common factor model is a method for modeling the relationships between observed variables believed to measure
or indicate the same latent variable. While there are a number of exploratory approaches to extracting latent factor(s),
this example uses structural modeling to fit confirmatory factor models. The model for any person and path diagram
of the common factor model for a set of variables x1-x¢ are given below.

Tij = fj + Aj x 1 + €55

3.2. Factor Analysis, Path Specification 39

OpenMx Documentation, Release 0.1

X1 X2 X3||X4||X5]| X6
N

0% o, 0?5 o?, 0% 0%

While 19 parameters are displayed in the equation and path diagram above (6 manifest variances, six manifest means,
six factor loadings and one factor variance), we must constrain either the factor variance or one factor loading to a
constant to identify the model and scale the latent variable. As such, this model contains 18 parameters. Unlike the
manifest variable examples we’ve run up until now, this model is not fully saturated. The means and covariance matrix
for six observed variables contain 27 degrees of freedom, and thus our model contains 9 degrees of freedom.

Data

Our first step to running this model is to put include the data to be analyzed. The data for this example contain nine
variables. We’ll select the six we want for this model using the selection operators used in previous examples. Both
raw and covariance data are included below, but only one is required for any model.

myFADataRaw <- read.table("myFAData.txt",header=TRUE)

> names (myFADataRaw)
[1] lleH "XZH "XB" HX4H "X5" "X6" Hylll Hy2ll Hy3"

oneFactorRaw <- myFADataRaw[,c("x1", "x2", "x3", "x4", "x5", "x6")]

myFADataCov <- matrix(

c(0.997, 0.6042, 0.611, 0.672, 0.637, 0.677, 0.342, 0.299, 0.337,
0.642, 1.025, 0.608, 0.668, 0.643, 0.676, 0.273, 0.282, 0.287,
0.611, 0.608, 0.984, 0.633, 0.657, 0.626, 0.286, 0.287, 0.264,
0.672, 0.668, 0.633, 1.003, 0.676, 0.665, 0.330, 0.290, 0.274,

40 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

0.637, 0.643, 0.657, 0.676, 1.028, 0.654, 0.328, 0.317, 0.331,

0.677, 0.676, 0.626, 0.665, 0.654, 1.020, 0.323, 0.341, 0.349,

0.342, 0.273, 0.286, 0.330, 0.328, 0.323, 0.993, 0.472, 0.467,

0.299, 0.282, 0.287, 0.2%0, 0.317, 0.341, 0.472, 0.978, 0.507,

0.337, 0.287, 0.264, 0.274, 0.331, 0.349, 0.467, 0.507, 1.059),
nrow=9,

dimnames=1ist (
C("Xl", "X2", "X}", "X4H, "X5", "X6", "yl", "y2", Hy3ll),
C("Xl", "XZ", "XB", "X4", "X5", "X6", llyl", "yZ"[lly3"))’
oneFactorCov <- myFADataCov[c ("x1", "x2", "x3", "x4", "x5", "x6"),c("x1", "x2", "x3",

myFADataMeans <- c¢(2.988, 3.011, 2.986, 3.053, 3.016, 3.010, 2.955, 2.956, 2.967)

oneFactorMeans <- myFADataMeans[1:6]

Model Specification

"}14",

Creating a path-centric factor model will use many of the same functions and arguments used in previous path-centric
examples. However, the inclusion of latent variables adds a few extra pieces to our model. Before running a model, the
OpenMx library must be loaded into R using either the require () or library () function. All objects required
for estimation (data, paths, and a model type) are included in their own arguments or functions. This code uses the

mxModel function to create an MxModel object, which we’ll then run.

require (OpenMx)

oneFactorModel<-mxModel ("Common Factor Model - Path",
type="RAM",
mxData (
observed=oneFactorRaw,
type="raw"),
manifestVars=c("x1","x2", "x3","x4", "x5", "x6"),
latentVars="F1",
residual variances
mxPath (from=c ("x1", "x2", "x3", "x4" "x5", "xe"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c ("el", "e2","e3","ed", "e5", "eo")
)I
latent variance
mxPath (from="F1",
arrows=2,
free=TRUE,
values=1,
labels ="varfF1"
)V
factor loadings
mxPath (from="F1",
to=c("x1","x2", "x3","x4", "x5","x6"),
arrows=1,
free=c (FALSE, TRUE, TRUE, TRUE, TRUE, TRUE) ,
values=c(1,1,1,1,1,1),
labels =c("11","12"™,"13","14","15", "16")
)I

3.2. Factor Analysis, Path Specification

41

"X5",

"

X

OpenMx Documentation, Release 0.1

means
mxPath (from="one",
to=c("x1","x2","x3","x4" "x5","x6","F1"),
arrows=1,
free=c (TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) ,
values=c(1,1,1,1,1,1,0),
labels =c("meanxl", "meanx2", "meanx3",
"meanx4", "meanx5", "meanxo",
NA)
)

) # close model

As with previous examples, this model begins with a name for the model and a t ype="RAM" argument. The name for
the model may be omitted, or may be specified an any other place in the model using the name argument. Including
type="RAM" allows the mxModel function to interpret the mxPath functions that follow and turn those paths into
an expected covariance matrix and means vector for the ensuing data. The mxData function works just as in previous
examples, and the raw data specification included in the code:

mxData (
observed=oneFactorRaw,
type="raw")

can be replaced with a covariance matrix and means, like so:

oneFactorModel<-mxModel ("Common Factor Model - Path",
type="RAM",
mxData (
observed=oneFactorCov,
type="cov",
numObs=500,
means=oneFactorMeans)

The first departure from our previous examples can be found in the addition of the 1latentVars argument after the
manifestVars argument. The manifestVars argument includes the six variables in our observed data. The
latentVars argument provides a name for the latent variable, so that it may be referenced in mxPath functions.

manifestVars=c("x1","x2", "x3","x4", "x5", "x6"),
latentVars="F1"

Our model is defined by four mxPath functions. The first defines the residual variance terms for our six observed
variables. The to argument is not required, as we are specifiying two headed arrows both from and to the same
variables, as specified in the from argument. These six variances are all freely estimated, have starting values of 1,
and are labeled el through e6.

mxPath (from=c ("x1", "x2", "x3", "x4" "x5" "x6"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c ("el","e2","e3","ed", "e5", "eo")

We also must specify the variance of our latent variable. This code is identical to our residual variance code above,
with the latent variable "F1" replacing our six manifest variables.

42 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

mxPath (from="F1",
arrows=2,
free=TRUE,
values=1,
labels ="varrFl"
)

Next come the factor loadings. These are specified as assymetric paths (regressions) of the manifest variables on the
latent variable "F1". As we have to scale the latent variable, the first factor loading has been given a fixed value of
one by setting the first elements of the free and values arguments to FALSE and 1, respectively. Alternatively, the
latent variable could have been scaled by fixing the factor variance to 1 in the previous mxPath function and freely
estimating all factor loadings. The five factor loadings that are freely estimated are all given starting values of 1 and
labels 12 through 16.

mxPath (from="F1",
to=c("x1","x2","x3","x4", "x5","x6"),
arrows=1,
free=c (FALSE, TRUE, TRUE, TRUE, TRUE, TRUE) ,
values=c(1,1,1,1,1,1),
labels =c("11","™12","™13","14","15","16")
)

Lastly, we must specify the mean structure for this model. As there are a total of seven variables in this model (six
manifest and one latent), we have the potential for seven means. However, we must constrain at least one mean to a
constant value, as there is not sufficient information to yield seven mean and intercept estimates from the six observed
means. The six observed variables receive freely estimated intercepts, while the factor mean is fixed to a value of zero
in the code below.

mxPath (from="one",
to=c("x1","x2","x3","x4", "x5", "xe","F1"),
arrows=1,
free=c (TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) ,
values=c(1,1,1,1,1,1,0),
labels =c("meanxl", "meanx2", "meanx3",
"meanx4", "meanx5", "meanxo",
NA)
)

The model can now be run using the mxRun function, and the output of the model can be accessed from the output
slot of the resulting model. A summary of the output can be reached using summary ().

oneFactorFit <- mxRun (oneFactorModel)
oneFactorFit@output

summary (oneFactorFit)

3.2.2 Two Factor Model

The common factor model can be extended to include multiple latent variables. The model for any person and path
diagram of the common factor model for a set of variables z} — : math : ‘z3 and y};— : math : ‘y3 are given below.

Tij = pj+ Aj i+ €
Yij =ty + Aj * M2i + €5

3.2. Factor Analysis, Path Specification 43

OpenMx Documentation, Release 0.1

Our model contains 21 parameters (6 manifest variances, six manifest means, six factor loadings, two factor variances
and one factor covariance), but each factor requires one identification constraint. Like in the common factor model
above, we’ll constrain one factor loading for each factor to a value of one. As such, this model contains 19 parameters.
The means and covariance matrix for six observed variables contain 27 degrees of freedom, and thus our model
contains 8 degrees of freedom.

The data for the two factor model can be found in the myFAData files introduced in the common factor model. For
this model, we’ll select three x variables (x1-x3) and three y variables (y1-y3).

twoFactorRaw <- myFADataRaw[,c("x1", "x2", "x3", "y1", "y2'", "y3")]
twoFactorCov <-— myFADataCOV[C("Xl", "X2", "X?)", "yl", "y2", "y3"),C("X1", vvlev’ "XB", "yl",
twoFactorMeans <- myFADataMeans([c(1:3,7:9)]

Specifying the two factor model is virtually identical to the single factor case. The last three variables of our
manifestVars argument have changed from "x4", "x5", "x6" to “y1”,’y2”,’y3”, which is carried through ref-
erences to the variables in later mxPath functions.

twofactorModel<-mxModel ("Two Factor Model Path",
type="RAM",
mxData (
observed=twoFactorRaw,
type="raw"
) 14

44 Chapter 3. Examples, Path Specification

ny2 n ,

n y

OpenMx Documentation, Release 0.1

manifestVars=c("x1","x2", "x3","y1", "y2","y3"),
latentVars=c ("F1","F2"),
residual variances
mxPath (from=c ("x1", "x2", "x3","y1", "y2", "y3"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c ("el", "e2","e3","ed", "e5", "eo")
) 14
latent variances and covariance
mxPath (from=c ("F1", "F2"),
arrows=2,

all=TRUE,

free=TRUE,

values=c(1l, .5,
.5, 1),

labels=c("vart1l","cov", "cov", "varkF2")
) 14

factor loadings for x variables

mxPath (from="F1",
to=c("x1","x2","x3"),
arrows=1,
free=c (FALSE, TRUE, TRUE) ,
values=c(1,1,1),
labels=c("11","12","13")
) 14

#factor loadings for y variables

mxPath (from="F2",
to=c("yl","y2","y3"),
arrows=1,
free=c (FALSE, TRUE, TRUE) ,
values=c(1,1,1),
labels=c("14","15","16™")
) 14

#means

mxPath (from="one",
to=c("x1","x2","x3","y1", "y2", "y3","F1","F2"),
arrows=1,
free=c (TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) ,
values=c(1,1,1,1,1,1,0,0),
labels=c ("meanx1l", "meanx2", "meanx3",

"meanyl", "meany2", "meany3",
NA,NA)

We’ve covered the type argument, mxData function and manifestVars and latentVars arguments previ-
ously, so now we’ll focus on the changes this model makes to the mxPath functions. The first and last mxPath
functions, which detail residual variances and intercepts, accomodate the changes in manifest and latent variables but
carry out identical functions to the common factor model.

residual variances
mxPath (from=c ("x1", "x2", "x3","y1", "y2","y3"),
arrows=2,
free=TRUE,
values=c(1,1,1,1,1,1),
labels=c ("el","e2","e3","ed", "e5", "eo")

3.2. Factor Analysis, Path Specification 45

OpenMx Documentation, Release 0.1

)
#means
mxPath (from="one",
to=c("x1","x2","x3","y1l", "y2", "y3", "F1",""F2"),
arrows=1,
free=c (TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) ,
values=c(1,1,1,1,1,1,0,0),
labels=c("meanxl", "meanx2", "meanx3", "meanyl","meany2","meany3",
NA, NA)
)

The second, third and fourth mxPath functions provide some changes to the model. The second mxPath function
specifies the variances and covariance of the two latent variables. Like previous examples, we’ve omitted the to
argument for this set of two-headed paths. Unlike previous examples, we’ve set the all argument to TRUE, which
creates all possible paths between the variables. As omitting the t o argument is identical to putting identical variables
in the from and to arguments, we are creating all possible paths from and to our two latent variables. This results in
four paths: from F1 to F2 (the variance of F1), from F1 to F2 (the covariance of the latent variables), from F2 to F1
(again, the covariance), and from F2 to F2 (the variance of F2). As the covariance is both the second and third path on
this list, the second and third elements of both the values argument (.5) and the 1abels argument ("cov") are the
same.

mxPath (from=c ("F1","F2"),
arrows=2,

all=TRUE,

free=TRUE,

values=c (1, .5,
.5, 1),

labels=c ("varF1l", "cov", "cov", "varkF2")

)

The third and fourth mxPath functions define the factor loadings for each of the latent variables. We’ve split these
loadings into two functions, one for each latent variable. The first loading for each latent variable is fixed to a value of
one, just as in the previous example.

factor loadings for x variables

mxPath (from="F1",
to=c("x1","x2", "x3"),
arrows=1,
free=c (FALSE, TRUE, TRUE) ,
values=c(1,1,1),
labels=c("11","12","13")

)

#factor loadings for y variables

mxPath (from="F2",
to=c("y1l","y2","y3"),
arrows=1,
free=c (FALSE, TRUE, TRUE) ,
values=c(1,1,1),
labels=c("14","15","16™")

)

The model can now be run using the mxRun function, and the output of the model can be accessed from the output
slot of the resulting model. A summary of the output can be reached using summary ().

oneFactorFit <- mxRun (oneFactorModel)

46 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

oneFactorFit@output
summary (oneFactorFit)

These models may also be specified using matrices instead of paths. See link for matrix specification of these models.

3.3 Time Series, Path Specification

This example will demonstrate a growth curve model using path-centric specification. As with previous examples, this
application is split into two files, one each raw and covariance data. These examples can be found in the following
files:

¢ LGC_PathCov.R
e LGC_PathRaw.R

A parallel version of this example, using matrix-centric specification of models rather than paths, can be found here
link.

3.3.1 Latent Growth Curve Model

The latent growth curve model is a variation of the factor model for repeated measurements. For a set of manifest
variables z;; - x;5 measured at five discrete times for people indexed by the letter i, the growth curve model can be
expressed both algebraically and via a path diagram as shown here:

. math:: nowrap

begin{eqnarray*} x_{ij} = Intercept_{i} + lambda_{j} * Slope_{i} + epsilon_{i} end{eqnarray*}

3.3. Time Series, Path Specification 47

OpenMx Documentation, Release 0.1

g2 GInt_.‘SIope o2

The values and specification of the A parameters allow for alterations to the growth curve model. This example will
utilize a linear growth curve model, so we will specify A to increase linearly with time. If the observations occur at
regular intervals in time, then A can be specified with any values increasing at a constant rate. For this example, we’ll
use [0, 1, 2, 3, 4] so that the intercept represents scores at the first measurement occasion, and the slope represents
the rate of change per measurement occasion. Any linear transformation of these values can be used for linear growth
curve models.

Our model for any number of variables contains 6 free parameters; two factor means, two factor variances, a factor
covariance and a (constant) residual variance for the manifest variables. Our data contains five manifest variables, and
so the covariance matrix and means vector contain 20 degrees of freedom. Thus, the linear growth curve model fit to
these data has 14 degrees of freedom.

Data

The first step to running our model is to import data. The code below is used to import both raw data and a covariance
matrix and means vector, either of which can be used for our growth curve model. This data contains five variables,
which are repeated measurements of the same variable "x". As growth curve models make specific hypotheses about
the variances of the manifest variables, correlation matrices generally aren’t used as data for this model.

myLongitudinalData <- read.table ("myLongitudinalData.txt",header=T)

myLongitudinalDataCov<-matrix (
c(6.362, 4.344, 4.915, 5.045, 5.966,
4.344, 7.241, 5.825, 6.181, 7.252,

48 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

4.915,

5.045,

5.966,
nrow=>5,

5.825,
6.181,
7.252,

dimnames=1ist (

9.348,
7.727,
8.968,

7.7217,
10.821,
10.135,

8.968,
10.135,
14.220),

C("Xl", "X2|l, "X3ll’ "X4ll’ "X5") ,

C("Xl", YIX2H’ "X:))ll, HX4H,

)

HXSH))

myLongitudinalDataMean <- ¢(9.864, 11.812, 13.612, 15.317, 17.178)

Model Specification

We’ll create a path-centric factor model with the same functions and arguments used in previous path-centric examples.
This model is a special type of two-factor model, with fixed factor loadings, constant residual variance and manifest

means dependent on latent means.

Before running a model, the OpenMx library must be loaded into R using either the require () or library ()
function. This code uses the mxMode1 function to create an MxMode 1 object, which we’ll then run.

require (OpenMx)

growthCurveModel <- mxModel ("Linear Growth Curve Model,

type="RAM",

mxData (myLongitudinalData,

type="raw"),

manifestVars=c("x1","x2", "x3", "x4" "x5"),
latentVars=c ("intercept", "slope"),

residual variances

mxPath (from=c ("x1", "x2", "x3", "x4","x5"),

arrows=2,
free=TRUE,

values = c (1, 1,

1/ 1/

1)y

Path Specification",

labels=c("residual", "residual", "residual", "residual", "residual")

)y

latent variances and covariance
mxPath (from=c ("intercept", "slope"),

arrows=2,
all=TRUE,
free=TRUE,
values=c (1, 1, 1,
labels=c ("vari",
) r
intercept loadings

1),
"COV",

"COV",

mxPath (from="intercept",
toic(llxlﬂl "X2", "XB", "X4", "XS") ,

arrows=1,
free=FALSE,
values=c (1, 1, 1,
) 4
slope loadings
mxPath (from="slope",

1, 1)

tO:C("Xln, IIX2", "X3Yl, "X4", "XBH) ,

arrows=1,

free=FALSE,

values=c (0, 1, 2,
) s

3, 4

"vars")

3.3. Time Series, Path Specification

49

OpenMx Documentation, Release 0.1

manifest means

mxPath (from="one",
to=c("x1", "x2", "x3", "x4", "x5"),
arrows=1,
free=FALSE,
values=c (0, 0, 0, 0, 0)),

latent means

mxPath (from="one",
to=c("intercept", "slope"),
arrows=1,
free=TRUE,
values=c (1, 1),
labels=c ("meani", "means")

)

) # close model

The model begins with a name, in this case “Linear Growth Curve Model, Path Specification”. If the first argument
is an object containing an MxMode 1 object, then the model created by the mxModel function will contain all of the
named entites in the referenced model object. The type="RAM" argument specifies a RAM model, allowing the
mxModel to define an expected covariance matrix from the paths we supply.

Data is supplied with the mxData function. This example uses raw data, but the mxData function in the code above
could be replaced with the function below to include covariance data.

mxData (myLongitudinalDataCov,
type="cov",
numObs=500,
means=myLongitudinalDataMeans)

Next, the manifest and latent variables are specified with the manifestVars and latentVars arguments. The
two latent variables in this model are named "Intercept" and "Slope".

There are six mxPath functions in this model. The first two specify the variances of the manifest and latent variables,
respectively. The manifest variables are specified below, which take the form of residual variances. The t o argument
is omitted, as it is not required to specify two-headed arrows. The residual variances are freely estimated, but held to
a constant value across the five measurement occasions by giving all five variances the same label.

residual variances
mxPath (from=c ("x1", "x2", "x3", "x4", "x5"),
arrows=2,
free=TRUE,
values = ¢c(1, 1, 1, 1, 1),
labels=c("residual", "residual", "residual", "residual", "residual")

)

Next are the variances and covariance of the two latent variables. Like the last function, we’ve omitted the t o argument
for this set of two-headed paths. However, we’ve set the all argument to TRUE, which creates all possible paths
between the variables. As omitting the to argument is identical to putting identical variables in the from and to
arguments, we are creating all possible paths from and to our two latent variables. This results in four paths: from
intercept to intercept (the variance of the interecpts), from intercept to slope (the covariance of the latent variables),
from slope to intercept (again, the covariance), and from slope to slope (the variance of the slopes). As the covariance
is both the second and third path on this list, the second and third elements of both the values argument (.5) and the
labels argument ("cov") are the same.

latent variances and covariance
mxPath (from=c ("intercept", "slope"),

50 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

arrows=2,

all=TRUE,

free=TRUE,

values=c (1, 1, 1, 1),

labels=c("vari", "cov", "cov", "vars")

)

The third and fourth mxPath functions specify the factor loadings. As these are defined to be a constant value of 1
for the intercept factor and the set [0, 1, 2, 3, 4] for the slope factor, these functions have no free parameters.

intercept loadings

mxPath (from="intercept",
to=c("x1","x2","x3","x4", "x5"),
arrows=1,
free=FALSE,
values=c(l1, 1, 1, 1, 1)

)I

slope loadings

mxPath (from="slope",
to=c("x1","x2","x3","x4", "x5"),
arrows=1,
free=FALSE,
values=c(0, 1, 2, 3, 4

)

The last two mxPath functions specify the means. The manifest variables are not regressed on the constant, and
thus have intercepts of zero. The observed means are entirely functions of the means of the intercept and slope. To
specify this, the manifest variables are regressed on the constant (denoted "one") with a fixed value of zero, and the
regressions of the latent variables on the constant are estimated as free parameters.

manifest means

mxPath (from="one",
to=c("x1", "x2", "x3", "x4",6 "x5"),
arrows=1,
free=FALSE,
values=c (0, 0, 0, 0, 0)),

latent means

mxPath (from="one",
to=c("intercept", "slope"),
arrows=1,
free=TRUE,
values=c (1, 1),
labels=c("meani", "means")

)

The model is now ready to run using the mxRun function, and the output of the model can be accessed from the
output slot of the resulting model. A summary of the output can be reached using summary ().

growthCurveFit <- mxRun(growthCurveModel)
growthCurveFit@output
summary(growthCurveFit)

These models may also be specified using matrices instead of paths. See link for matrix specification of these models.

3.3. Time Series, Path Specification 51

mailto:growthCurveFit@output

OpenMx Documentation, Release 0.1

3.4 Multiple Groups, Path Specification

An important aspect of structural equation modeling is the use of multiple groups to compare means and covariances
structures between any two (or more) data groups, for example males and females, different ethnic groups, ages etc.
Other examples include groups which have different expected covariances matrices as a function of parameters in the
model, and need to be evaluated together to estimated together for the parameters to be identified.

The example includes the heterogeneity model as well as its submodel, the homogeneity model, and is available in the
following file:

* BivariateHeterogeneity_PathRaw.R

A parallel version of this example, using matrix specification of models rather than paths, can be found here link.

3.4.1 Heterogeneity Model

We will start with a basic example here, building on modeling means and variances in a saturated model. Assume we
have two groups and we want to test whether they have the same mean and covariance structure.

Data

For this example we simulated two datasets (‘xy1’ and ‘xy2’) each with zero means and unit variances, one with a
correlation of .5, and the other with a correlation of .4 with 1000 subjects each. See attached R code for simulation
and data summary.

#Simulate Data

require (MASS)

#group 1

set.seed (200)

rs=.5

xyl <- mvrnorm (1000, c(0,0), matrix(c(l,rs,rs,1),2,2))
set.seed (200)

#group 2

rs=.4

xy2 <- mvrnorm (1000, c(0,0), matrix(c(l,rs,rs,1),2,2))

#Print Descriptive Statistics
selVars <— c('X’,’'Y’)

summary (xyl)

cov (xyl)

dimnames (xyl) <- 1list (NULL, selVars)
summary (xy2)

cov (xy2)

dimnames (xy2) <- list (NULL, selVars)

Model Specification

We first fit a heterogeneity model, allowing differences in both the mean and covariance structure of the two groups.
As we are interested whether the two structures can be equated, we have to specify the models for the two groups,
named ‘groupl’ and ‘group2’ within another model, named ‘bivHet’. The structure of the job thus look as follows,
with two mxModel commands as arguments of another mxModel command. mxModel commands are unlimited in
the number of arguments.

52 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

bivHetModel <- mxModel ("bivHet",
mxModel ("groupl",
mxModel ("group2",
mxAlgebra (groupl.objective + group2.objective, name="hl2"),
mxAlgebraObjective ("h1l2")
)

For each of the groups, we fit a saturated model, by specifying free parameters for the variances and the covariance
using two-headed arrows to generate the expected covariance matrix. Single-headed arrows from one to the manifest
variables contain the free parameters for the expected means. Note that we have specified different labels for all the
free elements, in the two mxMode 1 statements. For more details, see example 1.

#Fit Heterogeneity Model
bivHetModel <- mxModel ("bivHet",
mxModel ("groupl",
manifestVars= selVars,
mxPath (
from=c("x", "vy"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels=c ("vX1","vY1l")
)V
mxPath (
from="X",
to="Y",
arrows=2,
free=T,
values=.2,
lbound=.01,
labels="cXYy1l"
)V
mxPath (
from="one",
to=c("xX", "Y"),
arrows=1,
free=T,
values=0,
labels=c ("mX1", "mY1l")
)I
mxData (
observed=xvyl,
type="raw",
)
type="RAM"
)I
mxModel ("group2",
manifestVars= selVars,
mxPath (
from=c("X", "vy"),
arrows=2,
free=T,
values=1,
lbound=.01,
labels=c ("vX2","vy2™")

3.4. Multiple Groups, Path Specification 53

OpenMx Documentation, Release 0.1

mxPath (
from="X",
to="Y",
arrows=2,
free=T,
values=.2,
lbound=.01,
labels="cXY2"

)I

mxPath (
from="one",
to=c("X", "Y"),
arrows=1,
free=T,
values=0,
labels=c ("mx2", "my2")

)I

mxData (
observed=xy2,
type="raw",

)V

type="RAM"

))

As a result, we estimate five parameters (two means, two variances, one covariance) per group for a total of 10 free
parameters. We cut the ‘Labels matrix:’ parts from the output generated with bivHetModel$groupl@matrices
and bivHetModel$group2@matrices

in groupl
$s
X Y
X "vx1" "zero"
Y "cXyl" "vyl"

SM
X Y
[l,] "mxlll "mYl“

in group2
$S
X Y
X "vX2" "zero"
Y "cXy2" "vy2"

$M
X Y
[1’] "mx2ll llele

To evaluate both models together, we use an mxAlgebra command that adds up the values of the objective functions
of the two groups. The objective function to be used here is the mxAlgebraObjective which uses as its argument
the sum of the function values of the two groups.

mxAlgebra (
groupl.objective + group2.objective,
name="h12"
) 4

54 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

mxAlgebraObjective ("h12")
)

Model Fitting

The mxRun command is required to actually evaluate the model. Note that we have adopted the following notation of
the objects. The result of the mxModel command ends in ‘Model’; the result of the mxRun command ends in ‘Fit’.
Of course, these are just suggested naming conventions.

bivHetFit <- mxRun (bivHetModel)

A variety of output can be printed. We chose here to print the expected means and covariance matrices, which the
RAM objective function generates based on the path specificiation, respectively in the matrices M and S for the two
groups. OpenMx also puts the values for the expected means and covariances in ‘means’ and ‘covariance’ objects.
We also print the likelihood of data given the model. The mxEval command takes any R expression, followed by the
fitted model name. Given that the model ‘bivHetFit’ included two models (groupl and group2), we need to use the
two level names, i.e. ‘groupl.means’ to refer to the objects in the correct model.

EMlHet <- mxEval (groupl.means, bivHetFit)
EM2Het <- mxEval (group?2.means, bivHetFit)
EClHet <- mxEval (groupl.covariance, bivHetFit)
EC2Het <- mxEval (group2.covariance, bivHetFit)
LLHet <- mxEval (objective, bivHetFit)

3.4.2 Homogeneity Model: a Submodel

Next, we fit a model in which the mean and covariance structure of the two groups are equated to one another, to test
whether there are significant differences between the groups.

Model Specification

Rather than having to specify the entire model again, we copy the previous model ‘bivHetModel’ into a new model
‘bivHomModel’ to represent homogeneous structures.

#Fit Homnogeneity Model
bivHomModel <- bivHetModel

As the free parameters of the paths are translated into RAM matrices, and matrix elements can be equated by assigning
the same label, we now have to equate the labels of the free parameters in groupl to the labels of the corresponding ele-
ments in group2. This can be done by referring to the relevant matrices using the Mode1Name [[MatrixName’]]

syntax, followed by @1abels. Note that in the same way, one can refer to other arguments of the objects in the model.
Here we assign the labels from groupl to the labels of group2, separately for the ‘covariance’ matrices (in S) used for
the expected covariance matrices and the ‘means’ matrices (in S) for the expected means vectors.

bivHomModel [["group2.S’]]Q@labels <- bivHomModel[[’groupl.S’]]@labels
bivHomModel [[’ group2.M’]]@labels <- bivHomModel[[’groupl.M’]]@labels

The specification for the submodel is reflected in the names of the labels which are now equal for the corresponding
elements of the mean and covariance matrices, as below.

3.4. Multiple Groups, Path Specification 55

OpenMx Documentation, Release 0.1

in groupl
$S
X Y
X "vX1" "zero"
Y "cXyl" "vyl"

S$M
X Y
[1’] "le" llelll

in group2
$S
X Y
X "VXI" "ZerO"
Y "CXYI" "VY:L "

SM

[1,] "pX1" "myl™"

Model Fitting

We can produce similar output for the submodel, i.e. expected means and covariances and likelihood, the only differ-
ence in the code being the model name. Note that as a result of equating the labels, the expected means and covariances
of the two groups should be the same.

bivHomFit <- mxRun (bivHomModel)
EMl1Hom <- mxEval (groupl.means, bivHomFit)
EM2Hom <- mxEval (group2.means, bivHomFit)
EClHom <- mxEval (groupl.covariance, bivHomFit)
EC2Hom <- mxEval (group2.covariance, bivHomFit)
LLHom <- mxEval (objective, bivHomFit)

Finally, to evaluate which model fits the data best, we generate a likelihood ratio test as the difference between -2 times
the log-likelihood of the homogeneity model and -2 times the log-likelihood of the heterogeneity model. This statistic
is asymptotically distributed as a Chi-square, which can be interpreted with the difference in degrees of freedom of the
two models.

Chi= LLHom-LLHet
LRT= rbind(LLHet, LLHom, Chi)
LRT

3.5 Genetic Epidemiology, Path Specification

Mzx is probably most popular in the behavior genetics field, as it was conceived with genetic models in mind, which rely
heavily on multiple groups. We introduce here an OpenMx script for the basic genetic model in genetic epidemiologic
research, the ACE model. This model assumes that the variability in a phenotype, or observed variable, of interest
can be explained by differences in genetic and environmental factors, with A representing additive genetic factors,
C shared/common environmental factors and E unique/specific environmental factors (see Neale & Cardon 1992,
for a detailed treatment). To estimate these three sources of variance, data have to be collected on relatives with
different levels of genetic and environmental similarity to provide sufficient information to identify the parameters.
One such design is the classical twin study, which compares the similarity of identical (monozygotic, MZ) and fraternal
(dizygotic, DZ) twins to infer the role of A, C and E.

56 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

The example starts with the ACE model and includes one submodel, the AE model. It is available in the following file:
* UnivariateTwinAnalysis_PathRaw.R

A parallel version of this example, using matrix specification of models rather than paths, can be found here link.

3.5.1 ACE Model: a Twin Analysis

Data

Let us assume you have collected data on a large sample of twin pairs for your phenotype of interest. For illustration
purposes, we use Australian data on body mass index (BMI) which are saved in a text file ‘myTwinData.txt’. We use
R to read the data into a data.frame and to create two subsets of the data for MZ females (mzfData) and DZ females
(dzfData) respectively with the code below.

require (OpenMx)

#Prepare Data

twinData <- read.table("myTwinData.txt", header=T, na.strings=".")

twinVars <- c(’fam’,’age’,’zyg’,’part’,’wtl’,’"wt2’, htl’,"ht2’, " htwtl’, " htwt2’,’bmil’, " bmi2’)
summary (twinData)

selVars <- c('bmil’,’"bmi2’)

acevVars <- c("A1","Cc1i","g1","A2","C2","E2")

mzfData <- as.matrix (subset (twinData, zyg==1, c(bmil,bmi2)))

dzfData <- as.matrix(subset (twinData, zyg==3, c(bmil,bmi2)))

Model Specification

There are different ways to draw a path diagram of the ACE model. The most commonly used approach is with the
three latent variables in circles at the top, separately for twin 1 and twin 2 respectively called A1, C1, E1 and A2,
C2, E2. The latent variables are connected to the observed variables (in boxes) *bmil* and *bmi2* at the bottom by
single-headed arrows from the latent to the manifest variables. Path coefficients a, ¢ and e are estimated but constrained
to be the same for twin 1 and twin 2, as well as for MZ and DZ twins. As MZ twins share all their genotypes, the
double-headed path connecting A1 and A2 is fixed to one. DZ twins share on average half their genes, as a result
the corresponding path is fixed to 0.5 in the DZ diagram. As environmental factors that are shared between twins are
assumed to increase similarity between twin to the same extent in MZ and DZ twins (equal environments assumption),
the double-headed path connecting C1 and C2 is fixed to one in both diagrams. The unique environmental factors are
by definition uncorrelated between twins.

3.5. Genetic Epidemiology, Path Specification 57

OpenMx Documentation, Release 0.1

T

Let’s go through each of the paths specification step by step. They will all form arguments of the mxMode1, specified
as follows. Given the diagrams for the MZ and the DZ group look rather similar, we start by specifying all the common
elements which will then be shared with the two submodels for each of the twin types. Thus we call the first model
‘share’.

#Fit ACE Model with RawData and Path-style Input
share <- mxModel ("share",
type="RAM",

Models specifying paths are translated into ‘RAM’ specifications for optimization, indicated by using the
type=’RAM’. For further details on RAM, see ref. Note that we left the comma’s at the end of the lines which
are necessary when all the arguments are combined prior to running the model. Each line can be pasted into R,
and then evaluated together once the whole model is specified. We start the path diagram specification by providing
the names for the manifest variables in manifestVars and the latent varibles in latentVars. We use here the
‘selVars’ and ‘aceVars’ objects that we created before when preparing the data.

manifestVars=selVars,
latentVars=aceVars,

We start by specifying paths for the variances and means of the latent variables. This includes double-headed arrows
from each latent variable back to itself, fixed at one, and single-headed arrows from the triangle (with a fixed value of
one) to each of the latent variables, fixed at zero. Next we specify paths for the means of the observed variables using
single-headed arrows from ‘one’ to each of the manifest variables. These are set to be free and given a start value of
20. As we use the same label (“mean”) for the two means, they are constrained to be equal. The main paths of interest
are those from each of the latent variables to the respective observed variable. These are also estimated (thus all are set
free), get a start value of .6 and appropriate labels. As the common environmental factors are by definition the same
for both twins, we fix the correlation between C1 and C2 to one.

mxPath (
from=aceVars,
arrows=2,
free=FALSE,
values=1

)I

mxPath (
from="one",
to=aceVars,
arrows=1,
free=FALSE,

58 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

values=0
)I
mxPath (
from="one",
to=selVars,
arrows=1, free=TRUE,
values=20,
labels= c("mean", "mean")
)I
mxPath (
from=c("Al","C1","E1"),
to="bmil",
arrows=1,
free=TRUE,
values=.6,
label=c("a","c","e")
)I
mxPath (
from=c ("A2","C2","E2"),
to="bmi2",
arrows=1,
free=TRUE,
values=.6,
label=c ("a","c","e")
)I
mxPath (
from="C1", to="C2",
arrows=2,
free=FALSE,
values=1
)
)

We add the paths that are specific to the MZ group or the DZ group into the respective submodels which will be
combined in ‘twinACEModel’. So we have two mxModel statement within the “twinACE” model statement. Each
of the two models are based on the previously specified “share” model by including it as its first argument. Then
we add the path for the correlation between A1 and A2 which is fixed to one for the MZ group. That concludes the
specification of the model for the MZ’s, thus we move to the mxData command that calls up the data.frame with
the MZ raw data, with the type specified explicitly. Given we use the path specification, the objective function uses
RAM, thus type='"RAM’ . We also give it the model a name to refer back to it later when we need to add the objective
functions. The mxModel command for the DZ group is very similar, except that the the correlation between A1 and
A2 is fixed to 0.5 and the DZ data are read in.

mzModel <- mxModel (share,
mxPath (from="A1", to="A2", arrows=2, free=FALSE, values=1),
mxData (mzfData, type="raw"),
type="RAM", name="M7Z")

dzModel <- mxModel (share,
mxPath (from="A1", to="A2", arrows=2, free=FALSE, values=.5),
mxData (dzfData, type="raw"),
type="RAM", name="DZ")

Finally, both models need to be evaluated simultaneously. We first generate the sum of the objective functions for the
two groups, using mxAlgebra, and then use that as argument of the mxAlgebraObjective command.

3.5. Genetic Epidemiology, Path Specification 59

OpenMx Documentation, Release 0.1

twinACEModel <- mxModel ("twinACE", mzModel, dzModel,
mxAlgebra (MZ.objective + DZ.objective, name="twin"),
mxAlgebraObjective ("twin"))

Model Fitting

We need to invoke the mxRun command to start the model evaluation and optimization. Detailed output will be
available in the resulting object, which can be obtained by a print () statement.

#Run ACE model
twinACEFit <- mxRun (twinACEModel)

Often, however, one is interested in specific parts of the output. In the case of twin modeling, we typically will inspect
the expected covariance matrices and mean vectors, the parameter estimates, and possibly some derived quantities,
such as the standardized variance components, obtained by dividing each of the components by the total variance.
Note in the code below that the mxEval command allows easy extraction of the values in the various matrices/algebras
which form the first argument, with the model name as second argument. Once these values have been put in new
objects, we can use and regular R expression to derive further quantities or organize them in a convenient format for
including in tables. Note that helper functions could (and will likely) easily be written for standard models to produce
‘standard’ output.

MZc <- mxEval (MZ.covariance, twinACEFit)
DZc <- mxEval (DZ.covariance, twinACEFit)
M <- mxEval (MZ.means, twinACEFit)

A <- mxEval (a*a, twinACEFit)
C <- mxEval (c*c, twinACEFit)
E <- mxEval (exe, twinACEFit)
V <- (A+C+E)

a2 <- A/V

c2 <- C/V

e2 <- E/V

ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
LL_ACE <- mxEval (objective, twinACEFit)

3.5.2 Alternative Models: an AE Model

To evaluate the significance of each of the model parameters, nested submodels are fit in which these parameters are
fixed to zero. If the likelihood ratio test between the two models is significant, the parameter that is dropped from
the model significantly contributes to the phenotype in question. Here we show how we can fit the AE model as a
submodel with a change in two mxPath commands. First, we call up the previous ‘full’ model and save it as a new
model ‘twinAEModel’. Next we re-specify the path from C1 to bmil to be fixed to zero, and do the same for the path
from C2 to bmi2. We can run this model in the same way as before and generate similar summaries of the results.

#Run AE model

mzModel <- mxModel (mzModel,
mxPath (from=c ("A1","C1","E1"), to="bmil", arrows=1,
mxPath (from=c ("A2","C2","E2"), to="bmi2", arrows=1,

free=c(T,F,T), values=c(.
free=c(T,F,T)

I4

~

dzModel <- mxModel (dzModel,
mxPath (from=c ("A1","C1","E1"), to="bmil", arrows=1l,
mxPath (from=c ("A2","C2","E2"), to="bmi2", arrows=1,

H

free=c(T,F, values=c (.6,

60 Chapter 3. Examples, Path Specification

6,0,.6),
values=c(.6,0,.6),

free=c(T,F,T), values=c(.6,0,.6),
6,0,.6),

label=c("a
label=c("a

label=c ("
label=c ("

0w

OpenMx Documentation, Release 0.1

twinAEModel <- mxModel (twinACEModel, mzModel, dzModel, name = "twinAE")
twinAEFit <- mxRun (twinAEModel)
MZc <- mxEval (MZ.covariance, twinAEFit)

DZc <- mxEval (DZ.covariance, twinAEFit)
M <- mxEval (MZ.means, twinAEFit)

A <- mxEval (a*a, twinAEFit)
C <- mxEval (c*c, twinAEFit)
E <- mxEval (e*xe, twinAEFit)
V <- (A + C + E)

a2 <- A/ V

c2 <-C / V

e2 <- E / V

AEest <- rbind(cbind (A, C, E),cbind (a2, c2, e2))
LL_AE <- mxEval (objective, twinAEFit)

We use a likelihood ratio test (or take the difference between -2 times the log-likelihoods of the two models) to
determine the best fitting model, and print relevant output.

LRT_ACE_AE <- LL_AE - LIL_ACE

#Print relevant output
ACEest

AFest

LRT_ACE_AE

3.6 Definition Variables, Path Specification

This example will demonstrate the use of OpenMx definition variables with the analysis of a simple two group dataset.
What are definition variables? Essentially, definition variables can be thought of as observed variables that are used to
change the statistical model on an individual case basis. In essence, it is as though one or more variables in the raw data
vectors are used to specify the statistical model for that individual. Many different types of statistical model can be
specified in this fashion; some are readily specified in standard fashion, and some cannot. To illustrate, we implement
a two-group model. The groups differ in their means but not in their variances and covariances. This situation could
easily be modeled in a regular multiple group fashion - it is only implemented using definition variables to illustrate
their use. The results are verified using summary statistics and an Mx 1.0 script for comparison is also available.

3.6.1 Mean Differences

The scripts are presented here
¢ DefinitionMeans_PathRaw.R

¢ DefinitionMeans_PathRaw.mx

Statistical Model

Algebraically, we are going to fit the following model to the observed x and y variables:

fi:/im'i‘ﬁm*def"_ezi
yi:,uyJF/By*defJFeyi

3.6. Definition Variables, Path Specification 61

OpenMx Documentation, Release 0.1

where the residual sources of variance, €;; and €,; covary to the extent p. So, the task is to estimate: the two means /i,
and /i,,; the deviations from these means due to belonging to the group identified by having def set to 1 (as opposed to
zero), 3, and 3,; and the parameters of the variance covariance matrix: cov(e,, €,).

Our task is to implement the model shown in the Figure below:

Data Simulation

Our first step to running this model is to simulate the data to be analyzed. Each individual is measured on two observed
variables, x and y, and a third variable “def”” which denotes their group membership with a 1 or a 0. These values for
group membership are not accidental, and must be adhered to in order to obtain readily interpretable results. Other
values such as 1 and 2 would yield the same model fit, but would make the interpretation more difficult.

library (MASS) # to get hold of mvrnorm function
set.seed (200) # to make the simulation repeatable
n = 500 # sample size, per group

Sigma <- matrix(c(l,.5,.5,1),2,2)
groupl<-mvrnorm(n=n, c(1,2), Sigma)
group2<-mvrnorm(n=n, c(0,0), Sigma)

We make use of the superb R function mvrnorm in order to simulate n=500 records of data for each group. These
observations correlate .5 and have a variance of 1, per the matrix Sigma. The means of x and y in group 1 are 1.0 and
2.0, respectively; those in group 2 are both zero. The output of the mvrnorm function calls are matrices with 500
rows and 3 columns, which are stored in group 1 and group 2. Now we create the definition variable

Put the two groups together, create a definition variable,

and make a list of which variables are to be analyzed (selvars)
y<-rbind(groupl, group2)

dimnames (y) [2]<-list (c("x","y"))

def<-rep(c(l,0),each=n)

selvars<-c("x","y")

The objects y and def might be combined in a data frame. However, in this case we won’t bother to do it externally,
and simply paste them together in the mxData function call.

Model Specification

Before specifying a model, the OpenMx library must be loaded into R using either the require () or library ()
function. This code uses the mxMode1 function to create an mxMode1 object, which we’ll then run. Note that all the
objects required for estimation (data, matrices, and an objective function) are declared within the mxMode1 function.
This type of code structure is recommended for OpenMx scripts generally.

require (OpenMx)
defmeansmodel<-mxModel ("Definition Means wvia Paths",
type="RAM",

The first argument in an mxModel function has a special function. If an object or variable containing an MxMode 1
object is placed here, then mxMode1 adds to or removes pieces from that model. If a character string (as indicated by

62 Chapter 3. Examples, Path Specification

OpenMx Documentation, Release 0.1

double quotes) is placed first, then that becomes the name of the model. Models may also be named by including a
name argument. This model is named "DefinitionMeans".

The second line of the mxModel function call declares that we are going to be using RAM specification of the model,
using directional and bidirectional path coefficients between the variables. Next, we declare where the data are, and
their type, by creating an MxData object with the mxData function. This code first references the object where our
data are, then uses the t ype argument to specify that this is raw data. Analyses using definition variables have to use
raw data, so that the model can be specified on an individual data vector level.

mxData (
observed=data.frame (y,def),
type="raw"),
manifestVars=c("x","y"),
latentVars="DefDummy",

Model specification is carried out using two lists of variables, manifestVars and latentVars. Then mxPath
functions are used to specify paths between them. In the present case, we need four mxPath commands to specify
the model. The first is for the variances of the x and y variables, and the second specifies their covariance. The third
specifies a path from the mean vector, always known by the special keword “one”, to each of the observed variables,
and to the single latent variable “DefDummy”. This last path is specified to contain the definition variable, by virtue of
the “data.def” label. Finally, two paths are specified from the “DefDummy” latent variable to the observed variables.
These parameters estimate the deviation of the mean of those with a data.def value of 1 from that of those with data.def
values of zero.

mxPath (from=c ("x","y"),
arrows=2,
free=TRUE,
values=c (1, .1,1),
labels=c ("Varx", "Vary")
), # variances
mxPath (from="x", to="y",
arrows=2,
free=TRUE,
values=c(.1),
labels=c ("Covxy")
), # covariances
mxPath (from="one",
to=c("x","y", "DefDummy") ,
arrows=1,
free=c (TRUE, TRUE, FALSE) ,
values=c(1,1,1),
labels =c("meanx", "meany", "data.def")
), # means
mxPath (from="DefDummy",
to=c("x","y"),
arrows=1,
free=c (TRUE, TRUE) ,
values=c(1,1),
labels =c("beta_1","beta_2")
)) # moderator paths

We can then run the model and examine the output with a few simple commands.

3.6. Definition Variables, Path Specification 63

OpenMx Documentation, Release 0.1

Model Fitting

Run the model
defMeansFit<-mxRun (defMeansModel)
defMeansFit@matrices

The R object defmeansresult contains matrices and algebras; here we are interested in the matrices, which can be
seen with the defmeansresult@matrices entry. In path notation, the unidirectional, one-headed arrows appear
in the matrix A, the two-headed arrows in S, and the mean vector single headed arrows in M.

Compare OpenMx estimates to summary statistics from raw data,
remembering to knock off 1 and 2 from group 1’s data

so as to estimate variance of combined sample without

the mean difference contributing to the variance estimate.

H W R R

First we compute some summary statistics from the data
ObsCovs <- cov(rbind(groupl - rep(c(l,2), each=n), group2))
ObsMeansGroupl <- c(mean(groupl[,1]), mean(groupl[,2]))
ObsMeansGroup2 <- c(mean(group2[,1]), mean(group2[,2]))

Second we extract the parameter estimates and matrix algebra results from the model
Sigma<-defmeansresult@matrices$S@values[1:2,1:2]
Mu<-defmeansresult@matricesSM@values[1:2]
beta<-defmeansresult@matrices$A@values[1:2, 3]

Third, we check to see if things are more or less equal
omxCheckCloseEnough (ObsCovs, Sigma, .01)

omxCheckCloseEnough (ObsMeansGroupl, as.vector (Mut+beta), .001)
omxCheckCloseEnough (ObsMeansGroup2, as.vector (Mu), .001)

64 Chapter 3. Examples, Path Specification

CHAPTER
FOUR

EXAMPLES, MATRIX SPECIFICATION

4.1 Regression, Matrix Specification

Our next example will show how regression can be carried out from structural modeling perspective. This example is
in three parts; a simple regression, a multiple regression, and multivariate regression. There are two versions of each
example are available; one with raw data, and one where the data is supplied as a covariance matrix and vector of
means. These examples are available in the following files:

» SimpleRegression_MatrixCov.R

» SimpleRegression_MatrixRaw.R

* MultipleRegression_MatrixCov.R

¢ MultipleRegression_MatrixRaw.R

e MultivariateRegression_MatrixCov.R
* MultivariateRegression_MatrixRaw.R

This example will focus on the RAM approach to building structural models. A parallel version of this example, using
path-centric rather than matrix specification, is available here link.

4.1.1 Simple Regression

We begin with a single dependent variable (y) and a single independent variable (x). The relationship between these
variables takes the following form:

y=0o+B1*xx+e

65

OpenMx Documentation, Release 0.1

In this model, the mean of y is dependent on both regression coefficients (and by extension, the mean of x). The
variance of y depends on both the residual variance and the product of the regression slope and the variance of x. This
model contains five parameters from a structural modeling perspective (3, 31, o2, and the mean and variance of x).
We are modeling a covariance matrix with three degrees of freedom (two variances and one variance) and a means
vector with two degrees of freedom (two means). Because the model has as many parameters (5) as the data have
degrees of freedom, this model is fully saturated.

Data

Our first step to running this model is to put include the data to be analyzed. The data must first be placed in a variable
or object. For raw data, this can be done with the read.table function. The data provided has a header row, indicating
the names of the variables.

myRegDataRaw <- read.table("myRegData.txt",header=TRUE)
The names fo the variables provided by the header row can be displayed with the names() function.

> names (myRegDataRaw)
[1] "'V\]" "X" Hy" "Z"

As you can see, our data has four variables in it. However, our model only contains two variables, x and y. To use only
them, we’ll select only the variables we want and place them back into our data object. That can be done with the R
code below.

66 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

SimpleDataRaw <- myRegDataRaw[,c("x","y")]

For covariance data, we do something very similar. We create an object to house our data. Instead of reading in raw
data from an external file, we can also include a covariance matrix. This requires the matrix() function, which needs to
know what values are in the covariance matrix, how big it is, and what the row and column names are. As our model
also references means, we’ll include a vector of means in a separate object. Data is selected in the same way as before.

myRegDataCov <— matrix(

c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),
nrow=4,
dimnames=1ist (
c(Mw, ety 2,
c(Mw", "x", My, "z

SimpleDataCov <- myRegDataCov[c ("x","y"),c("x","y")]
myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)

SimpleDataMeans <- myRegDataMeans([c (2, 3)]

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require () or library () function. All objects required for estimation (data,
matrices, and an objective function) are included in their functions. This code uses the mxModel function to create
an MxModel object, which we’ll then run.

uniRegModel <- mxModel ("Simple Regression - Matrix Specification”,
mxData (
observed=SimpleRegRaw,
type="raw"
)I
mxMatrix (
type="Full",
nrow=2,
ncol=2,
free=c(F, F,
F, F),
values=c (0, 0,
1, 0),
labels=c (NA, NA,
"betal", NA),
byrow=TRUE,
name="A"
)I
mxMatrix (
type="Symm",
nrow=2,
ncol=2,
values=c (1, O,
0, 1),

4.1. Regression, Matrix Specification 67

OpenMx Documentation, Release 0.1

free=c (T, F,

F, T),
labels=c("varx", NA,
NA, "residual"),
byrow=TRUE,
name="5"
) s
mxMatrix (
type="Iden",
nrow=2,
ncol=2,
name="F"
),
mxMatrix (
type="Full",
nrow=1,
ncol=2,

free=c (T, T),
values=c (0, 0),
labels=c ("meanx", "betalO"),
name="M"),
mxRAMObjective ("A", "S", "E", "M")
)

This mxModel function can be split into several parts. First, we give the model a name. The first argument in an
mxMode1 function has a special function. If an object or variable containing an MxMode 1 object is placed here, then
mxModel adds to or removes pieces from that model. If a character string (as indicated by double quotes) is placed
first, then that becomes the name of the model. Models may also be named by including a name argument. This
model is named Simple Regression —-- Matrix Specification.

The second component of our code creates an MxData object. The example above, reproduced here, first references
the object where our data is, then uses the t ype argument to specify that this is raw data.

mxData (
observed=SimpleDataRaw,
type="raw"

)

If we were to use a covariance matrix and vector of means as data, we would replace the existing mxData function
with this one:

mxData (
observed=SimpleDataCov,
type="cov",
numObs=100,
means=SimpleRegMeans

The next four functions specify the four matricies that make up the RAM specified model. Each of these matrices
defines part of the relationship between the observed variables. These matrices are then combined by the objective
function, which follows the four mxMat rix functions, to define the expected covariances and means for the supplied
data. In all of the included matrices, the order of variables matches those in the data. Therefore, the first row and
column of all matrices corresponds to the x variable, while the second row and column of all matrices corresponds to
the y variable.

The A matrix is created first. This matrix specifies all of the assymetric paths or regressions among the variables. A
free parameter in the A matrix defines a regression of the variable represented by that row on the variable represented

68 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

by that column. For clarity, all matrices are specified with the byrow argument set to TRUE, which allows better
correspondence between the matrices as displayed below and their position in mxMat rix objects. In the section of
code below, a free parameter is specified as the regression of y on X, with a starting value of 1, and a label of "betal™".
This matrix is named "A".

mxMatrix(
type="Full",
nrow=2,
ncol=2,
free=c(F, F,
F, F),
values=c(0, O,
1, 0),
labels=c (NA, NA,
"betal", NA),
byrow=TRUE,
name="A"

)

The second mxMat rix function specifies the S matrix. This matrix specifies all of the symmetric paths or covariances
among the variables. By definition, this matrix is symmetric. A free parameter in the S matrix represents a variance
or covariance between the variables represented by the row and column that parameter is in. In the code below,
two free parameters are specified. The free parameter in the first row and column of the S matrix is the variance of
x (labeled "varx"), while the free parameter in the second row and column is the residual variance of y (labeled
"residual™"). This matrix is named "S".

mxMatrix (
type="Symm",
nrow=2,
ncol=2,
values=c (1, O,
0, 1),
free=c (T, F,
F, T),
labels=c ("varx", NA,
NA, "residual"),
byrow=TRUE,
name="5"

)

The third mxMat rix function specifies the F matrix. This matrix is used to filter latent variables out of the expected
covariance of the manifest variables, or to reorder the manifest variables. When there are no latent variables in a model
and the order of manifest variables is the same in the model as in the data, then this filter matrix is simply an identity
matrix. The dimnames provided at this matrix should match the names of the data, either the column names for raw
data or the dimnames of covariance data. There are no free parameters in any F matrix.

mxMatrix (
type="Iden",
nrow=2,
ncol=2,
dimnames=1list (c("x
name="F"

non
’

yll) ,C("X", uyn)) ,
)

The fourth and final mxMatrix function specifies the M matrix. This matrix is used to specify the means and
intercepts of our model. Exogenous or independent variables receive means, while endogenous or dependent variables
get intercepts, or means conditional on regression on other variables. This matrix contains only one row. This matrix

4.1. Regression, Matrix Specification 69

OpenMx Documentation, Release 0.1

consists of two free parameters; the mean of x (labeled "meanx") and the intercept of y (labeled "beta0"). This
matrix gives starting values of 1 for both parameters, and is named "M".

mxMatrix (
type="Full",
nrow=1,
ncol=2,
free=c (T, T),
values=c (0, 0),
labels=c ("meanx", "betalO"),
dimnames=1ist (NULL, c("x","y")),
name="M"

)

The final part of this model is the objective function. This defines both how the specified matrices combine to create
the expected covariance matrix of the data, as well as the fit function to be minimized. In a RAM specified model, the
expected covariance matrix is defined as:

ExpCovariance = F x (I — A) "'« S (I — A~ « F/
The expected means are defined as:
ExpMean = F + (I — A« M

The free parameters in the model can then be estimated using maximum likelihood for covariance and means data, and
full information maximum likelihood for raw data. While users may define their own expected covariance matrices
using other objective functions in OpenMx, the mxRAMOb jective function yields maximum likelihood estimates
of structural equation models when the A, S, F and M matrices are specified. The M matrix is required both for raw
data and for covariance or correlation data that includes a means vector. The mxRAMOb ject ive function takes four
arguments, which are the names of the A, S, F and M matrices in your model. mxRAMObjective("A", "S", "F", "M")
The model now includes an observed covariance matrix (i.e., data) and the matrices and objective function required to
define the expected covariance matrix and estimate parameters.

Model Fitting

We’ve created an MxModel object, and placed it into an object or variable named uniRegModel. We can run this
model by using the mxRun function, which is placed in the object uniRegFit in the code below. We then view the
output by referencing the output slot, as shown here.

uniRegFit <- mxRun (uniRegModel)
uniRegFit@output
The output slot contains a great deal of information, including parameter estimates and information about the matrix

operations underlying our model. A more parsimonious report on the results of our model can be viewed using the
summary function, as shown here.

summary (uniRegFit)

4.1.2 Multiple Regression

In the next part of this demonstration, we move to multiple regression. The regression equation for our model looks
like this:

y=00+Bexx+ B, x2z+c¢

70 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

Our dependent variable y is now predicted from two independent variables, x and z. Our model includes 3 regression
parameters (3, B, 3.), a residual variance (a?) and the observed means, variances and covariance of x and z, for a
total of 9 parameters. Just as with our simple regression, this model is fully saturated.

We prepare our data the same way as before, selecting three variables instead of two.

MultipleDataRaw <- myRegDataRaw[,c("x","y","z")]

MultipleDataCov <- myRegDataCov([c ("x","y","z"),c("x","y","z")]

MultipleDataMeans <- myRegDataMeans[c(2,3,4)]

Now, we can move on to our code. It is identical in structure to our simple regression code, containing the same A,
S, F and M matrices. With the addition of a third variables, the A, S and F matrices become 3x3, while the M matrix
becomes a 1x3 matrix.

multiRegModel<-mxModel ("Multiple Regression — Matrix Specification”,
mxData (MultipleDataRaw, type="raw"),
mxMatrix ("Full",
nrow=3,
ncol=3,
values=c (

rYr

0,0
1,0,
0,0

4

-~

’ ’

o - O

r
free=c(F, F, ,

4.1. Regression, Matrix Specification 71

OpenMx Documentation, Release 0.1

T, F, T,
F, F, F),
labels=c (NA, NA, NA,
"betax", NA,"betaz",
NA, NA, N3a),
byrow=TRUE,
name = "A"),
mxMatrix ("Symm",
nrow=3,
ncol=3,
values=c (1, 0, .5,
o, 1, 0,
.5, 0, 1),
free=c (T, ¥, T,
F, T, F,
T, F, T),
labels=c("varx", NA, "covxz",
NA, "residual", NA,
"covxz", NA, "varz"),

byrow=TRUE,
name="5s"),
mxMatrix ("Iden",
nrow=3,
ncol=3,
name="F",
dimnames = list(c("x","y","z"), c("x","y","z"))),
mxMatrix ("Full",
nrow=1,
ncol=3,
values=c(0,0,0),
free=c(T,T,T),
labels=c("meanx", "betalO", "meanz"),
dimnames = list (NULL, c("x","y","z")),
name="M"),
mxRAMObjective ("A","S", "E", "M")

The mxData function now takes a different data object (MultipleDataRaw replaces SingleDataRaw, adding
an additional variable), but is otherwise unchanged. The mxRAMOb ject ive does not change. The only differences
between this model and the simple regression script can be found in the A, S, F and M matrices, which have expanded
to accomodate a second independent variable.

The A matrix now contains two free parameters, representing the regressions of the dependent variable y on both x
and z. As regressions appear on the row of the dependent variable and the column of the independent variable, these
two parameters are both on the second (y) row of the A matrix.

mxMatrix ("Full",

nrow=3,
ncol=3,
values=c(0,0,0,
1,0,1,
0,0,0),
free=c(¥, F, F,
T, F, T,
F, F, F),
labels=c (NA, NA, N3,
"betax", NA, "betaz",
NA, NA, NA),

72 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

byrow=TRUE,
name = "A")

We’ve made a similar changes in the other matrices. The S matrix includes not only a variance term for the z variable,
but also a covariance between the two independent variables. The F matrix still does not contain free parameters, but
has expanded in size and made parallel changes in the dimnames arguments. The M matrix includes an additional
free parameter for the mean of z.

The model is run and output is viewed just as before, using the mxRun function, @out put and the summary function
to run, view and summarize the completed model.

4.1.3 Multivariate Regression

The structural modeling approach allows for the inclusion of not only multiple independent variables (i.e., multiple
regression), but multiple dependent variables as well (i.e., multivariate regression). Versions of multivariate regression
are sometimes fit under the heading of path analysis. This model will extend the simple and multiple regression
frameworks we’ve discussed above, adding a second dependent variable “w”.

Y = By + Byz x T + Byz * z€
wzﬁw"’ﬁww*x'i'ﬁwz*ze

N

A 4

./

2
Gy

C

We now have twice as many regression parameters, a second residual variance, and the same means, variances and
covariances of our independent variables. As with all of our other examples, this is a fully saturated model.

4.1. Regression, Matrix Specification 73

OpenMx Documentation, Release 0.1

Data import for this analysis will actually be slightly simpler than before. The data we imported for the previous
examples contains only the four variables we need for this model. We can use myRegDataRaw, myRegDataCov,
and‘‘myRegDataMeans‘‘ in our models.

myRegDataRaw<-read.table ("myRegData.txt", header=TRUE)

myRegDataCov <—- matrix(

c(0.808,-0.110, 0.089, 0.361,
-0.110, 1.116, 0.539, 0.289,
0.089, 0.539, 0.933, 0.312,
0.361, 0.289, 0.312, 0.836),
nrow=4,
dimnames=1list (
c(Mwh, xt, yt, 2,
c(Mw", k", Ny, Tz)
)
myRegDataMeans <- c(2.582, 0.054, 2.574, 4.061)

Our code should look very similar to our previous two models. The mxData function will reference the data ref-
erenced above, while the mxRAMOb ject ive again refers to the A, S, F and M matrices. Just as with the multiple
regression example, the A, S and F expand to order 4x4, and the M matrix now contains one row and four columns.

multivariateRegModel<-mxModel ("Multiple Regression - Matrix Specification",
mxData (myRegDataRaw, type="raw"),

mxMatrix ("Full", nrow=4, ncol=4,
values=c(0,1,0,1,
0,0,0,0,
0,1,0,1,
0,0,0,0),
free=c (¥, T, F, T,
F, F, F, F,
F, T, F, T,
F, F, F, F),
labels=c (NA, "betawx", NA, "betawz",
NA, NAa, NA, NAa,
NA, "betayx", NA, "betayz",
NA, NA, NA, Na),
byrow=TRUE,
name="A"),
mxMatrix ("Symm", nrow=4, ncol=4,
values=c (1, o, 0, 0,
o, 1, 0, .5,
o, 0, 1, o0,
o, .5, 0, 1),
free=c (T, ¥, F, F,
F, T, F, T,
F, T, F, T),
labels=c("residualw", NA, NA, NA,
NA, "varx", NA, "covxz",
NA, NA, "residualy", NA,
NA, "covxz", NA, "varz"),
byrow=TRUE,
name="s"),
mxMatrix ("Iden", nrow=4, ncol=4,
dimnames=1list (
c(Mwh, =,y 2,
c("w", "x", "y", "2")),

74

Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

name="F"),

mxMatrix ("Full", nrow=1l, ncol=4,
values=c(0,0,0,0),
free=c(T,T,T,T),
labels=c("betaw", "meanx", "betay", "meanz"),
dimnames=1list (

NULL,c ("w", "x","y","2z")),

name="M"),

mxRAMObjective ("A","S", "F", "M")

)

The only additional components to our mxMat rix functions are the inclusion of the “w” variable, which becomes the
first row and column of all matrices. The model is run and output is viewed just as before, using the mxRun function,
@output and the summary function to run, view and summarize the completed model.

These models may also be specified using paths instead of matrices. See link for matrix specification of these models.

4.2 Factor Analysis, Matrix Specification

This example will demonstrate latent variable modeling via the common factor model using RAM matrices for model
specification. We’ll walk through two applications of this approach: one with a single latent variable, and one with
two latent variables. As with previous examples, these two applications are split into four files, with each application
represented separately with raw and covariance data. These examples can be found in the following files:

¢ OneFactorModel_MatrixCov.R
* OneFactorModel_MatrixRaw.R
¢ TwoFactorModel _MatrixCov.R
¢ TwoFactorModel_MatrixRaw.R

A parallel version of this example, using path-centric specification of models rather than matrices, can be found here
link.

4.2.1 Common Factor Model

The common factor model is a method for modeling the relationships between observed variables believed to measure
or indicate the same latent variable. While there are a number of exploratory approaches to extracting latent factor(s),
this example uses structural modeling to fit confirmatory factor models. The model for any person and path diagram
of the common factor model for a set of variables x1 - z¢ are given below.

Tij = Wy + Nj k0 + €55

4.2. Factor Analysis, Matrix Specification 75

OpenMx Documentation, Release 0.1

X1 X2 X3||X4||X5]| X6
N

0% o, 0?5 o?, 0% 0%

While 19 parameters are displayed in the equation and path diagram above (6 manifest variances, six manifest means,
six factor loadings and one factor variance), we must constrain either the factor variance or one factor loading to a
constant to identify the model and scale the latent variable. As such, this model contains 18 parameters. Unlike the
manifest variable examples we’ve run up until now, this model is not fully saturated. The means and covariance matrix
for six observed variables contain 27 degrees of freedom, and thus our model contains 9 degrees of freedom.

Data

Our first step to running this model is to put include the data to be analyzed. The data for this example contain nine
variables. We’ll select the six we want for this model using the selection operators used in previous examples. Both
raw and covariance data are included below, but only one is required for any model.

myFADataRaw <- read.table("myFAData.txt",header=TRUE)

> names (myFADataRaw)
[1] lleH "XZH "XB" HX4H "X5" "X6" Hylll Hy2ll Hy3"

oneFactorRaw <- myFADataRaw[,c("x1", "x2", "x3", "x4", "x5", "x6")]

myFADataCov <- matrix(

c(0.997, 0.6042, 0.611, 0.672, 0.637, 0.677, 0.342, 0.299, 0.337,
0.642, 1.025, 0.608, 0.668, 0.643, 0.676, 0.273, 0.282, 0.287,
0.611, 0.608, 0.984, 0.633, 0.657, 0.626, 0.286, 0.287, 0.264,
0.672, 0.668, 0.633, 1.003, 0.676, 0.665, 0.330, 0.290, 0.274,

76 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

0.637, 0.643, 0.657, 0.676, 1.028, 0.654, 0.328, 0.317, 0.331,
0.677, 0.676, 0.626, 0.665, 0.654, 1.020, 0.323, 0.341, 0.349,
0.342, 0.273, 0.286, 0.330, 0.328, 0.323, 0.993, 0.472, 0.467,
0.299, 0.282, 0.287, 0.290, 0.317, 0.341, 0.472, 0.978, 0.507,
0.337, 0.287, 0.264, 0.274, 0.331, 0.349, 0.467, 0.507, 1.059),
nrow=9,
dimnames=1ist (
C("Xl", "X2", "X}", "X4", "X5", "X6", "yl", "y2", "y3"),
C("Xl", "XZ", "XB", "X4", "X5", "X6", llyl", "yzl', lly3"))’
)
oneFactorCov <- myFADataCov[c("x1", "x2", "x3", "x4", "x5", "x6"),c("x1", "x2", "x3", "xd4" "x5",
myFADataMeans <- c¢(2.988, 3.011, 2.986, 3.053, 3.016, 3.010, 2.955, 2.956, 2.967)

oneFactorMeans <- myFADataMeans[1:6]

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require () or library () function. All objects required for estimation (data,
matrices, and an objective function) are included in their functions. This code uses the mxModel function to create
an MxModel object, which we’ll then run.

oneFactorModel<-mxModel ("Common Factor Model - Matrix Specification",
mxData (myFADataRaw, type="raw"),
mxMatrix (
type="Full",
nrow=7,
ncol=7,
values=c (

~
~
~
~
~
~

~
~
~
~
~
~

~
~
~
~
~
~

~
~
~
~
~

~
~ ~

O O O O O o o
~ ~

O O O O O o O
~ ~
~

o0 o0 oo oo
N

o0 o oo oo
N
N

O R R R PP
~

~
~
~
~
~

free=c(F,

~
~

’

’

4

’

~

14

’

~

~

~

~

~

~

~

~

~

~

~

14

’

~

~

I4

’

IS L L S s el el el ol el e el
LS L B S L e M e e e e Ne Ne)

~

Moo S
Moo~
Moo oo — s

~

F
F
F
F
F
F

’ 14 ’ ’

F, ¥, ¥, ¥, F, F, F),

labels=c (NA,NA,NA,NA,NA,NA, "11",
NA,NA,NA,NA,NA,NA, "12",
NA,NA,NA,NA,NA,NA, "13",
NA,NA,NA,NA,NA,NA, "14",
NA,NA,NA,NA,NA,NA, "15",
NA,NA,NA,NA,NA,NA, "16",
NA,NA,NA,NA,NA,NA,NA),

byrow=TRUE,

name="A"),

~

R I I R

mxMatrix (
type="Symm",
nrow=7,

4.2. Factor Analysis, Matrix Specification 77

"

X

OpenMx Documentation,

Release 0.1

ncol=7,
values=c(1,0,0,0,0,0,0,
0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,0,0,0,1),
free=c(T, ¥, ¥, ¥, F, F, F,
¥, T, ¥, ¥, F, F, F,
¥, ¥, T, ¥, ¥, F, F,
F, F, ¥, T, F, F, F,
F, ¥, ¥, F, T, F, F,
F, ¥, ¥, F, F, T, F,
F, F, F, F, F, F, T),
labels=c("el", NA, NA, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA,
NA, NA, NA, "e4d", NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA,
NA, NA, NA, NA, NA, "e6", NA,
NA, NA, NA, NA, NA, NA, "varr1l"),
byrow=TRUE,
name="5s"),
mxMatrix (
type="Full",
nrow=6,
ncol=7,
free=FALSE,
values=c(1,0,0,0,0,0,0,
0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0),

byrow=TRUE,
dimnames=1list (
c("x1l","x2", "x3","x4", "x5", "x6"),
c("x1","x2","x3","x4", "x5", "x6","F1")),
name="F"),
mxMatrix (
type="Full",
nrow=1,
ncol=7,
values=c(1,1,1,1,1,1,0),
free=c(T,7,7,7,T,T,F),
labels=c ("meanx1l", "meanx2", "meanx3",
"meanx4", "meanx5", "meanx6",
NAa),
dimnames=1ist (
NULL,
c("x1","x2","x3","x4", "x5", "x6","F1")),
name="M"),
mxRAMObjective ("A","S", "F", "M")
)

This mxModel function can be split into several parts. First, we give the model a name. The first argument in an
mxModel function has a special function. If an object or variable containing an MxMode 1 object is placed here, then

78 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

mxModel adds to or removes pieces from that model. If a character string (as indicated by double quotes) is placed
first, then that becomes the name of the model. Models may also be named by including a name argument. This
model is named "Common Factor Model - Matrix Specification”.

The second component of our code creates an MxData object. The example above, reproduced here, first references
the object where our data is, then uses the t ype argument to specify that this is raw data.

mxData (
observed=oneFactorRaw,
type="raw"

If we were to use a covariance matrix and vector of means as data, we would replace the existing mxData function
with this one:

mxData (
observed=oneFactorCov,
type="cov",
numObs=500,
means=oneFactorMeans

Model specification is carried out using mxMat rix functions to create matrices for a RAM specified model. The A
matrix specifies all of the assymetric paths or regressions in our model. In the common factor model, these parameters
are the factor loadings. This matrix is square, and contains as many rows and columns as variables in the model
(manifest and latent, typically in that order). Regressions are specified in the A matrix by placing a free parameter in
the row of the dependent variable and the column of independent variable.

The common factor model requires that one parameter (typically either a factor loading or factor variance) be con-
strained to a constant value. In our model, we’ll constrain the first factor loading to a value of 1, and let all other

loadings be freely estimated. All factor loadings have a starting value of one and labels of "11" - "16".
mxMatrix(
type="Full",
nrow=7,
ncol=7,
values=c(0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,1,
0,0,0,0,0,0,0),
free=c(¥, ¥, ¥, ¥, ¥, F, F,
F, F, F, F, F, F, T,
F, ¥, F, F, F, F, T,
F, F, F, F, F, F, T,
F, F, F, F, F, F, T,
F, ¥, F, F, F, F, T,
F, F, F, F, F, F, F),
labels=c(NA,NA,NA,NA,NA,NA, "11",

NA,NA,NA,NA,NA,NA, "12",
NA,NA,NA,NA,NA,NA, "13",
NA,NA,NA,NA,NA,NA, "14",
NA,NA,NA,NA,NA,NA, "15",
NA,NA,NA,NA,NA,NA, "16",
NA,NA, NA,NA,NA,NA,N3),

4.2. Factor Analysis, Matrix Specification 79

OpenMx Documentation, Release 0.1

The second matrix in a RAM model is the S matrix, which specifies the symmetric or covariance paths in our model.
This matrix is symmetric and square, and contains as many rows and columns as variables in the model (manifest
and latent, typically in that order). The symmetric paths in our model consist of six residual variances and one factor

variance. All of these variances are given starting values of one and labels "e1" - "e6" and "varF1".
mxMatrix (
type="Symm",
nrow=7,
ncol=7,
values=c(1,0,0,0,0,0,0,
0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,0,0,0,1),
free=c(T, ¥, ¥, ¥, ¥, F, F,
F, T, F, ¥, F, F, F,
F, ¥, T, F, F, F, F,
F, ¥, ¥, T, F, F, F,
F, F, F, ¥, T, F, F,
F, F, F, F, F, T, F,
F, F, ¥, F, F, F, T),
labels=c("el", NA, NA, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA,
NA, NA, NA, "ed", NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA,
NA, NA, NA, NA, NA, "e6", NA,
NA, NA, NA, NA, NA, NA, "varFl"),

The third matrix in our RAM model is the F or filter matrix. Our data contains six observed variables, but the A and S
matrices contain seven rows and columns. For our model to define the covariances present in our data, we must have
some way of projecting the relationships defined in the A and S matrices onto our data. The F matrix filters the latent
variables out of the expected covariance matrix, and can also be used to reorder variables.

The F matrix will always contain the same number of rows as manifest variables and columns as total (manifest and
latent) variables. If the manifest variables in the A and S matrices precede the latent variables are in the same order as
the data, then the F matrix will be the horizontal adhesion of an identity matrix and a zero matrix. This matrix contains

byrow=TRUE,

name="A")

byrow=TRUE,

name="5")

no free parameters, and is made with the mxMat rix function below.

mxMatrix (
type="Full",

nrow=o6,
ncol=7,

free=FALSE,

values=c (

1,0
0,1
0,0
0,0
0,0
0,0

’

14

’

’

14

14

’

’

’

’

’

’

O O O OO

’

~

~

~

O O O O O
~
O P O O O O

~ N~ 0~

~

= O O O O O
~

~

~

~

~ N~ 0~

O O O O O O
~

— ~
~

80

Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

byrow=TRUE,
dimnames=1list (
c("x1","x2", "x3", "x4", "x5", "x6"),
c("x1","x2", "x3", "x4", "x5", "x6", "F1")),
name="F"

)

The last matrix of our model is the M matrix, which defines the means and intercepts for our model. This matrix
describes all of the regressions on the constant in a path model, or the means conditional on the means of exogenous
variables. This matrix contains a single row, and one column for every manifest and latent variable in the model. In our
model, the latent variable has a constrained mean of zero, while the manifest variables have freely estimated means,
labeled "meanx1" *‘through ‘‘"meanx6".

mxMatrix (

type="Full",

nrow=1,

ncol=7,

values=c(1,1,1,1,1,1,0),

free=c(71,7,7,7,T,T,F),

labels=c ("meanxl", "meanx2", "meanx3",
"meanx4", "meanx5", "meanx6",
NAa),

dimnames=1ist (

NULL,
c("x1","x2","x3","x4", "x5", "x6","F1")),
name="M"

)

The final part of this model is the objective function. This defines both how the specified matrices combine to create
the expected covariance matrix of the data, as well as the fit function to be minimized. In a RAM specified model, the
expected covariance matrix is defined as:

ExpCovariance = F % (I — A)" « S* (I — A)™Y « F'
The expected means are defined as:
ExpMean = F x (I — A"« M

The free parameters in the model can then be estimated using maximum likelihood for covariance and means data, and
full information maximum likelihood for raw data. While users may define their own expected covariance matrices
using other objective functions in OpenMx, the mxRAMOb jective function yields maximum likelihood estimates
of structural equation models when the A, S, F and M matrices are specified. The M matrix is required both for raw
data and for covariance or correlation data that includes a means vector. The mxRAMOb ject ive function takes four
arguments, which are the names of the A, S, F and M matrices in your model.

mxRAMObjective ("A", "S", "E", "M")

The model now includes an observed covariance matrix (i.e., data) and the matrices and objective function required to
define the expected covariance matrix and estimate parameters.

The model can now be run using the mxRun function, and the output of the model can be accessed from the output
slot of the resulting model. A summary of the output can be reached using summary ().

oneFactorFit <- mxRun (oneFactorModel)
oneFactorFit@output

summary (oneFactorFit)

4.2. Factor Analysis, Matrix Specification 81

OpenMx Documentation, Release 0.1

4.2.2 Two Factor Model

The common factor model can be extended to include multiple latent variables. The model for any person and path
diagram of the common factor model for a set of variables x; - 3 and y; - y3 are given below.

Tij = fj + Aj kN1 + €5
Yij = Hj + Aj * 120 + €5

Our model contains 21 parameters (6 manifest variances, six manifest means, six factor loadings, two factor variances
and one factor covariance), but each factor requires one identification constraint. Like in the common factor model
above, we’ll constrain one factor loading for each factor to a value of one. As such, this model contains 19 parameters.
The means and covariance matrix for six observed variables contain 27 degrees of freedom, and thus our model
contains 8 degrees of freedom.

The data for the two factor model can be found in the myFAData files introduced in the common factor model. For
this model, we’ll select three x variables (x1-x3) and three y variables (y1-y3 ‘).

twoFactorRaw <- myFADataRaw[,c("x1", "x2", "x3", "y1", "y2", "y3")]

twoFactorCov <-— myFADataCOV[C("Xl", HX2H, "XB", nylnl ny2u, IVYBII),C(HXIHI "XZH’ "XB", vlyllv’ "}72",

twoFactorMeans <- myFADataMeans([c(1:3,7:9)]

Specifying the two factor model is virtually identical to the single factor case. The mxDat a function has been changed
to reference the appropriate data, but is identical in usage. We’ve added a second latent variable, so the A and S

82 Chapter 4. Examples, Matrix Specification

V-

OpenMx Documentation, Release 0.1

matrices are now of order 8x8. Similarly, the F matrix is now of order 6x8 and the M matrix of order 1x8. The
mxRAMOb ject ive has not changed. The code for our two factor model looks like this:

twoFactorModel <- mxModel ("Two Factor Model - Matrix",
type="RAM",
mxData (
observed=twoFactorRaw,
type="raw",

)

mxMatrix (
type="Full",
nrow=8,
ncol=§,
values=c(0,0,0,0,0,0,1,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0),
free=c(¥, ¥, ¥, ¥, F, F, F, F,
¥, ¥, ¥, ¥, ¥, ¥, T, F,
¥, ¥, ¥, ¥, ¥, F, T, F,
¥, ¥, ¥, ¥, ¥, ¥, F, F,
¥, ¥, ¥, ¥, ¥, F, F, T,
¥, ¥, ¥, ¥, ¥, F, F, T,
¥, ¥, ¥, ¥, ¥, ¥, F, F,
¥, ¥, ¥, ¥, F, ¥, F, F),
labels=c (NA,NA,NA,NA,NA,NA,"11", NA,

NA,NA,NA,NA,NA,NA, "12", NA,
NA,NA,NA,NA,NA,NA, "13", NA,
NA,NA,NA,NA,NA,NA, NA,6"14",
NA,NA,NA,NA,NA,NA, NA,"15",
NA,NA,NA,NA,NA,NA, NA,"16",
NA,NA,NA,NA,NA,NA, NA, NA,
NA,NA,NA,NA,NA,NA, NA, NA),

byrow=TRUE,

name="A"),

mxMatrix (
type="Symm",
nrow=8,
ncol=8§g,
values=c(1,0,0,0,0,0, O, O,
0,1,0,0,0,0, 0, O,
0,0,1,0,0,0, 0, O,
0,0,0,1,0,0, 0, O,
0,0,0,0,1,0, 0, O,
0,0,0,0,0,1, 0, O,
0,0,0,0,0,0, 1,.5,
0,0,0,0,0,0,.5, 1),
free=c(T, ¥, ¥, ¥, F, ¥, F, F,
F, T, ¥, ¥, F, F, F, F,
F, F, T, F, F, F, F, F,
F, ¥, ¥, T, F, F, F, F,
F, F, ¥, F, T, F, F, F,
F, F, ¥, ¥, F, T, F, F,
¥, ¥, ¥, ¥, F, F, T, T

~

~

~

~

~

~

~

4.2. Factor Analysis, Matrix Specification

83

OpenMx Documentation, Release 0.1

F, F, F, F,
labels=c("el", NA,
NA, "e2",

NA, NA,

NA, NA,

NA, NA,

NA, NA,

NA, NA,

NA, NA,

byrow=TRUE,
name="3S"),
mxMatrix (
type="Full",
nrow=6,
ncol=8§,
free=F,
values=c (

byrow=T,
name="F"),
mxMatrix (
type="Full",
nrow=1,
ncol=8,

O O O O O K
~
O O O O+ O

O O O O O
~

~

O O O O O
~

O O O O O

NA,
"e3n,
NA,
NA,
NA,
NA,
NA,

~

~

~

~

~

= O O O O O
~

O O O O O O
~

O O O O O O

"e4n,
NA,
NA,
NAa,
NA,

~ 0~ 0~

~

-~
~

values=c(1,1,1,1,1,1,0,0),
free=c(T,7,7,7,7,T,F,F),
labels=c ("meanxl", "meanx2", "meanx3",
"meanx4", "meanx5", "meanx6",
NA,NA),

name="M"),

mxRAMObjective ("A", "S", "F", "M")

mxMatrix (

type="Full",

nrow=38,

ncol=8,

values=c(0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0

free=c(F, F, F,

F, F, F,

D N T Y

~

MRS

~
~

~ 0~
~ N~ 0~

~

~

~
o oo ooo o o
<

~

~

O O O O O o o o
~

~
~

~
~

~

~
O O O O o -
oS NS S~ S S N~~~

~

~ 0~

~

N~ O ok PP O oo
2200
Mo s
N

~

NA,
NA,
NA,
NA,
"es",
NA,
NA,
NA,

NA,
NA,
NA,
NA,
NA,
"e6",
NA,
NA,

NA, NA,
NA, NA,
NA, NA,
NA, NA,
NA, NA,
NA, NA,
"varrFl", "cov",
"cov", "varkF2"),

The four mxMat rix functions have changed slightly to accomodate the changes in the model. The A matrix, shown
below, is used to specify the regressions of the manifest variables on the factors. The first three manifest variables
("x1"-"x3")are regressed on "F1", and the second three manifest variables ("y1"-"y3") are regressed on "F2".
We must again constrain the model to identify and scale the latent variables, which we do by constraining the first
loading for each latent variable to a value of one.

Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

~

~

14

’

14

4

Q = /e oEE

labels=

~

I4

4

’

I e B L

4

F,

NA,NA, NA,NA,NA, NA,
NA, NA, NA, NA, NA, NA,
NA,NA,NA,NA,NA, NA,

~

’

4

’

2 e B B B

’

F,

~

14

14

’

oo

14

F,

~

’

14

’

2 e B e B

’

F,

~

’

4

’

L e By B B

4

F,

T,
F,
F,
F,
F,
F

’

(NA,NA,NA,NA,NA, NA,

"ll",

NA,

NA, NA, NA,NA,NA, NA,
NA, NA, NA, NA, NA, NA,
NA,NA,NA,NA,NA, NA,
NA,NA, NA,NA,NA, NA,

"12", NA,
111311’ NA,
NA, "14",

NA,
NA,
NA,
NA,

"15",
"16",
NA,

NR),

byrow=TRUE,
name="A")

The S matrix has an additional row and column, and two additional parameters. For the two factor model, we must
add a variance term for the second latent variable and a covariance between the two latent variables.

mxMatrix(
type="Symm",
nrow=8,
ncol=8,
values=c(1,0,0,0,0,0, 0, O,
0,1,0,0,0,0, 0, O,
0,0,1,0,0,0, 0, O,
0,0,0,1,0,0, 0, O,
0,0,0,0,1,0, 0, O,
0,0,0,0,0,1, 0, O,
0,0,0,0,0,0, 1,.5,
0,0,0,0,0,0,.5, 1),
free=c(T, ¥, ¥, ¥, ¥, ¥, F, F,
¥, T, ¥, ¥, ¥, F, F, F,
F, F, T, F, F, F, F, F,
F, ¥/, ¥, T, F, F, F, F,
¥, ¥, ¥, ¥, T, F, F, F,
F, F, ¥, F, F, T, F, F,
F, ¥, ¥, F, F, F, T, T,
¥, ¥, F, F, F, F, T, T),
labels=c ("el", NA, NA, NAa, NA, NA, NA, NA,
NA, "e2", NA, NA, NA, NA, NA, NA,
NA, NA, "e3", NA, NA, NA, NA, NA,
NA, NA, NA, "e4d", NA, NA, NA, NA,
NA, NA, NA, NA, "e5", NA, NA, NA,
NA, NA, NA, NA, NA, "e6", NA, NA,
NA, NA, NA, NA, NA, NA, "varfrF1l", "cov",
NA, NA, NA, NA, NA, NA, "cov", "varFkF2"),

byrow=TRUE,
name="5")

The F and M matrices contain only minor changes. The F matrix is now of order 6x8, but the additional column is
simply a column of zeros. The M matrix contains an additional column (with only a single row), which contains the
mean of the second latent variable. As this model does not contain a parameter for that latent variable, this mean is
constrained to zero.

The model is now ready to run using the mxRun function, and the output of the model can be accessed from the
output slot of the resulting model. A summary of the output can be reached using summary ().

4.2. Factor Analysis, Matrix Specification 85

OpenMx Documentation, Release 0.1

These models may also be specified using paths instead of matrices. See link for path specification of these models.

4.3 Time Series, Matrix Specification

This example will demonstrate a growth curve model using RAM specified matrices. As with previous examples, this
application is split into two files, one each raw and covariance data. These examples can be found in the following
files:

¢ LGC_MatrixCov.R
e LGC_MatrixRaw.R

A parallel version of this example, using path-centric specification of models rather than matrices, can be found here
link.

4.3.1 Latent Growth Curve Model

The latent growth curve model is a variation of the factor model for repeated measurements. For a set of manifest
variables z;; - x;5 measured at five discrete times for people indexed by the letter i, the growth curve model can be
expressed both algebraically and via a path diagram as shown here:

. math:: nowrap

begin{eqnarray*} x_{ij} = Intercept_{i} + lambda_{j} * Slope_{i} + epsilon_{i} end{eqnarray*}

IGInt_.‘SIope o2

Slope

86 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

The values and specification of the A parameters allow for alterations to the growth curve model. This example will
utilize a linear growth curve model, so we will specify A to increase linearly with time. If the observations occur at
regular intervals in time, then A can be specified with any values increasing at a constant rate. For this example, we’ll
use [0, 1, 2, 3, 4] so that the intercept represents scores at the first measurement occasion, and the slope represents
the rate of change per measurement occasion. Any linear transformation of these values can be used for linear growth
curve models.

Our model for any number of variables contains 6 free parameters; two factor means, two factor variances, a factor
covariance and a (constant) residual variance for the manifest variables. Our data contains five manifest variables, and
so the covariance matrix and means vector contain 20 degrees of freedom. Thus, the linear growth curve model fit to
these data has 14 degrees of freedom.

Data

The first step to running our model is to import data. The code below is used to import both raw data and a covariance
matrix and means vector, either of which can be used for our growth curve model. This data contains five variables,
which are repeated measurements of the same variable. As growth curve models make specific hypotheses about the
variances of the manifest variables, correlation matrices generally aren’t used as data for this model.

myLongitudinalData <- read.table("myLongitudinalData.txt",header=T)

myLongitudinalDataCov<-matrix (
c(6.362, 4.344, 4.915, 5.045, 5.966,

4.344, 7.241, 5.825, 6.181, 7.252,

4.915, 5.825, 9.348, 7.727, 8.968,

5.045, 6.181, 7.727, 10.821, 10.135,

5.966, 7.252, 8.968, 10.135, 14.220),
nrow=>5,

dimnames=1ist (
c("Xl", "XZ"’ "X3"’ "X4"’ "X5") ,
c("Xl"’ "XZ", "X3", "X4", "X5"))

)

myLongitudinalDataMean <- ¢(9.864, 11.812, 13.612, 15.317, 17.178)

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require () or library () function. All objects required for estimation (data,
matrices, and an objective function) are included in their functions. This code uses the mxModel function to create
an MxMode1 object, which we’ll then run.

require (OpenMx)

growthCurveModel <- mxModel ("Linear Growth Curve Model, Matrix Specification",
mxData (myLongitudinalDataRaw,
type="raw"),
mxMatrix (
type="Full",

nrow=7,

ncol=7,

free=F,

values=c(0,0,0,0,0,1,0,
0,0,0,0,0,1,1,
0,0,0,0,0,1,2

rYrVr

~

4.3. Time Series, Matrix Specification 87

OpenMx Documentation, Release 0.1

~

O O O O
~ 0~
O O O O
~ 0~
O O O O
~ 0~
o O O O
~ 0~
O O O O
~ 0~
o O =

~

~
O O b Ww
~

- ~
~

byrow=TRUE,
name="A"),

mxMatrix (
type="Symm",
nrow=7,
ncol=7,
free=c(T, ¥, ¥, ¥, F, F, F,
¥, T, ¥, ¥, F, F, F,
¥, ¥, T, ¥, ¥, F, F,
¥, ¥, ¥, T, ¥, F, F,
¥, ¥, ¥, ¥, T, F, F,
¥, ¥, ¥, ¥, F, T, T,
¥, ¥, ¥, F, F, T, T),
values=c(0,0,0,0,0, 0, O,
0,0,0,0,0, 0, O,
0,0,0,0,0, o0, O,
0,0,0,0,0, o0, O,
0,0,0,0,0, 0, O,
0,0,0,0,0, 1,0.5,
0,0,0,0,0,0.5, 1),
labels=c("residual”, NA, NA, NA, NA, NA, NA,

NA, "residual", NA, NA, NA, NA, NA,
NA, NA, "residual", NA, NA, NA, NA,
NA, NA, NA, "residual", NA, NA, NA,
NA, NA, NA, NA, "residual", NA, NA,
NA, NA, NA, NA, NA, "vari", "cov",
NA, NA, NA, NA, NA, "cov", "vars"),

byrow= TRUE,

name="s"),

mxMatrix (

type="Full",

nrow=>5,

ncol=7,

byrow=T,
name="F"),
mxMatrix (
type="Full",
nrow=1,
ncol=7,

values=c(0,0,0,0,0,1,1),
free=c(¥,¥,¥,F,F,T,T),
labels=c (NA,NA,NA,NA,NA, "meani", "means"),
name="M"),

mxRAMObjective ("A","S", "F", "M")

)

The model begins with a name, in this case “Linear Growth Curve Model, Path Specification™. If the first argument
is an object containing an MxMode1 object, then the model created by the mxMode1 function will contain all of the

88 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

named entites in the referenced model object.

Data is supplied with the mxData function. This example uses raw data, but the mxDat a function in the code above
could be replaced with the function below to include covariance data.

mxData (myLongitudinalDataCov,
type="cov",
numObs=500,
means=myLongitudinalDataMeans)

The four mxMat rix functions define the A, S, F and M matrices used in RAM specification of models. In all four
matrices, the first five rows or columns of any matrix represent the five manifest variables, the sixth the latent intercept
variable, and the seventh the slope. The A and S matrices are of order 7x7, the F matrix of order 5x7, and the M matrix
1x7.

The A matrix specifies all of the assymetric paths or regressions among variables. The only assymmetric paths in
our model regress the manifest variables on the latent intercept and slope with fixed values. The regressions of the
manifest variables on the intercept are in the first five rows and sixth column of the A matrix, all of which have a fixed
value of one. The regressions of the manifest variables on the slope are in the first five rows and sixth column of the A
matrix with fixed values in this series: [0, 1, 2, 3, 4].

mxMatrix (
type="Full",
nrow=7/,
ncol=7,
free=F,
values=c (

O o0 oo o oo
<

O o0 oo o oo
~

O o0 oo o oo
<

coooooee

coooooo

O O R PP
<

oo B WNRFR O
<

byrow=TRUE,
name="A")

The S matrix specifies all of the symmetric paths among our variables, representing the variances and covariances in
our model. The five manifest variables do not have any covariance parameters with any other variables, and all are
restricted to have the same residual variance. This variance term is constrained to equality by specifying five free
parameters and giving all five parameters the same label. The variances and covariance of the latent variables are
included as free parameters in the sixth and sevenths rows and columns of this matrix as well.

mxMatrix (
type="Symm",

nrow=7/,
ncol=7,
free=c(T, ¥, ¥, ¥, ¥, F, F,
¥, T, ¥, ¥, F, F, F,
¥, ¥, T, ¥, F, F, F,
¥, ¥, ¥, T, F, F, F,
¥, ¥, ¥, ¥, T, F, F,
F, F, ¥, ¥, F, T, T,
F, F, F, F, F, T, T)
values=c(0,0,0,0,0 0, 0,
0,0,0,0,0 0o, 0O,
0,0,0,0,0 o, O,
0,0,0,0,0 0 0

~

~

~

~

4.3. Time Series, Matrix Specification

89

OpenMx Documentation, Release 0.1

0,0,0,0,0, o, O,

0,0,0,0,0, 1,0.5,

0,0,0,0,0,0.5, 1),

labels=c("residual", NA, NA, NA, NA, NA, NA,
NA, "residual", NA, NA, NA, NA, NA,
NA, NA, "residual", NA, NA, NA, NA,
NA, NA, NA, "residual", NA, NA, NA,
NA, NA, NA, NA, "residual", NA, NA,
NA, NA, NA, NA, NA, "vari", "cov",
NA, NA, NA, NA, NA, "cov", "vars"),

byrow= TRUE,

name="35")

The third matrix in our RAM model is the F or filter matrix. This is used to “filter” the latent variables from the
expected covariance of the observed data. The F matrix will always contain the same number of rows as manifest
variables and columns as total (manifest and latent) variables. If the manifest variables in the A and S matrices
precede the latent variables are in the same order as the data, then the F matrix will be the horizontal adhesion of an
identity matrix and a zero matrix. This matrix contains no free parameters, and is made with the mxMat rix function
below.

mxMatrix (

type="Full",

nrow=5,

ncol=7,

free=F,

values=c(1,0,0,0,0,0,0,
0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0),

byrow=T,

name="F")

The final matrix in our RAM model is the M or means matrix, which specifies the means and intercepts of the variables
in the model. While the manifest variables have expected means in our model, these expected means are entirely
dependent on the means of the intercept and slope factors. In the M matrix below, the manifest variables are given
fixed intercepts of zero while the latent variables are each given freely estimated means with starting values of 1 and
labels of "meani" and "means"

mxMatrix(type="Full”’, nrow=1, ncol=7, values=c(0,0,0,0,0,1,1), free=c(FEFEET,T), la-
bels=c(NA,NA,NA,NA,NA, meani”, means’’), name="M")

The last piece of our model is the mxRAMOb ject ive function, which defines both how the specified matrices com-
bine to create the expected covariance matrix of the data, as well as the fit function to be minimized. As covered in
earlier examples, the expected covariance matrix for a RAM model is defined as:

ExpCovariance = F x (I — A)" « S* (I — A)™Y « F'
The expected means are defined as:
ExpMean = Fx (I — A« M

The free parameters in the model can then be estimated using maximum likelihood for covariance and means data, and
full information maximum likelihood for raw data. The M matrix is required both for raw data and for covariance or
correlation data that includes a means vector. The mxRAMOb ject ive function takes four arguments, which are the
names of the A, S, F and M matrices in your model.

The model is now ready to run using the mxRun function, and the output of the model can be accessed from the
output slot of the resulting model. A summary of the output can be reached using summary ().

920 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

growthCurveFit <- mxRun(growthCurveModel)
growthCurveFit@output
summary(growthCurveFit)

These models may also be specified using paths instead of matrices. See link for path specification of these models.

4.4 Multiple Groups, Matrix Specification

An important aspect of structural equation modeling is the use of multiple groups to compare means and covariances
structures between any two (or more) data groups, for example males and females, different ethnic groups, ages etc.
Other examples include groups which have different expected covariances matrices as a function of parameters in the
model, and need to be evaluated together to estimated together for the parameters to be identified.

The example includes the heterogeneity model as well as its submodel, the homogeneity model and is available in the
following file:

* BivariateHeterogeneity_MatrixRaw.R

A parallel version of this example, using paths specification of models rather than matrices, can be found here link.

4.4.1 Heterogeneity Model

We will start with a basic example here, building on modeling means and variances in a saturated model. Assume we
have two groups and we want to test whether they have the same mean and covariance structure.

Data

For this example we simulated two datasets (‘xyl’ and ‘xy2’) each with zero means and unit variances, one with a
correlation of .5, and the other with a correlation of .4 with 1000 subjects each. See attached R code for simulation
and data summary.

#Simulate Data

require (MASS)

#group 1

set.seed (200)

rs=.5

xyl <- mvrnorm (1000, c(0,0), matrix(c(l,rs,rs,1),2,2))
set.seed (200)

#group 2

rs=.4

xy2 <- mvrnorm (1000, c(0,0), matrix(c(l,rs,rs,1),2,2))

#Print Descriptive Statistics
selVars <— c('X’,’Y")

summary (xyl)

cov (xyl)

dimnames (xyl) <- list (NULL, selVars)
summary (xy2)

cov (xy2)

dimnames (xy2) <- list (NULL, selVars)

4.4. Multiple Groups, Matrix Specification 91

mailto:growthCurveFit@output

OpenMx Documentation, Release 0.1

Model Specification

We first fit a heterogeneity model, allowing differences in both the mean and covariance structure of the two groups.
As we are interested whether the two structures can be equated, we have to specify the models for the two groups,
named ‘groupl’ and ‘group2’ within another model, named ‘bivHet’. The structure of the job thus look as follows,
with two mxModel commands as arguments of another mxModel command. mxModel commands are unlimited in
the number of arguments.

bivHetModel <- mxModel ("bivHet",
mxModel ("groupl",
mxModel ("group2",
mxAlgebra (groupl.objective + group2.objective, name="hl2"),
mxAlgebraObjective ("h12")
)

For each of the groups, we fit a saturated model, using a Cholesky decomposition to generate the expected covariance
matrix and a row vector for the expected means. Note that we have specified different labels for all the free elements,
in the two mxModel statements. For more details, see example 1.

#Fit Heterogeneity Model
bivHetModel <- mxModel ("bivHet",
mxModel ("groupl",

mxMatrix (
type="Full",
nrow=2,
ncol=2,
free=c(T,T,F,T),
values=c(1,.2,0,1),
labels=c("vX1l", "cXyl", "zero", "vY1"),
name="Choll"

)

mxAlgebra (
Choll %*% t(Choll),
name="EC1"

)I

mxMatrix (
type="Full",
nrow=1,
ncol=2,
free=T,
values=c (0,0),
labels=c ("mx1", "mYl"),
name="EM1"

)I

mxData (
xyl,
type="raw"

)V

mxFIMLObjective (
"EC1",
"EM1"
selVars)

)I

mxModel ("group2",

mxMatrix (
type="Full",
nrow=2,

92 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

ncol=2,
free=c(T,T,F,T),
values=c(1,.2,0,1),
labels=c("vxX2", "cXxy2", "zero", "vvy2"),
name="Chol2"

)I

mxAlgebra (
Chol2 %$+% t (Chol2),
name="EC2",

)

mxMatrix (
type="Full",
nrow=1,
ncol=2,
free=T,
values=c (0,0),
labels=c ("mx2", "my2"),
name="EM2"

)I

mxData (
xy2,
type="raw"

)I

mxFIMLObjective (
"ECc2",
"EM2",
selVars)

)

As a result, we estimate five parameters (two means, two variances, one covariance) per group for a total of 10 free
parameters. We cut the ‘Labels matrix:” parts from the output generated with bivHetModel$groupl@matrices
and bivHetModel$group2@matrices

SCholl

X Y
X "yxX1" "zero"
Y "cXy1l" "vyl"

SEM1
X Y
[l,] "mX1" "myl"

$Chol2

X Y
X "vX2" "zero"
Y "cXy2" "vya"

SEM2
X Y
[1, J "mX2" "my2"

Model Fitting

To evaluate both models together, we use an mxAlgebra command that adds up the values of the objective functions
of the two groups. The objective function to be used here is the mxAlgebraObjective which uses as its argument
the sum of the function values of the two groups.

4.4. Multiple Groups, Matrix Specification 93

OpenMx Documentation, Release 0.1

mxAlgebra (
groupl.objective + group2.objective,
name="h12"

) s
mxAlgebraObjective ("h1l2")

)

The mxRun command is required to actually evaluate the model. Note that we have adopted the following notation of
the objects. The result of the mxModel command ends in ‘Model’; the result of the mxRun command ends in ‘Fit’.
Of course, these are just suggested naming conventions.

bivHetFit <- mxRun (bivHetModel)

A variety of output can be printed. We chose here to print the expected means and covariance matrices for the two
groups and the likelihood of data given the model. The mxEval command takes any R expression, followed by the
fitted model name. Given that the model ‘bivHetFit’ included two models (groupl and group2), we need to use the
two level names, i.e. ‘groupl.EM1’ to refer to the objects in the correct model.

EM1Het <- mxEval (groupl.EM1, bivHetFit
EM2Het <- mxEval (group2.EM2, bivHetFit
EClHet <- mxEval (groupl.ECl, bivHetFit
EC2Het <- mxEval (group2.EC2, bivHetFit
LLHet <- mxEval (objective, bivHetFit)

)
)
)
)

4.4.2 Homogeneity Model: a Submodel

Next, we fit a model in which the mean and covariance structure of the two groups are equated to one another, to test
whether there are significant differences between the groups. Rather than having to specify the entire model again, we
copy the previous model ‘bivHetModel’ into a new model ‘bivHomModel’ to represent homogeneous structures.

#Fit Homnogeneity Model
bivHomModel <- bivHetModel

As elements in matrices can be equated by assigning the same label, we now have to equate the labels of the free
parameters in groupl to the labels of the corresponding elements in group2. This can be done by referring to the
relevant matrices using the ModelName [[’ MatrixName’]] syntax, followed by @labels. Note that in the
same way, one can refer to other arguments of the objects in the model. Here we assign the labels from groupl to the
labels of group2, separately for the Cholesky matrices used for the expected covariance matrices and for the expected
means vectors.

bivHomModel [[group2.Chol2’]]@labels <- bivHomModel[[’groupl.Choll’]]@labels
bivHomModel [[group2.EM2’]]@labels <- bivHomModel[[’groupl.EM1’]]@labels

The specification for the submodel is reflected in the names of the labels which are now equal for the corresponding
elements of the mean and covariance matrices, as below.

$Choll

X Y
X "yX1" "sero"
Y "eXy1l" "vyl"

SEM1
X Y

94 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

[1,1 "mX1" "myl™"

$Chol2
X Y
X "VXl" "Zero"

Y "cXyl" "vyl"

SEM2
X Y
[1, J nleu llelll

We can produce similar output for the submodel, i.e. expected means and covariances and likelihood, the only differ-
ence in the code being the model name. Note that as a result of equating the labels, the expected means and covariances
of the two groups should be the same.

bivHomFit <- mxRun (bivHomModel)
EMl1Hom <- mxEval (groupl.EM1, bivHomFit)
EM2Hom <- mxEval (group2.EM2, bivHomFit)
EClHom <- mxEval (groupl.ECl, bivHomFit)
EC2Hom <- mxEval (group2.EC2, bivHomFit)
LLHom <- mxEval (objective, bivHomFit)

Finally, to evaluate which model fits the data best, we generate a likelihood ratio test as the difference between -2 times
the log-likelihood of the homogeneity model and -2 times the log-likelihood of the heterogeneity model. This statistic
is asymptotically distributed as a Chi-square, which can be interpreted with the difference in degrees of freedom of the
two models.

Chi= LLHom-LLHet
LRT= rbind(LLHet, LLHom, Chi)
LRT

4.5 Genetic Epidemiology, Matrix Specification

Mx is probably most popular in the behavior genetics field, as it was conceived with genetic models in mind, which rely
heavily on multiple groups. We introduce here an OpenMx script for the basic genetic model in genetic epidemiologic
research, the ACE model. This model assumes that the variability in a phenotype, or observed variable, of interest
can be explained by differences in genetic and environmental factors, with A representing additive genetic factors,
C shared/common environmental factors and E unique/specific environmental factors (see Neale & Cardon 1992,
for a detailed treatment). To estimate these three sources of variance, data have to be collected on relatives with
different levels of genetic and environmental similarity to provide sufficient information to identify the parameters.
One such design is the classical twin study, which compares the similarity of identical (monozygotic, MZ) and fraternal
(dizygotic, DZ) twins to infer the role of A, C and E.

The example starts with the ACE model and includes one submodel, the AE model. It is available in the following file:
¢ UnivariateTwinAnalysis_MatrixRaw.R

A parallel version of this example, using path specification of models rather than matrices, can be found here link.

4.5. Genetic Epidemiology, Matrix Specification 95

OpenMx Documentation, Release 0.1

4.5.1 ACE Model: a Twin Analysis

Data

Let us assume you have collected data on a large sample of twin pairs for your phenotype of interest. For illustration
purposes, we use Australian data on body mass index (BMI) which are saved in a text file ‘myTwinData.txt’. We use
R to read the data into a data.frame and to create two subsets of the data for MZ females (mzfData) and DZ females
(dzfData) respectively with the code below.

require (OpenMx)

#Prepare Data

twinData <- read.table("myTwinData.txt", header=T, na.strings=".")

twinVars <- c(’fam’,’age’,’zyqg’,’'part’,’ wtl’,’wt2’,’htl’, " ht2’,’htwtl’, " htwt2’,’bmil’, " bmi2’)
summary (twinData)

selVars <- c('bmil’, " "bmi2’)

mzfData <- as.matrix(subset (twinData, zyg==1, c(bmil,bmi2)))

dzfData <- as.matrix(subset (twinData, zyg==3, c(bmil,bmi2)))

Model Specification

There are a variety of ways to set up the ACE model. The most commonly used approach in Mx is to specify three
matrices for each of the three sources of variance. The matrix X represents the additive genetic path ‘a’, the Y matrix
is used for the shared environmental path ‘c’ and the matrix Z for the unique environmental path ‘e’. The expected
variances and covariances between member of twin pairs are typically expressed in variance components (or the
square of the path coefficients, i.e. ‘a”2’, ‘c"2’ and ‘e”2’). These quantities can be calculated using matrix algebra,
by multiplying the X matrix by its transpose t(A). Note that the transpose is not strictly needed in the univariate case,
but will allow easier transition to the multivariate case. We then use matrix algebra again to add the relevant matrices
corresponding to the expectations for each of the statistics of the observed covariance matrix. The R functions ‘cbind’
and ‘rbind’ are used to concatenate the resulting matrices in the appropriate way. Let’s go through each of the matrices
step by step. They will all form arguments of the mxModel, specified as follows. Note that we left the comma’s at
the end of the lines which are necessary when all the arguments are combined prior to running the model. Each line
can be pasted into R, and then evaluated together once the whole model is specified.

#Fit ACE Model with RawData and Matrix-style Input
twinACEModel <- mxModel ("twinACE",

As the focus is on individual differences, the model for the means is typically simple. We can estimate each of the
means, in each of the two groups (MZ & DZ) as free parameters. Alternatively, we can establish whether the means
can be equated across order and zygosity by fitting submodels to the saturated model. In this case, we opted to use
one ‘grand’ mean, obtained by assigning the same label to the two elements of the matrix ‘expMeanMZ’ and the two
elements of the matrix ‘expMeanDZ’, each of which are ‘Full’ 1x2 matrices with free parameters and start values of
20. Note again that dimnames are required for matrices or algebras that generate the expected mean vectors and
expected covariance matrices.

mxMatrix (
type="Full",
nrow=1,
ncol=2,
free=T,
values=c (20,20),
labels= c("mean", "mean"),
name="expMeanMz"

96 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

mxMatrix(
type="Full",
nrow=1,
ncol=2,
free=T,
values=c(20,20),
labels= c("mean", "mean"),
name="expMeanDZ"

),

Given the current example is univariate (in the sense that we analyze one variable, even though we have measured it
in two members of twin pairs), the matrices for the paths ‘a’, ‘c’ and ‘e’, respectively, X, Y and Z are all ‘Full’ 1x1
matrices assigned the ‘free’ status and given a .6 starting value. We also specify the matrix h to have a fixed value of
0.5, necessary for the expectation of DZ twins.

mxMatrix(
type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=.6,
label="a"
name="X"

)I

mxMatrix (
type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=.6,
label="c",
name="Y"

)I

mxMatrix (
type="Full",
nrow=1,
ncol=1,
free=TRUE,
values=.6,
label="e",
name="72"

)I

mxMatrix (
type="Full",
nrow=1,
ncol=1,
free=FALSE,
values=.5,
name="h"

),

While the labels in these matrices are given lower case names, similar to the convention that paths have lower case
names, the names for the variance component matrices, obtained from multiplying matrices with their transpose have
upper case letters ‘A’, ‘C’ and ‘E’ which are distinct (as R is case-sensitive).

mxAlgebra (
expression=X x t (X),

4.5. Genetic Epidemiology, Matrix Specification 97

OpenMx Documentation, Release 0.1

name="A"

)I

mxAlgebra (
expression=Y x t (Y
name="C"

) 4

)/

mxAlgebra (
expression=Z * t(Z),
name="E"

),

Previous Mx users will likely be familiar with the look of the expected covariance matrices for MZ and DZ twin pairs.
These 2x2 matrices are built by horizontal and vertical concatenation of the appropriate matrix expressions for the
variance, the MZ and the DZ covariance. In R, concatenation of matrices is accomplished with the ‘rbind’ and ‘cbind’
functions. Thus to represent the matrices in expression ? in R, we use the following code.

M7 — a’?+c?+e? a? + A D7 — a’ +c? + €%, .5a® + ¢?
cov Tl e+ al+ A +e? COVPZ = 502 + 2,02 + 2 + ¢2
mxAlgebra (
expression=rbind (cbind(A + C + E, A + C),
cbind (A + C , A+ C + E)),
name="expCovMz"
)I
mxAlgebra (
expression=rbind (cbind(A + C + E , h %$x% A + C),
cbind(h %$x% A + C, A + C + E)),

name="expCovDZ"

),

As the expected covariance matrices are different for the two groups of twins, we specify two mxModel com-
mands within the ‘twinACE’ mxModel command. They are given a name, and arguments for the data and the ob-
jective function to be used to optimize the model. We have set the model up for raw data, and thus will use the
mxFIMLObjective function to evaluate it. For each model, the mxData command calls up the appropriate data,
and provides a type, here ‘raw’, and the mxFIMLObjective command is given the names corresponding to the
respective expected covariance matrices and mean vectors, specified above.

mxModel ("Mz",

mxData (
observed=mzfData,
type="raw"

) 4

mxFIMLObjective (
covariances="twinACE.expCovMzZ",
means="twinACE.expMeanMz",
dimnames=selVars

)I
mxModel ("DZ",
mxData (
observed=dzfData,
type="raw"
)I
mxFIMLObjective (
covariances="twinACE.expCovDZ",
means="twinACE.expMeanDzZ",
dimnames=selVars

98 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

),

Finally, both models need to be evaluated simultaneously. We first generate the sum of the objective functions for the
two groups, using mxAlgebra, and then use that as argument of the mxAlgebraObjective command.

mxAlgebra (
expression=MZ.objective + DZ.objective,
name="twin"

),
mxAlgebraObjective ("twin™)

)

Model Fitting

We need to invoke the mxRun command to start the model evaluation and optimization. Detailed output will be
available in the resulting object, which can be obtained by a print () statement.

#Run ACE model
twinACEFit <- mxRun (twinACEModel)

Often, however, one is interested in specific parts of the output. In the case of twin modeling, we typically will inspect
the expected covariance matrices and mean vectors, the parameter estimates, and possibly some derived quantities,
such as the standardized variance components, obtained by dividing each of the components by the total variance.
Note in the code below that the mxEval command allows easy extraction of the values in the various matrices/algebras
which form the first argument, with the model name as second argument. Once these values have been put in new
objects, we can use and regular R expression to derive further quantities or organize them in a convenient format for
including in tables. Note that helper functions could (and will likely) easily be written for standard models to produce
‘standard’ output.

MZc <- mxEval (expCovMZ, twinACEFit)
DZc <- mxEval (expCovDZ, twinACEFit)
M <- mxEval (expMeanMZ, twinACEFit)

A <- mxEval (A, twinACEFit)
C <- mxEval(C, twinACEFit)
E <- mxEval (E, twinACEFit)
V <— (A+C+E)

a2 <- A/V

c2 <- C/V

e2 <- E/V

ACEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
LL_ACE <- mxEval (objective, twinACEFit)

4.5.2 Alternative Models: an AE Model

To evaluate the significance of each of the model parameters, nested submodels are fit in which these parameters are
fixed to zero. If the likelihood ratio test between the two models is significant, the parameter that is dropped from
the model significantly contributes to the phenotype in question. Here we show how we can fit the AE model as a
submodel with a change in one mxmMat rix command. First, we call up the previous ‘full’ model and save it as a
new model ‘twinAEModel’. Next we re-specify the matrix Y to be fixed to zero. We can run this model in the same
way as before and generate similar summaries of the results.

4.5. Genetic Epidemiology, Matrix Specification 99

OpenMx Documentation, Release 0.1

#Run AE model
twinAEModel <- mxModel (twinACEModel,
mxMatrix (
type="Full",
nrow=1,
ncol=1,
free=F,
values=0,
label="c",
name="Y"
)
)
twinAEFit <- mxRun (twinAEModel)

MZc <- mxEval (expCovMZ, twinAEFit)
DZc <- mxEval (expCovDZ, twinAEFit)
A <- mxEval (A, twinAEFit)

C <- mxEval (C, twinAEFit)

E <- mxEval (E, twinAEFit)

V <- (A+C+E)

a2 <- A/V
c2 <— C/V
e2 <- E/V

AEest <- rbind(cbind(A,C,E),cbind(a2,c2,e2))
LL_AE <- mxEval (objective, twinAEFit)

We use a likelihood ratio test (or take the difference between -2 times the log-likelihoods of the two models) to
determine the best fitting model, and print relevant output.

LRT_ACE_AE <- LL_AE-LL_ACE

#Print relevant output
ACEest

AEest

LRT ACE_AE

4.6 Definition Variables, Matrix Specification

This example will demonstrate the use of OpenMx definition variables with the implementation of a simple two
group dataset. What are definition variables? Essentially, definition variables can be thought of as observed variables
which are used to change the statistical model on an individual case basis. In essence, it is as though one or more
variables in the raw data vectors are used to specify the statistical model for that individual. Many different types
of statistical model can be specified in this fashion; some are readily specified in standard fashion, and some that
cannot. To illustrate, we implement a two-group model. The groups differ in their means but not in their variances
and covariances. This situation could easily be modeled in a regular multiple group fashion - it is only implemented
using definition variables to illustrate their use. The results are verified using summary statistics and an Mx 1.0 script
for comparison is also available.

4.6.1 Mean Differences

The scripts are presented here

¢ DefinitionMeans_MatrixRaw.R

100 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

¢ DefinitionMeans_MatrixRaw.mx

Statistical Model

Algebraically, we are going to fit the following model to the observed x and y variables:

Ty = po + Bo x def + €xiyi = py + By x def + ey

where the residual sources of variance, €;; and €,; covary to the extent p. So, the task is to estimate: the two means /i,
and p,; the deviations from these means due to belonging to the group identified by having def set to 1 (as opposed
to zero), 3, and (3,; and the parameters of the variance covariance matrix: cov(e,, €,) which we will call ¥ or simply
“S” in the R script.

Data Simulation

Our first step to running this model is to simulate the data to be analyzed. Each individual is measured on two observed
variables, x and y, and a third variable “def” which denotes their group membership with a 1 or a 0. These values for
group membership are not accidental, and must be adhered to in order to obtain readily interpretable results. Other
values such as 1 and 2 would yield the same model fit, but would make the interpretation more difficult.

library (MASS)

set.seed (200) # to make the simulation repeatable
n = 500 # sample size, per group

Sigma <- matrix(c(l,.5,.5,1),2,2)
groupl<-mvrnorm(n=n, c(l1,2), Sigma)
group2<-mvrnorm(n=n, c(0,0), Sigma)

We make use of the superb R function mvrnorm in order to simulate n=500 records of data for each group. These
observations correlate .5 and have a variance of 1, per the matrix Sigma. The means of x and y in group 1 are 1.0 and
2.0, respectively; those in group 2 are both zero. The output of the mvrnorm function calls are matrices with 500
rows and 3 columns, which are stored in group 1 and group 2. Now we create the definition variable

Put the two groups together, create a definition variable,

and make a list of which variables are to be analyzed (selvars)
y<-rbind(groupl, group?2)

dimnames (y) [2]<-list (c("x","y"))

def<-rep(c(l,0),each=n)

selvars<-c("x","y")

The objects y and def might be combined in a data frame. However, in this case we won’t bother to do it externally,
and simply paste them together in the mxData function call.

Model Specification

The following code contains all of the components of our model. Before running a model, the OpenMx library must
be loaded into R using either the require () or library () function. This code uses the mxModel function to
create an mxMode 1 object, which we’ll then run. Note that all the objects required for estimation (data, matrices, and
an objective function) are declared within the mxModel function. This type of code structure is recommended for
OpenMx scripts generally.

4.6. Definition Variables, Matrix Specification 101

OpenMx Documentation, Release 0.1

defMeansModel <- mxModel ("DefinitionMeans",
mxFIMLObjective (
covariance="Sigma",
means="Mu",
dimnames=selvars

)y

The first argument in an mxModel function has a special function. If an object or variable containing an MxMode 1
object is placed here, then mxModel adds to or removes pieces from that model. If a character string (as indicated by
double quotes) is placed first, then that becomes the name of the model. Models may also be named by including a
name argument. This model is named "DefinitionMeans".

The second argument in this mxModel call is itself a function. It declares that the objective function to be optimized is
full information maximum likelihood (FIML) under normal theory, which is tagged as mxFIMLOb jective. There
are in turn two arguments to this function: the covariance matrix Sigma and the mean vector Mu. These matrices will
be defined later in the mxModel function call.

Next, we declare where the data are, and their type, by creating an MxData object with the mxData function. This
piece of code creates an MxDat a object. It first references the object where our data are, then uses the t ype argument
to specify that this is raw data. Analyses using definition variables have to use raw data, so that the model can be
specified on an individual data vector level.

mxData ((
observed=data.frame (y,def)),
type="raw"

),

Model specification is carried out using mxMat r i x functions to create matrices for the model. In the present case, we
need four matrices. First is the predicted covariance matrix, Sigma. Next, we use three matrices to specify the model
for the means. First is M which corresponds to estimates of the means for individuals with definition variables with
values of zero. Individuals with definition variable values of 1 will have the value in M along with the value in the
matrix beta. So both matrices are of size 1x2 and both contain two free parameters. There is a separate deviation for
each of the variables, which will be estimated in the elements 1,1 and 1,2 of the befa matrix. Last, but by no means
least, is the matrix def which contains the definition variable. The variable def in mxData data frame is referred to as
data.def. In the present case, the definition variable contains a 1 for group 1, and a zero otherwise.

mxMatrix(
type="Symm",
nrow=2,
ncol=2,
free=TRUE,
values=c (1, 0, 1),
name="Sigma"

),

mxMatrix (
type="Full",
nrow = 1,
ncol = 2,
free=TRUE,
name = "M"

)I

mxMatrix (
type="Full",
nrow=1,
ncol=2,
free=TRUE,

values=c (0, 0),

102 Chapter 4. Examples, Matrix Specification

OpenMx Documentation, Release 0.1

name="beta"
)I
mxMatrix (
type="Full",
nrow=1,
ncol=2,
free=FALSE,
labels=c("data.def"),
name="def"

)I

The trick - commonly used in regression models - is to multiply the beta matrix by the def matrix. This multiplication
is effected using an mxAlgebra function call:

mxAlgebra (
expression=M+betaxdef,
name="Mu"

The result of this algebra is named Mu, and this handle is referred to in the mxFIMLObjective function call. We can
then run the model and examine the output with a few simple commands.

Model Fitting

Run the model

defMeansFit <- mxRun (defMeansModel)
defMeansFit@matrices
defMeansFit@algebras

It is possible to compare the estimates from this model to some summary statistics computed from the data:

Compare OpenMx estimates to summary statistics computed from raw data.

Note that to calculate the common variance,

group 1 has the 1 and 2 subtracted from every Xi and Yi in the sample

data, so as to estimate variance of combined sample without the mean correction.

H W R R

First we compute some summary statistics from the data
ObsCovs<-cov (rbind (groupl-rep(c(1l,?2),each=n),group2))
ObsMeansGroupl<-c (mean (groupl[, 1], mean (groupl[,2]))
ObsMeansGroup2<-c (mean (group2 [, 1],mean (group2[,2]))

Second we extract the parameter estimates and matrix algebra results from the model
Sigma<-run@matrices$Sigma@values

Mu<-run@algebras$Mulresult

M<-run@matrices$M@values

beta<-run@matrices$beta@values

Third, we check to see if things are more or less equal
omxCheckCloseEnough (ObsCovs, Sigma, .01)

omxCheckCloseEnough (ObsMeansGroupl, as.vector (Mtbeta), .001)
omxCheckCloseEnough (ObsMeansGroup2, as.vector (Mu), .001)

4.6. Definition Variables, Matrix Specification 103

OpenMx Documentation, Release 0.1

104 Chapter 4. Examples, Matrix Specification

CHAPTER
FIVE

CHANGES IN OPENMX

5.1 trunk

* in summary(), renamed “parameter estimate” column to “Estimate” and renamed “error estimate” to “Std.Error”
* tools/mxAlgebraParser.py will convert Mx 1.0 algebra expressions (Python PLY library is required)

¢ added ‘dimnames’ argument to mxFIMLODbjective() and mxMLObjective()

5.2 Release 0.1.5-851

* improved error messages on unknown identifier in a model (beta tester issue)

* fixed bug in mxMatrix() when values argument is matrix and byrow=TRUE

» implemented square-bracket substitution for MxMatrix labels

* fixed a bug in computation of omxFIMLODbjective within an algebra when definition variables are used
* significant alterations to back-end debugging flags

* tweaked memory handling in back-end matrix copying

* added support for x86_64 linux with gcc 4.2 and 4.3

5.3 Release 0.1.4-827

* added checking and type coercion to arguments of mxPath() function (a beta tester alerted us to this)
* moved matrices into submodels in UnivariateTwinAnalysis_MatrixRaw demo

* added Beginners Guide to online documentation

* mxRun() issues an error when the back-end reports a negative status code

» named entities and free or fixed parameter names cannot be numeric values

* constant literals are allowed inside mxAlgebra() statements, e.g. mxAlgebra(l + 2 + 3)

* constant literals can be of the form 1.234E+56 or 1.234e+56.

* type checking added to mxMatrix arguments (prompted by a forum post)

» mxPath() issues an error if any of the arguments are longer than the number of paths to be generated

105

OpenMx Documentation, Release 0.1

data frames are now accepted at the back-end

FIML ordinal objective function is now working. Still a bit slow and inelegant, but working

FIML ordinal now accepts algebras and matrices. dimnames of columns must match data elements
implemented free parameter and fixed parameter substitution in mxAlgebra statements
implemented global variable substitution in mxAlgebra statements

turned off matrix and algebra substitution until a new proposal is decided

snow and snowfall are no longer required packages

added cycle detection to algebra expressions

mxEval() with compute = TRUE will assign dimnames to algebras

added dimnames checking of algebras in the front-end before optimization is called

added ‘make rproftest’ target to makefile

Release 0.1.3-776

mxEvaluate() was renamed to mxEval() after input from beta testers on the forums.
new function mxVersion that prints out the current version number (beta tester request).

When printing OpenMx objects, the @ sign is used where it is needed if you would want to print part of the
object (beta tester request).

now supports PPC macs.

implemented AIC, BIC and RMSEA calculations.

mxMatrix documentation now talks about lower triangular matrices (beta tester request).

fixed bugs in a number of demo scripts.

added chi-square and p-value patch from beta tester Michael Scharkow.

added comments to demo scripts.

fixed a bug in the quadratic operator (a beta tester alerted us to this).

means vectors are now always 1xn matrices (beta tester request).

added an option “compute” to mxEval() to precompute matrix expressions without going to the optimizer.
Matrix algebra conformability is now tested in R at the beginning of each mxRun().

named entities (i.e. mxMatrices, mxAlgebras, etc.) can no longer have the same name as the label of a free
parameter. (This seems obscure, but you will like what we do with it in the next version!)

can use options(mxByrow=TRUE) in the R global options if you always read your matrices in with the by-
row=TRUE argument. Saves some typing. (beta tester request)

fixed the standard error estimates summary.

added mxVersion() function to return the version number (as a string).

106

Chapter 5. Changes in OpenMx

OpenMx Documentation, Release 0.1

5.5 Release 0.1.2-708

* Added R help documentation for omxCheckCloseEnough(), omxCheckWithinPercentError(),
omxCheckTrue(), omxCheckEquals(), and omxCheckSetEquals()

* (mxMatrix) Fixed a bug in construction of symmetric matrixes. - now supports lower, standardized, and
subdiagonal matrices.

5.6 Release 0.1 (August 3, 2009)

¢ (mxEvaluate) mxEvaluate translates MxMatrix references, MxAlgebra references, MxObjectiveFunction refer-
ences, and label references.

* (mxOptions) added ‘reset’ argument to mxOptions()

¢ (mxPath) renamed ‘start’ argument of mxPath() to ‘values’ - renamed ‘name’ argument of mxPath() to
‘labels’

— renamed ‘boundMin’ argument of mxPath() to ‘Ibound’
— renamed ‘boundMax’ argument of mxPath() to ‘ubound’
— eliminated ‘ciLower’ argument of mxPath()

— eliminated ‘ciUpper’ argument of mxPath()

eliminated ‘description’ argument of mxPath()

¢ (dimnames) implemented dimnames(x) for MxMatrix objects - implemented dimnames(x) <- value for
MxMatrix objects

— implemented dimnames(x) for MxAlgebra objects
— implemented dimnames(x) <- value for MxAlgebra objects
* (mxMatrix) added ‘dimnames’ argument to mxMatrix()

¢ (mxData) renamed ‘vector’ argument of mxData() to ‘means’

5.5. Release 0.1.2-708 107

OpenMx Documentation, Release 0.1

108 Chapter 5. Changes in OpenMx

CHAPTER
SIX

REFERENCE

* OpenMx R documentation

109

OpenMx Documentation, Release 0.1

110 Chapter 6. Reference

CHAPTER
SEVEN

INDICES AND TABLES

e Index
e Module Index
 Search Page

111

	Introduction
	Tutorial
	Two Model Styles - Two Data Styles

	Beginners Guide to OpenMx
	Pass By Value (READ THIS)
	Matrix Model Specification
	Path Model Specification

	Examples, Path Specification
	Regression, Path Specification
	Factor Analysis, Path Specification
	Time Series, Path Specification
	Multiple Groups, Path Specification
	Genetic Epidemiology, Path Specification
	Definition Variables, Path Specification

	Examples, Matrix Specification
	Regression, Matrix Specification
	Factor Analysis, Matrix Specification
	Time Series, Matrix Specification
	Multiple Groups, Matrix Specification
	Genetic Epidemiology, Matrix Specification
	Definition Variables, Matrix Specification

	Changes in OpenMx
	trunk
	Release 0.1.5-851
	Release 0.1.4-827
	Release 0.1.3-776
	Release 0.1.2-708
	Release 0.1 (August 3, 2009)

	Reference
	Indices and tables

